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1 Introduction
Inflammation plays a central role in various chronic diseases, 

such as cardiovascular disease, cancer, asthma, rheumatoid 
arthritis and bronchitis (Heo  et  al., 2010; Lee  et  al., 2012b). 
Among inflammatory processes, macrophages act a major role 
in inflammation-related diseases and secrete pro-inflammatory 
cytokines such asinterleukin-1 beta (IL-1β), IL-6 and tumor 
necrosis factor-alpha (TNF-α) and inflammation mediators 
including nitric oxide (NO) and prostaglandins (Heo  et  al., 
2010). Moreover, inflammation-related enzymes such as inducible 
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) 
are associated with the growth of numerous inflammatory 
diseases (Murakami & Ohigashi, 2007). Therefore, inhibition of 
inflammaproduction of inflammatory mediator is the important 
therapeutic target for healing of inflammation-related diseases 
(Ko & Jeon, 2015).

Food proteins from natural sources have been used to 
obtain a various range of bioactive peptides (Hou et al., 2014; 
Yoshikawa  et  al., 2000). Bioactive peptides usually contain 
short peptides (2-20 amino acid) derived from protein, but 
in some cases, they may consist of more than 20 amino acids 
(Yoshikawa et al., 2000; Kitts & Weiler, 2003). They are inert 
within the sequence of their parent protein and may be released 
by enzymatic proteolysis such as during gastrointestinal digestion 
or during food processing. Many of the well-known bioactive 
peptides are multifunctional and can apply more than one of the 
physiological effects mentioned (Korhonen & Pihlanto, 2003).

Soybean (glycine max) is a source of a various of bioactive 
substances, including dietary fiber, oligosaccharides, isoflavones, 

phytic acid, saponin, protein and protein hydrolysates, unsaturated 
fatty acids, and phenol compounds (Choi & Rhee, 2006). Soybean 
protein and its hydrolysates (peptides) exhibit various biological 
activities such as suppression of anticancer (de Lumen, 2005) 
and antihypertensive (Mallikarjun Gouda et al., 2006) properties 
and immunostimulation (Tsuruki et al., 2003).

Specifically, soybean hydrolysates have produced a number 
of bioactive peptides showing anti-inflammatory effects on 
macrophage cell lines with preparations from germinated 
beans eliciting the higher responses (Vernaza  et  al., 2012). 
The  soybean‑derived peptide lunasin consists of a unique 
43 amino acids (approximately 4.8 kD) and refers to exert 
anti‑inflammatory effects including COX-2 levels NF-𝜅B activity, 
reduced cytokine expression and suppression of NF-𝜅B activity 
(Hernández-Ledesma  et  al., 2009). The presence of an RGD 
(Arg-Gly-Asp) motif in lunasin and similar peptides is believed 
to contribute to their anti-inflammatory effects, involving 
antagonism of downstream pro-inflammatory cascades and 
integrin signaling (Cam & Mejia, 2012). Gonzalez de Mejia & 
Dia (2009) demonstrated that the mixture of three peptides 
with molecular weight of 5, 8, and 14 kDa isolated from defatted 
soybean flour inhibited inflammatory response by suppressing 
the iNOS/NO and COX-2/PGE2 pathways.

Soybean-based fermented foods such as whole cooked soybean 
fermented product (chungkookjang) and soybean paste (doenjang) 
are very popular in Korea (Lee, 2012). Chungkookjang has been 
made by fermenting with microorganism with completely cooked 
soybean without salt addition. To make doenjang, soybean is 
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cooked, crushed and molded to obtain meju (the shape of a brick) 
at the beginning of winter. The meju is dried and fermented in 
the open air. Thus, meju performs as a medium for solid culture. 
The fermented meju is then aged in salted water for a period of 
longer than 6 months. The non-aqueous slurry separated from 
the aged solution is used as doenjang (Lee, 2012). Therefore, 
various hydrolysates of biological substances, including peptides, 
are present in doenjang (Lee et al., 2014).

Few studies have been carried out the anti-inflammatory 
activity of peptides derived from Korean fermented soybean 
products (Lee et al., 2014). Hwang et al. (2011) demonstrated that a 
bioactive peptide from chungkookjang exhibited anti‑inflammatory 
effects in breast cancer cells by activation of transforming 
growth factor (TGF)-beta signaling and down‑regulation of 
cytokine/chemokine expression. An inhibitory effect on the NO 
production in LPS-stimulated cells was observed in fractions 
of nitrogenous compounds separated by molecular weight level 
from water extracts of doenjang (WED) (Lee et al., 2014). It is 
not still clear yet whether the anti-inflammatory effect of WED 
fractions is associated with the inflammatory mediators or not. 
Therefore, the aim of study is to investigate the effect of WED 
fractions on ROS production and expression of pro-inflammatory 
cytokines in LPS-stimulated RAW 264.7 macrophage cells.

2 Materials and methods
2.1 Materials

Traditional doenjang was obtained from the Korean 
local areas of Oksan-seowon, Gyeongju, Gyeongsangbuk-do 
(Lee et al., 2014). The doenjang was freeze dried and stored at 
4 °C. 6-carboxy-2’, 7’-dichlorofluorescein diacetate (DCFH‑DA) 
was provided from Molecular Probes (Eugene, OR, USA). 
Lipopolysaccharides (LPS), phosphoric acid, sodium nitrite, 
naphthylethylenediamine dihydrochloride (NED) and sulfanilamide 
were purchased from Sigma Chemical Co. (St. Louis, MO, USA). 
A 3-(4,5-dimethylthiazol-2-yl]-5-(3-carboxy-methoxyphenyl)-2-
(4-sulfenyl)-2H-tetrazolium (MTS) assay kit was obtained from 
Promega (Madison, WI, USA). The goat anti-rabbit IgG-HRP 
and goat anti-mouse IgG-HRP were purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA, USA). The protein extraction 
solution was provided from Intron Biotechnology (Gyeonggi-do, 
Korea). The PGE2 ELISA kit was provided from R&D Systems 
(Minneapolis, MI, USA). The polyvinylidene fluoride membrane 
and ECL kit were provided from Amersham Pharmacia Biotech 
(Buckinghamshire, UK). TNF-α and IL-1β ELISA kits were 
obtained from Pierce Biotechnology (Rockford, IL, USA). 
The anti-iNOS, anti-COX-2 and anti-β-actin antibodies were 
provided from Cell Signaling Technology (Beverly, MA, USA). 
All other chemicals and reagents were of analytical grade.

2.2 Sample preparation

WED and WED fractions according to their molecular 
weight were prepared according to a previously described 
method (Lee et al., 2014). The freeze-dried doenjang (100 g) 
was mixed with 10 volumes (w/v) of distilled water for 1 h 
at room temperature, and water-soluble constituents were 
isolated using filter paper (No. 40, Whatman, Maidstone, UK). 
The water-soluble constituents were desalted (WED) by FPLC 

gel filtration with a Fast Desalting column (Pharmacia, USA), 
freeze-dried, and stored at -20 °C. Ten grams of freeze-dried 
WED was liquefied in 5 volumes of distilled water and separated 
into 5 groups WED fractions with molecular weights less than 1 
(WEDI), between 1 and 3 (WEDII), 3 and 5 (WEDIII), 5 and 10 
(WEDIV), and 10 and 30 kDa (WEDV) using ultrafiltration 
membranes (Amicon, Lexington, USA). All of the separated 
fractions were freeze-dried and kept under -20 °C until used.

2.3 Cell culture

RAW264.7 cells and mouse macrophage cell line were 
purchased from KCLB (KCLB; Seoul, Korea). Cells were cultured 
in DMEM (GIBCO, Grand Island, NY, USA) prepared with 
10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. 
Cells from passages 20 to 25 were used and maintained in an 
incubator at 37 °C in 5% CO2. RAW 264.7 cells were cultivated 
to 80-90% confluence and performed quiescent by starvation 
for at least 24 h.

2.4. Cell viability

A Cell Titer 96 colorimetric assay (Promega, Madison, 
WI, USA) using MTS reagent determined cell viability. RAW 
264.7 cells (1x105) were distributed into wells of a 96-well 
plate and added with WED and WED fractions for 1 h before 
100 ng/mL LPS treatment. After 19 h of cultivation, 20 μL MTS 
reagent added. Cells were cultivated for another 4 h at 37 oC 
in 5% CO2. An absorbance at 490 nm was measured using a 
microplate reader (Molecular Devices, Sunnyvale, CA, USA).

2.5 Reactive Oxygen Species (ROS) Generation in 
LPS‑stimulated RAW 264.7 Cells

Intracellular ROS generations were determined using 
the DCFH-DA staining method (Kalyanaraman et al., 2012). 
Briefly, RAW 264.7 cells (1x105) were distributed into wells of a 
96-well plate and supplemented with WED and WED fractions 
for 1 h before 1μg/mL LPS treatment and then incubated for 
24 h. After 30 min of treatment, 10 μM DCFH-DA was added 
and cultivated in the dark. Incubated cells were washed three 
times using phosphate-buffered saline (PBS). ROS-mediated 
fluorescence with excitation and emission wavelengths of 485  nm 
and 528 nm was measured using a fluorescence microplate reader 
(Molecular Device, Sunnyvale, CA, USA).

2.6 NO Production in LPS-stimulated RAW 264.7 Cells

RAW 264.7 cells (1x105) were pretreated with WED and 
WED fractions for 1 h before being incubated with 1μg/mL LPS 
for 24 h. The nitrite concentration in the culture medium was 
measured as an amount of NO production using Griess reagent 
system. Fifty μL of each supernatant was added and mixed with 
50 μL of sulfanilamide solution and then cultivated for 10 min 
at room temperature protected from light. The same volume of 
NED (N-1-napthylethylenediamine dihydrochloride) solution 
was added and cultivated for 10 min at room temperature 
in dark. Absorbance of the mixture solution at 540 nm was 
measured using microplate plate reader (Molecular Devices, 
Sunnyvale, CA, USA)



Lee; Lee; Kim

Food Sci. Technol, Campinas, 39(4): 947-954, Oct.-Dec. 2019 949/954   949

2.7 Enzyme-linked Immunosorbent Assay (ELISA) Analysis

RAW 264.7 cells (1x105) were distributed into wells of a 
24-well plate and prepared with WED and WED fractions and 
stabilized for 1 h, after which they were induced with 1 μg/mL 
LPS. The supernatants were subsequently separated and the 
amount of PGE2, TNF-α and IL-1β production was measured 
using an ELISA kit.

2.8 Immunoblot analysis

RAW 264.7 cells (1x105) were pre-incubated with WED and 
WED fractions for 1 h before being stimulated with 1 μg/mL 
LPS. After 23 h of incubation, the cells were washed twice using 
ice-cold PBS and gathered by scraping in 1 mL of ice-cold PBS. 
Whole cell lysates were extracted by Pro-prep protein extraction 
solution (Intron Biotechnology, Gyeonggi-do, Korea). Protein 
concentration was analyzed with a commercial protein assay kit 
(Bio-Rad, Hercules, CA, USA). Equal protein concentrations 
were subjected to 10% SDS-polyacrylamide gel electrophoresis 
and transferred onto a polyvinylidene fluoride membrane 
(GE  Healthcare, Piscataway, NJ). After blocking with PBS 
containing 5% non‑fat dry milk for 1 h at room temperature, 
each membrane was incubated with a specific primary 
antibody overnight at 4ºC, including anti‑cyclooxygenase-2 
(Cox2, 1:1,000), anti-iNOS (CD31, 1:1,000), anti-tumor 
necrosis factor-α (TNFα, 1:1,000) and anti‑interleukin 1β 
(IL‑1 β, 1:1,000, all from Santa Cruz Biotechnology, Santa Cruz, 
CA). Each membrane was washed twice with PBS containing 
0.1% Tween-20 (PBST), immunoblotted with horseradish 
peroxidase‑conjugated anti‑mouse or anti-rabbit for 1 h, 
washed three times in PBST, and visualized by enhanced 
ECL (Amersham Pharmacia Biotech, Buckinghamshire, UK). 
The band intensities was determine using the Fusion Fx image 
acquisition system (Vilber Lourmat, Torcy, France).

2.9 Statistical analysis

The data were determined with SPSS version 22.0 (SPSS, 
Chicago, IL, USA) and are indicated as the means ± standard 
deviations (SDs). The differences between the groups were 
analyzed using 1-way ANOVA, and statistical significance was 
defined at p < 0.05 by Tukey’s test.

3 Results and discussion
3.1 Proximate composition and distribution of nitrogenous 
compounds in WED and WED fractions

Proximate contents (wt. % in dry basis) of protein, carbohydrate 
and ash in WED were 78.0, 15.7 and 6.3%, respectively. Most 
of the nitrogenous compounds were amino acids and peptide. 
Distribution ratio of nitrogenous compounds in five fractions 
separated by their molecular weight range were 92.2 (WEDI), 
3.0 (WEDII), 2.1 (WEDIII), 0.0 (WDEIV) and 2.6% (WEDV). 
A fraction of 5 to 10 kDa molecular weight (WEDIV) has a 
very small proportion of nitrogenous compounds. The free 
amino acid concentration was 3410.9 ± 32.9 mg%, which 
consists of 59.8% of the total amino acids in WEDI (Lee, 2012; 
Lee et al., 2014).

3.2 Effect of the WED and WED fractions on ROS 
generation in LPS-stimulated RAW 264.7 cells

Each fraction of WED was applied to the LPS-stimulated 
RAW 264.7 cell in order to examine cytotoxicity of the WED. 
The  dose of the critical concentration revealing cytotoxicity 
on the RAW 264.7 cell with and without treatment of LPS was 
400 μg/mL for WED and WED fractions, except for molecular 
weights more than 10 kDa. A fraction with molecular weight 
more than 10 kDa showed cytotoxicity at a concentration of 
100 μg/mL (Figure 1). No significant differences in the effect 
of WED and WED fractions on cell viabilities of both the RAW 
264.7 and LPS-stimulated RAW 264.7 cells were found.

Treatment of LPS on the RAW 264.7 cell induced 3.2 times 
ROS generation compared to that of RAW 264.7 cell (control). 
The  generation of ROS was inhibited by WED fractions. 
Particularly, a dose of 400 μg/mL on WEDII and a dose of 
100 μg/mL on WEDV were significantly effective in inhibiting 
ROS generation compared to control (Figure 2).

ROS can influence the expression of several of genes in 
monocytes. H2O2 is known to activate NF-κB, which regulates 
the expression of pro-inflammatory cytokines and immune 
mediators (Lee et al., 2012a). Oxidative stress is strongly associated 
with small cellular molecules, cellular damage, proteins, lipids, 
and oxidative modification of DNA by ROS. It acts a major role 
in a variety of common diseases and age-related degenerative 
conditions (Bowie & O’Neill, 2000). Thus, dietary antioxidants 
capable of protecting vital molecules against oxidative damage 
may help prevent the onset and progression of disease (Lee et al., 
2006). A number of studies have been devoted to evaluating 
the antioxidant ability of soy protein fractions as well as to the 
separation and structural property of the most active peptides 
(Borek, 1991). These antioxidant peptides isolated from soybean 
protein hydrolysates have been identified to contain between 
5 and 16 amino acids (Gibbs  et  al., 2004). In this study, we 
demonstrated that WEDII and WEDV fractions significantly 
inhibited oxidative stress in LPS-activated macrophages by 
inhibiting ROS generation. The results suggested that WEDII 
with approximately 9 amino acids and WEDV with approximately 
86 amino acids might contribute to the antioxidant properties. 
The enhancement of the antioxidant property of the fermented 
soybean depends on the organism used for the fermentation. 
It has also been shown that mixture of proteolytic microorganisms 
(Bacillus and fungus) during fermentation of soybean increased 
the total antioxidant activities (Wongputtisin et al., 2007).

3.3 Effect of the WED and WED fractions on iNOS 
expression and NO production in LPS-stimulated RAW 
264.7 cells

The effect of WED and WED fractions on LPS-stimulated 
NO production in RAW 264.7 cells was examined by measuring 
amount of nitrite released into the culture medium using the 
Griess reaction (Figure  3). No significant differences in NO 
production were found in RAW 264.7 cells treated with WED 
and WED fractions (Figrue 1). However, WEDII and WEDV 
significantly decreased LPS-stimulated NO production: 17.5 μM at 
400 μg/mL and 20.58 μM at 100 μg/mL, respectively (Figure 3A).
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The results demonstrate that the NO inhibition effects of 
the WED and WED fractions could be brought about through 
the influence of iNOS protein expression. The iNOS protein 
expression in LPS-stimulated RAW 264.7 cells at 6 and 24 h was 
observed by Western blot assay. WEDII and WEDV inhibited 
LPS-stimulated iNOS expression by 60.4% at 400 μg/mL and 
98.3% at 100 μg/mL, respectively, compared to cells treated 
with LPS alone (Figure 3B). The results suggest that WEDII and 
WEDV may contribute to preventing inflammation through 
inhibition of iNOS/NO pathways.

NO is a central inflammatory mediator synthesized from 
the amino acid by nitric oxide synthesis (NOS) (Heo  et  al., 
2010). Under pathological state, NO is produced by the iNOS, 
which subsequently induces the tissue damage (Ko & Jeon, 
2015). Therefore, NO inhibitors are indispensable to prevention 
of inflammation‑mediated responses. Recent studies have 
investigated the effect of soybean-derived hydrolysates on 
LPS-stimulated macrophages for the treatment of inflammation 
(Hernández‑Ledesma et al., 2009; Cam & Mejia, 2012; Mejia 
& Dia, 2009). NO inhibitory activity was found in every of the 

Figure 1. Effect of the WED and WED fractions on cell viability in RAW 264.7 cells. The cell viability was measured by MTS assay. RAW 264.7 cells 
were pretreated with different concentrations of WED fraction for 1 hr before being cultivated with or without 1 μg/mL LPS for 24 hrs. Values 
are mean±S.D. (n=3).
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Figure 3. Effect of the WED and WED fractions on NO production (A) and iNOS expression (B) in RAW 264.7 cells. (A) RAW 264.7 cells were 
prepared with WED and WED fractions for 1 h before being cultivated with 1 μg/mL LPS for 24 h. The supernatants were isolated and measured 
for nitrite concentrations. (B) RAW 264.7 cells were prepared with WED and WED fractions for 1 h before being cultivated with 1 μg/mL LPS 
for 24 h and subjected to immunoblotting using antibody specific for iNOS. Values are mean±S.D. (n=3). *a-fBars with different letters differ 
significantly different at p<0.05 by Tukey test.

Figure 2. Effect of the WED and WED fractions on LPS-stimulated ROS 
generation in RAW 264.7 cells. RAW 264.7 cells were prepared with 
WED and WED fractions for 1 h before being cultivated with 1 μg/mL 
LPS for 24 h. 10 μM DCF-DA was added during the last 30 min of the 
treatment. ROS generation is mean±S.D. (n=3) and expressed as fold 
of generation compared to control. *a-dBars with different letters differ 
significantly at p<0.05 by Tukey test.

fractions. Therefore, many NO inhibitory substances with various 
molecular weight ranges were existed in the hydrolysate. Among 
the fractions, the most potent NO inhibition was observed in 
between the 10 and 30 kDa fractions (WEDV).

3.4 Effect of the WED and WED fractions on PGE2 
production and COX-2 expression in LPS-stimulated 
RAW 264.7 cells

The effects of water extracts of doenjang (WED) on 
LPS‑stimulated PGE2 production and COX-2 gene expression were 
investigated (Figure 4). Unstimulated RAW 264.7 macrophages 
in culture medium for 24 h produced basal amount of PGE2 
(285.4 pg/mL) in the medium. After stimulation with LPS 
(1 μg/mL) for 24 h, the amount of PGE2 apparently increased 
to 1,223.2 pg/mL in medium. Addition of both WEDs and LPS 
to the cell strongly suppressed LPS-stimulated PGE2 production 
(Figure 4A). Especially, WEDV showed the strongest inhibitory 
activity on LPS-stimulated PGE2 production. Western blot was 
performed to demonstrate the effect of WED and WED fractions 
on COX-2 gene expression. RAW 264.7 macrophages expressed 
only a little amount of COX-2 protein in unstimulated cells, and 
WED treatment alone showed no alternation on basal COX-2 
expression. Treatment of LPS (1 μg/mL) dramatically increased 
COX-2 protein in cells. Cotreatment of cells with LPS (1 μg/mL) 
and WEDV (100 μg/mL) inhibited induction of COX-2 protein 
in RAW 264.7 cells (Figure 4B).

COX-2 is a major mediator of inflammation such as PGE2 and 
NO generation (Ahmad et al., 2002). PGE2 has been incriminated 
as an important mediator in the processes of inflammation 
(Ahmad et al., 2002). As previously reported, NO production 
is closely related to generation of PGE2 (Heo et al., 2010). Thus, 
chemo preventative agents that attenuate COX-2-mediated PGE2 
production have had a healing effect in many inflammation‑related 
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diseases (Höcherl et al., 2002). The results demonstrated that 
WEDII and WEDV decreased NO and PGE2 production in an 
LPS-stimulated RAW 264.7 macrophage incubation system by 
decreasing the expression of iNOS and COX-2.

3.5 Effect of the WED and WED fractions on TNF-α and 
IL‑1β production in LPS-stimulated RAW 264.7 cells

LPS stimulated tremendous production of TNF-α. The WED 
and WED fractions were significantly suppressed production 
of TNF-α in the LPS-stimulated RAW 264.7 cells (Figure 5A). 

WEDV was the most active in suppressing TNF-α, showing no 
practical difference compared to that in LPS-untreated RAW 
264.7 cells followed by WEDII.

Similar tendencies in inhibition ability of WED and WED 
fractions on IL-1β production of LPS-stimulated RAW 264.7 cells 
were found (Figure 5B). WEDV with a concentration of 100 μg/mL 
most effectively showed suppression of IL-1β production.

Cytokines are proteins of low-molecular weight that influence 
immune cell function and are related during for activation of 
the inflammatory cascade (Kim et al., 2008). TNF-α is a strong 

Figure 4. The effect of the WED and WED fractions on LPS-induced PGE2 production (A) and COX-2 expression (B) in RAW 264.7 cells. 
(A) RAW 264.7 cells were pretreated with WED and WED fractions for 1 h before being cultivated with 1 μg/mL LPS for 24 h. The supernatants 
were subsequently separated, and the amount of PGE2 production was measured using an ELISA kit. (B) RAW 264.7 cells were prepared with 
different concentrations of WED and WED fractions for 1 h before being cultivated with 1 μg/mL LPS.

Figure 5. The effect of WED and WED fractions on LPS-induced TNF-α (A) and IL-1β (B) production in RAW 264.7 cells. RAW 264.7 cells were 
prepared with WED and WED fractions for 1 h before being cultivated with 1 μg/mL LPS for 24 h. The supernatants were subsequently separated, 
and the amount of TNF-α a and IL-1β production was measured using an ELISA kit. Values are mean±S.D. (n=3). *a-eBars with different letters 
differ significantly at p<0.05 by Tukey test.
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