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1 Introduction
Probiotics are defined as living microorganisms that, when 

administered in adequate amount, confer a health benefit on 
the host (Hill et al., 2014). Lactic acid bacteria (LAB), mainly 
from the genera of Lactobacillus and Bifidobacterium, possess 
probiotic characteristics, such as acid and bile tolerance, 
antimicrobial effect against pathogenic bacteria, and ability to 
adhere onto mucosal and epithelial surfaces (Kechagia et al., 
2013; Ranadheera et al., 2018). Among probiotics, Lactobacillus 
rhamnosus GG (LGG) is one of the well-studied LAB that was 
first discovered by Sherwood Gorboach and Barry Goldwin from 
healthy adults’ fecal samples (Gorbach et al., 2017). LGG is a rod 
shaped, non-spore forming and facultative gram positive bacteria 
which is categorized as generally recognized as safe (GRAS) 
(Valík et al., 2008; Kailasapathy, 2014). It has been extensively 
studied and applied in dairy products such as cheese, milk and 
yogurt, with study on increasing the buttery flavoring compounds 
following different sugar substrate incorporation (Assaf et al., 
2019; Bang et al., 2014; Jyoti et al., 2003).  The health benefits 
of LGG includes the prevention or treatment of gastrointestinal 
infections and diarrhea, stimulating the immune responses and 
preventing certain allergic symptoms (Berni Canani et al., 2012; 
Fong et al., 2015; Segers & Lebeer 2014).

According to Gibson et al. (2017), prebiotic is a substrate 
that is selectively utilized by host microorganisms conferring a 
health benefits. Most of the previously studied prebiotics were 

shown to stimulate the growth and activity of colon microflora 
(Patel & Goyal, 2012; Vrese & Schrezenmeir, 2008; Khosravi 
Zanjani et al., 2014). Incorporation of prebiotics with probiotics 
produces a synergistic health beneficial effect to human, termed 
as “synbiotics” (Sarao & Arora, 2015). Several studies had revealed 
that microencapsulation of probiotics with prebiotics resulted 
in protection on viability of probiotics during gastrointestinal 
transit (Crittenden et al., 2006; Khosravi Zanjani et al., 2014). 
IMO are glucose oligomers that can be found naturally in many 
fermented foods such as miso and sake. Meanwhile, commercial 
IMO is produced enzymatically through transglycosylation 
using starch (Niu  et  al., 2016; Sawangwan & Saman 2016). 
IMO is only partially digested by human and the undigested 
portion will be fermented by bifidobacteria in the colon which 
improve the intestinal flora (Mao et al., 2015; Wang et al., 2015). 
Recent studies also demonstrated that the incorporation of IMO 
into cheese and fermented beverage enhance their functional 
properties (Liu et al., 2015; Mei et al., 2017). 

The minimum amount of probiotics required to exert health 
benefits to hosts is in the range 106 – 107 CFU/mL (Food and 
Agriculture Organization & World Health Organization, 2002; 
Kechagia et al., 2013). In order for probiotic to survive harsh 
conditions such as low pH and high bile concentration during 
digestion, microencapsulation is one of the common techniques 
that can be applied to protect the probiotics against these adverse 
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environments and controls the release of probiotic in human using 
certain encapsulation materials (Ozyurt & Ötles, 2014; Shori, 
2017; Nogueira et al., 2017). Microencapsulation produces tiny 
particles of liquid or solid materials surrounded or coated with 
a continuous film of inert polymeric material (Etchepare et al., 
2015). The materials encapsulated in the internal of capsule 
is known as core, while the wall is known as shell or coating 
(Suganya & Anuradha, 2017). This technique has been successfully 
protect the active ingredient such as red beet extract, grape seed 
oil, and linalool under unfavourable conditions (Antigo et al., 
2018; Böger et al., 2018; Xiao et al. 2017).

Alginate is among the commonly used wall materials for 
microencapsulation (Colom et al., 2017). D-mannuronic acid 
and L-glucuronic acid present in alginate has the ability to form 
a stable gel (Etchepare et al., 2015). The structure of capsules is 
formed through cross linking in the presence of calcium ions from 
calcium chloride (Martin et al., 2014). However, this network can 
be destabilized by chelating agents such as lactates, citrates and 
phosphates (Leirvag, 2017; Chew et al., 2019). Therefore, it has 
been suggested that alginate beads should be coated with other 
wall material to reduce the porosity of alginate matrix to improve 
the physical integrity to prevent leakage of probiotics (Sarao & 
Arora, 2015). Poly-L-lysine (PLL) forms a strong network between 
the free amine groups of PLL and uronic acid of alginate that 
could increase the resistance of capsules toward chelating agents. 
This enhances the mechanical strength of capsules (King et al., 
2003; Solanki et al., 2013; Zanjani et al., 2017).

Several researches have been conducted on encapsulation 
of probiotics using emulsion, spray drying and extrusion 
methods (Anekella & Orsat, 2013; Krasaekoopt & Watcharapoka, 
2014; Mandal & Hati, 2017). Microencapsulation by vibrating 
technology or commonly known as co-extrusion is a promising 
encapsulation technique as it can produce uniform and smaller 
size capsules compared to extrusion technique (Krasaekoopt et al., 
2003; Nemethova et al., 2014; Sri et al., 2012). Yet, few studies 
have applied co-extrusion technique to encapsulate probiotic, 
in comparison with extrusion technique that are commonly 
used (Olivares et al., 2017; Silva et al., 2016).

Although LGG is associated with many beneficial effects on 
health and prevention of disease in human. However, there are 
limited studies focusing on the incorporation of IMO as part of 
the core in probiotic microencapsulation and the survivability of 
these microcapsules in harsh conditions along the gastrointestinal 
tract (Cook  et  al. 2012). Therefore, the aim for this study is 
to investigate the effectiveness of microencapsulation on the 
survivability of probiotic during gastrointestinal transit by the 
addition of prebiotic and coating with PLL.

2 Materials and methods
2.1 Preparation of culture

Preparation of LGG culture was adapted from Cheng (2015) 
with modification. A sachet (2g) of LGG (LactoGG, USA) was 
added to 100 mL MRS broth (Chemsoln, India) and incubated for 
at 37 °C for 24 h. After sub-cultured twice, LGG was cultivated in 
100 mL of MRS broth and incubated at 37 °C for 24 h. The cells 
were then harvested by centrifugation (5840 R, Eppendorf) at 
6000x g, 4 °C for 10 mins, followed by resuspension of cell in 
25 mL of Phosphate Buffer Saline (PBS).

2.2 Selection of prebiotics to microencapsulate LGG

Inulin (Sensu, Netherlands), Fructo-oligosaccharide, FOS 
(Sensus, Netherlands), or Isomalto-oligosaccharide, IMO 
(CK Chemicals, Mlaysia) was added to 100 mL of MRS broth 
at 3.0% (w/v) and autoclaved. Sterile MRS broth was used as 
control. Active culture of 1.0% (v/v) was inoculated into the 
media supplemented with the tested prebiotic and incubated 
at 37 °C for 2 h. Enumeration of LGG were carried out by pour 
plate method (incubate at 37 oC for 48 h) using sterile MRS agar 
(Chemsoln, India). Aliquots (1 mL) was withdrawn from sample, 
serially diluted and pipetted onto the Petri dish. The viable cell 
counts for microcapsules and free cells were calculated using 
Equation 1 and expressed as logarithm colony forming unit per 
milliliter (log CFU/mL):

Viable cell count (CFU/mL) = mean number of colonies/ 
(dilution factor x volume plated) 	 (1)

2.3 Optimizing concentration of selected prebiotic prior to 
microencapsulation

Selected prebiotic was incorporated into 50 mL MRS broth 
at different concentrations (0 – 4.0% with interval of 0.5% (w/v)). 
The samples were sterilized and inoculated with 1.0% (v/v) of 
active LGG culture. The samples were incubated at 37°C and 
enumeration of viable cell count was carried out after 24 h.

2.4 Microencapsulation of LGG using co-extrusion technique

Microencapsulation of LGG was carried out by co-extrusion 
using Büchi encapsulator B-390 (shown in Figure 1) as described 
by Chew  et  al. (2015) with modifications. The core fluid 
(LGG with or without IMO) and shell fluid (1.5% (w/v) sodium 
alginate (R&M Chemicals, UK) were pumped simultaneously 
through the concentric nozzles with diameter of 200 µm (inner 
nozzle) and 300 µm (shell nozzle), respectively, to give a core 
shell fluid stream. Dispersed droplets were hardened in 3% (w/v) 
calcium chloride (R&M Chemicals, UK) solution for 30 mins. 
The air pressure (600 mbar), vibration frequency (300 Hz), voltage 
(1.5kV) and amplitude of 3 was fixed for every encapsulation.

Figure 1. Büchi encapsulator B-390.
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2.5 Coating with Poly-l-lysine

Alginate microcapsules (15 g) produced was coated with 
0.05% (w/v) PLL (VIS Foodtech, Malaysia) solution by agitation 
at 100 rpm for 60 mins as described by Zanjani et al. (2017). Four 
formulations of LGG beads were produced without PLL coating 
(S1: no prebiotic and S3: with prebiotic) and with PLL coating 
(S2: without prebiotic and S4: with prebiotic).

2.6 Morphology and size of bead and Microencapsulation 
Efficiency (MEE)

The morphology and mean diameter of 10 randomly 
selected capsules were determined and measured using an 
optical microscope (CX31, Olympus, Japan) at 10x magnification 
and a stage micrometer (Chia et al., 2015). The solubilisation 
of co-encapsulated LGG cells was adapted from Yeung et al. 
(2016) with modifications. For decomposition of the capsules, 
1 g capsules were transferred to 9 mL of 10.0% (w/v) sterile 
trisodium citrate (Merk, KGaA, Germany) to dissolve. Aliquots 
(1 mL) were withdrawn, serially diluted and enumeration of 
the beads were evaluated by pour plate method incubation at 
37 oC for 48 h. Microencapsulation efficiency (MEE) was then 
calculated using Equation 2 (Lotfipour et al., 2012):

( ) 10

10

Log (number of viable entrapped cells released from capsules)MEE %  x 100
Log  (number of free viable cells in culture)

=  	 (2)

2.7 Sequential digestion

Sequential digestion was adapted from Ramos et al. (2016) 
with slight modifications. To evaluate the survivability of LGG 
under simulated gastrointestinal condition, 1 g of capsules or 1 mL 
of free cells were added to 9 mL of sterile simulated gastric juice 
(SGJ: 7 mL/L 0.1 M HCl, 2 g/L NaCl, 3.2 g/L pepsin) at pH 2.0 and 
incubated at 37 °C for 0 – 2 h (with interval of 1 h) with constant 
agitation at 100 rpm. After gastric digestion, the capsules or free 
cells were immediately adjusted to pH 6.8 with 1.0 M NaOH to 
inactivate pepsin. SGJ was removed by centrifugation at 6000x g, 
4 °C for 10 minutes. After incubation in SGJ, 9 mL of simulated 
intestinal juice (SIJ: 6.8 g/L KH2PO4, 190 mL/L 0.1M NaOH, 
6 g/L bile salt) at pH 7.5 was added into capsules or free cells 
and incubated at 37 °C for 1 h and 2 h with constant agitation 
at 100 rpm in water bath. For retrieval of capsules or free cells 
after incubation, the mixture was centrifuged at 6000x g, 4 °C 
for 10 minutes. The capsules were released by adding 9 mL 
of 10.0% (w/v) trisodium citrate. For free cells, the cell pellet 
obtained from centrifugation was resuspended in PBS and the 
enumeration were determined by pour plate method.

2.8 Statistical analysis

All analyses were conducted in triplicate and the results were 
expressed as mean ± standard deviation. One way analysis of 
variance (ANOVA) was carried out and Tukey’s HSD test was 
used to determine the significant difference with p ≤ 0.05 using 
MINITAB 19 (Minitab LLC, USA).

3 Results and discussion
3.1 Selection of prebiotic to microencapsulate with LGG

Preliminary screening of prebiotics were carried out before 
microencapsulation to select the optimum prebiotic for production 
of synbiotic capsules with LGG. The effects of inulin, FOS and 
IMO on growth of LGG are shown in Table 1 and it shows that 
all three prebiotics (inulin, FOS and IMO) had higher viable 
cell count of LGG compared to control (MRS broth without 
prebiotic). These results indicated that all prebiotics improved 
the growth of LGG similarly. Inulin and IMO could promote 
the growth of LGG (Chen et al., 2011; Succi et al., 2017). On the 
other hand, results shown in Table 1 indicated that FOS could 
promote growth of LGG. The above findings contradict the study 
conducted by Kaplan & Hutkins (2000). Their study demonstrated 
that LGG is unable to utilize FOS as energy source. In addition, 
Watson et al. (2013) also reported that FOS is more effective in 
promoting growth of bifidobacteria sp. instead of lactobacillus sp.

Since all prebiotic has the same effectiveness in promoting 
growth of LGG, the prebiotic is selected based on the least studied 
prebiotic. Inulin is a well-studied prebiotic which has been 
reported to enhance survivability of LGG during storage and 
gastrointestinal transit (Soukoulis et al., 2014; Atia et al., 2016; 
Gandomi et al., 2016; Seyedain-Ardabili et al., 2016). However, 
FOS, it was reported to be more bifidogenic and has little effect 
on Lactobacillus species. Therefore, IMO is the prebiotic selected 
for further analysis as it is known as emerging prebiotic and was 
less studied compared to inulin (Stowell, 2007).

3.2 Optimizing the concentration of IMO Prior to 
Microencapsulation

The optimization on the concentrations of IMO was 
carried out before co-encapsulated with LGG as the core 
material. Table 2 shows the effect of concentration of IMO 

Table 1. Effect of different prebiotics on growth of LGG.

Prebiotics Viable cell count (log CFU/mL)
Control (without prebiotic) 8.52 ± 0.04 a

Inulin 8.83 ± 0.03 b

Fructo-oligosaccharide 8.77 ± 0.06 b

Isomalto-oligosaccharide 8.77 ± 0.04 b

a-bMeans ± standard deviations followed by different superscript letters within the same 
column are significantly different at p ≤ 0.05 according to Tukey’s test.

Table 2. Effect of IMO concentrations on growth of LGG.

Concentration of Isomalto-
oligosaccharide (% (w/v)) Viable cell count (log CFU/mL)

0 8.40 ± 0.04 a

0.5 8.34 ± 0.04 a

1.0 8.37 ± 0.06 a

1.5 8.44 ± 0.05 ab

2.0 8.50 ± 0.06 ab

2.5 8.55 ± 0.05 ab

3.0 8.63 ± 0.07 b

3.5 8.56 ± 0.02 b

4.0 8.58 ± 0.10 b

a-bMeans ± standard deviations followed by different superscript letters within the same 
column are significantly different at p ≤0.05 according to Tukey’s test.
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used in their study were 2.0% (w/v). The possible reason could 
be due to the different Lactobacillus rhamnosus strain used 
which in not mentioned in the study. Similarly, Liu et al. (2015) 
reported that 1.0% (w/v) IMO promoted viability of Lactobacillus 
rhamnosus 6134.

3.3 Morphology, size and microencapsulation efficiency of bead

Figure 2 shows the microscopic evaluation on shape and size 
of four different capsules (S1, S2, S3, and S4) whereas the average 
size of capsules and microencapsulation efficiency (MEE) were 
presented in Table 3. All capsules (S1, S2, S3, S4) produced were 
white in colour. Under microscopic evaluation, Figure 2b and d 
show that the capsules coated with PLL has a very thin layer 
of membrane surrounding them, which is consistent with 
the findings of Zanjani et al. (2017). This coating can reduce 
the destabilizing effect of chelating agents on the structure of 
capsules (Krasaekoopt et al., 2004). In addition, PLL coating on 
alginate capsules also reduces the clumping between capsules 
(Cook et al., 2012). The microscopic evaluation shows that all 
capsules produced are spherical, uniform in shape and have 

Figure 2. Shape and size of capsules measured with a scale micrometer. (a) S1 (without IMO without PLL), (b) S2 (without IMO with PLL) 
(c) S3 (with IMO without PLL) (d) S4 (with IMO with PLL).

on the growth of LGG. From Table 2, it was observed that 
increasing concentration of IMO from 1.0 to 3.0% (w/v) 
increased the growth of LGG by 3%. LGG is able to hydrolyse 
IMO into D-glucose by the oligo 1-6 glucosidase enzymes. 
Therefore, at higher prebiotic concentration, higher carbon 
source is available for utilization by LGG (Goderska et al., 
2008; Soto, 2013). Corcoran et al. (2005) reported that presence 
of metabolizable sugar can enhance the survivability of LGG 
in acidic environment, in which IMO can be metabolized 
by LGG (Soto, 2013). However, further increase in IMO 
concentration (from 3 to 4% (w/v)) did not improve the 
growth of LGG. Since no study has examined the effect of IMO 
concentration on specific strain of LGG, therefore, 3% (w/v) 
IMO was incorporated into the microencapsulation of LGG.

These results were in agreement with Chen et al. (2011), 
which reported that no significant difference (p > 0.05) in the 
growth of LGG was observed when IMO concentration ranging 
from 0.1% to 1.0% (w/v) was used, while contradicts with our 
findings that 2.0% (w/v) IMO would inhibit the growth of 
L. rhamnosus. In addition, the highest concentrations of IMO 
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smooth surface. These results revealed the ability of co-extrusion 
technique to produce uniform capsules (Homar et al., 2007).

Table 3 shows that the size of the capsules produced were 
in the range of 491.33 – 541.67 µm. In comparison between 
S1 and S3, there was no significant difference (p > 0.05) in the 
mean diameter, whereas there was significant difference (p ≤ 0.05) 
in mean diameter in comparison between S2 and S4. This result 
demonstrated that the size of the capsules was not dependent 
when IMO is added in the capsules and this was in agreement 
with the results from Zanjani  et  al. (2017). In comparison 
between S1 and S2, there was no significant difference (p > 0.05) 
in capsules size when the beads are coated with PLL. Similar 
findings are also observed in comparison between S3 and S4. 
These results were in contrast with Krasaekoopt et al. (2004) 
and Zanjani  et  al. (2017), which both reported coating of 
capsules with PLL increased the size of capsules significantly 
(p ≤ 0.05). However, S4 produced largest capsules compared to 
all formulations due to the synergistic effect of the addition of 
IMO together with coating using PLL.

However, there was no significant difference (p > 0.05) 
observed between the MEE for the four formulations. This 
showed that the addition of IMO and coating of PLL did not 
affect the MEE of LGG. The present finding also supported the 
study conducted by Zanjani et al. (2017). The MEE obtained 
ranged 84.16% to 90.56%, the high MEE values could be due 
to the gentle method that was used for microencapsulation 
(Krasaekoopt & Watcharapoka, 2014). Co-extrusion technique 
consumes less time as compared to manual encapsulation and 
with higher encapsulation efficiency during scale up production, 
in terms of speed and uniformity of the beads size. Besides that, 
this process could be carried out under non-toxic and sterile 
conditions with high production rate of uniformly microcapsules 
(Chew  et  al., 2015). These characteristics are vital for mass 
production. The probiotic microcapsule incorporated with 
IMO also exhibited a high MEE which is suitable for further 
application in food industry such as yogurt, cheese, fruit juice, 
herbal tea and cereal (Champagne et al., 2018; Heydari et al., 
2018; Murtaza et al., 2017; Ng et al., 2019; Wong et al., 2019).

3.4 Sequential digestion for free and encapsulated LGG with 
different formulation

Figure 3 shows the viability of free cells and microencapsulated 
LGG under sequential digestion. It was observed that the 
viability of free cells and all encapsulated LGG (S1, S2, S3, and S4) 
decreased throughout the gastrointestinal digestion with the 
lowest viabilities presented by free cells. Various enzymes, acidic 
pH and presence of bile will threaten the viability of probiotic 

(Cook  et  al., 2012). When free LGG cells were sequentially 
incubated in SIJ for one hour, the survivability of LGG reduced 
drastically (p < 0.05) to 0% and this demonstrated that free cells 
had high sensitivity of LGG towards simulated gastrointestinal 
condition (Burgain  et  al., 2013; Li  et  al., 2016). In contrast, 
all encapsulated LGG had higher survival rate than free LGG 
cells during the first and second hour of SGJ incubation, which 
indicated that microencapsulation improved the survivability 
of LGG in gastric condition. Among the four different capsules 
produced, S1 (uncoated bead without prebiotic) is the least 
effective in improving the acid tolerant of LGG due to the porous 
surface of alginate capsules which allowed the SGJ to enter into 
the capsules (Mortazavian et al., 2008; Shori, 2017).

From Figure 2, higher survivability rate of LGG was observed 
in S2 compared to S1 by 17.44% for the first hour and 15.61% 
for the second hour. This indicated that the presence of PLL 
coating on LGG beads could preserve viability of bacterial cells 
in SGJ. Formation of complex between the free amines in PLL 
and uronic acid in alginate which reduce the porosity of alginate 
capsules this increase the physical integrity of the encapsulating 
matrix (Lee & Mooney, 2012; Ding & Shah, 2008). Similar 
results were also presented by S3 such that the LGG survivability 
was retained by at least 70% for both first and second hour as 
compared to S1. These results suggested that IMO could protect 
LGG in SGJ incubation as it can serve as the carbon source for 
LGG and this was supported by findings from Corcoran et al. 
(2005) and Soto (2013).

Table 3. Average capsules size in diameter and MEE (%) of LGG.

Samples Prebiotic Wall material Diameter (µm) MEE (%)
S1 - Calcium alginate 491.33 ± 14.47a 90.56 ± 3.33a

S2 - Calcium alginate - PLL 498.33 ± 27.50a 84.16 ± 5.30a

S3 IMO Calcium alginate 526.33 ± 5.51ab 87.39 ± 5.25a

S4 IMO Calcium alginate - PLL 541.67 ± 7.02b 90.38 ± 1.59a

a-bMeans ± standard deviations followed by different superscript letters within the same column are significantly different at p < 0.05 according to Tukey’s test.

Figure 3. Average log CFU/mL of free cell, encapsulated LGG under 
sequential digestion. (S1: without IMO without PLL; S2: without IMO 
with PLL; S3: with IMO without PLL; S4: with IMO with PLL).
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Furthermore, when comparing S3 with S2, the results 
showed that S3 had lower mortality rate of LGG at second hour 
incubation in SGJ, this indicated that IMO had better effect 
in preserving viability of LGG compared to PLL. In contrast, 
S4 achieved the highest survivability with more than 30% for the 
simulated gastric digestion as compared to other formulations. 
The highest acid tolerance of LGG in S4 could be due to the 
synergistic effects between reduction of porosity in alginate 
capsules by coating material and protective effect of prebiotic 
on LGG simultaneously (Krasaekoopt & Watcharapoka, 2014; 
Zanjani et al., 2017). The survivability of free LGG cells and 
in all types of capsules decreased drastically to 0 log CFU/mL 
after the first hour in SIJ except for S4 with at least cell viability 
of 1 log CFU/mL. However, no viable cell was observed at the 
second hour in of SIJ digestion. These findings suggested that 
the alginate beads coated with PLL and the addition of prebiotic 
can preserve the viability of LGG in SGJ digestion but only for 
the first hour of incubation in SIJ.

The weakness of PLL in protecting LGG in SIJ can be due to 
swelling of capsules in SIJ as shown in Figure 3 and subsequently 
reduced in structural integrity (Islam et al., 2010). The weak in 
structure may be due to forming of alginate/PLL complex with 
high guluronic content alginate that has resulted in random coil 
conformation, which is weaker than the helical formation between 
PLL with high mannuronic content alginate (Constantinidis et al., 
2007). This study has shown that IMO and PLL can enhance 
survivability of LGG in acidic condition, but is not effective in 
preserving viability of LGG in intestinal condition.

4 Conclusion
This study demonstrated that IMO is potential prebiotic source 

for Lactobacillus rhamnosus GG as it was able to promote its growth 
similarly with other commercial prebiotics. The morphologies 
and the encapsulation efficiency of the microcapsules were not 
affected by the addition of IMO or the coating of PLL alone. 
However, the LGG microcapsules incorporated with IMO and 
coating of alginate beads with PLL increased the beads sizes with 
high microencapsulation efficiency. The alginate microcapsules 
coated with PLL and the addition of IMO could preserve the 
survivability of LGG in simulated gastric digestion but insufficient 
in simulated intestinal conditions. Hence, further studies such 
as using different combinations of wall materials or coating 
material are suggested to improve the porosity of the alginate 
microcapsules so that the probiotic cells can be protected from 
the adverse environment in intestinal conditions.
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