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ABSTRACT 

Monitoring of large agricultural lands is often hampered by data collection logistics at 
field level. To solve such a problem, remote sensing techniques have been used to 
estimate vegetation indices, which can subsidize crop management decision-making. 
Therefore, this study aimed to select vegetation indices to detect variability in irrigated 
corn crops. Data were collected in São Desidério, Bahia State (Brazil), using an OLI 
sensor (Operational Land Imager) embedded to a Landsat-8 satellite platform. Five corn 
growing plots under central pivot irrigation were assessed. The following vegetation 
indices were tested: NDVI (Normalized Difference Vegetation Index), EVI (Enhanced 
Vegetation Index), SAVI (Soil Adjusted Vegetation Index), GNDVI (Green Normalized 
Difference Vegetation Index), SR (Simple Ratio), NDWI (Normalized Difference Water 
Index), and MSI (Moisture Stress Index). Among the tested indices, SR was more 
sensitive to high corn biomass, while GNDVI, NDVI, EVI, and SAVI were more sensitive 
to low values. Overall, all indices were found to be concordant with each other, with high 
correlations among them. Despite this, the use of a set of these indices is advisable since 
some respond better to certain peculiarities than others. 

 
 
INTRODUCTION 

Conventional crop monitoring, mainly of large areas, 
is costly and ineffective. It is often done by surveying, at 
site, the entire area to find trouble spots, that is, with biotic 
and abiotic stresses. If observed late, these spots may cause 
irreversible impacts to crops, impairing production and 
increasing losses (Aggarwal, 2004; Mulianga et al., 2013). 

Remote sensing has stood out as an alternative for 
monitoring crop fields. The technique can reduce time and 
costs, facilitating accurate and large-scale decision-making 
(Teixeira et al., 2009). It comprises a set of tools to obtain 
information on targets within the Earth's surface using 
distant or remote sensors, without physical contact, 
recording their interactions with electromagnetic radiation 
(Jensen & Epiphanio, 2011; Formaggio & Sanches, 2017). 
This favors identification of problems in the field, 
especially in large farming areas (Bernardi et al., 2017). 

Radiation reflected from surface targets at varied 
electromagnetic spectrum amplitudes has been used to 
interpret crop vegetative vigor and guide management 
decisions. This reflected radiation is also used to establish 
relationships between vegetation indices and crop features 

observed in the field (Ponzoni et al., 2012; Zhang et al., 
2012). Vegetation indices are based on algebraic operations 
between different spectral reflectances of sensors; they aim 
to enhance responses of interest of targets, enabling 
detection of further problems in vegetation monitoring 
(Ribeiro et al., 2017).  Among several indices cited in the 
literature, there is no consensus on which is more suitable 
for crop monitoring. This is because some of them are more 
sensitive to low biomass, while others have greater 
sensitivity to high biomass (Bertolin et al., 2017; Kross et 
al., 2015; Jensen & Epiphanio, 2011). 

Normalized Difference Vegetation Index (NDVI) 
relates near-infrared and red bands and has a positive 
correlation with biomass. Studies have shown that such 
index is more sensitive to early plant growth stages (Jensen 
& Epiphanio, 2011). Moreover, Green Normalized 
Difference Vegetation Index (GNDVI) is able to relate 
directly to photoactive pigments in plants and is 
distinguished from NDVI by using the green band instead 
of the red one (Gitelson et al., 1996). 

Enhanced Vegetation Index (EVI) is has been 
proposed for vegetation biomass estimation, minimizing 
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soil reflectance effects and atmospheric influences. Yet, 
Soil Adjusted Vegetation Index (SAVI) is an index 
designed to consider soil effects on analyzed images if the 
land surface is not fully covered by vegetation. 

Moisture Stress Index (MSI) and Normalized 
Difference Water Index (NDWI) quantify plant 
physiological stress due to water loss, detecting changes in 
relative water content in leaves (Hunt JR & Rock, 1989. 
These indices are good predictors of water potential in 
vegetation canopy through spectral data (Rallo et al., 2014). 

Given the widely varied indices, there is an urgent 
need to find one or a method that is sensitive to crop changes 
in the field, for all phenological stages. Identifying one or 

combination thereof could make satellite crop monitoring 
more efficient in terms of changes occurring in the field 
(Huete, 1988; Mulla, 2013; Tillack et al., 2014). In this 
context, this study aimed to analyze different vegetation 
indices to select one or a set of them that are responsive to 
irrigated corn crop changes. 

 
MATERIAL AND METHODS 

The study area is located in the city of São Desidério, 
Bahia Sate (Brazil). It is located at the geographical 
coordinates of 12º27’14” S and 45º41’16” W, in the WGS84 
reference system (Figure 1). 

 

 

FIGURE 1. Study area location and central pivot identification. 
 

According to Köppen’s classification, the climate is 
characterized as Aw (tropical climate), with annual 
temperatures from 17 to 37 ºC, and mean annual rainfall of 
1056 mm (Barbosa et al., 2018; Soares Neto et al. 2013). The 
soil has the following physical-hydric traits: field capacity of 
0.13 cm3/cm3; wilt point of 0.07 cm3/cm3, and apparent density 

of 1.55 g/cm2. Central pivots were implanted on the area with 
corn crop sowing (cultivar Status Viptera 3). To facilitate 
management, the pivots were identified as 12A, 13A, 14A, 
15A, and 16A (Bertolin et al., 2017). Table 1 shows the 
planting dates, harvest date, cycle duration, and accumulated 
irrigation depth for each central pivot in the 2015 harvest. 

 
TABLE 1. Corn cycle dates and information for each center pivot. 

Pivot Sowing date Harvest date  Cumulative irrigation depth (mm) Cycle duration (days) 

12A 09/05/2015 24/09/2015 710,8  139 

13A 12/05/2015 24/09/2015 708,4 136 

14A 13/05/2015 24/09/2015 750,7 135 

15A 15/05/2015 24/09/2015 678,9 133 

16A 16/05/2015 24/09/2015 737,0 132 
 

Monitoring was done using multispectral images from 
the OLI sensor (Operational Land Imager), which is 
embedded in the Landsat-8 satellite platform. This satellite 
provides images with 30-m spatial resolution for visible and 
infrared short-wave spectra, and 16-day temporal resolution 
(Ariza, 2013; Roy et al., 2014). Images were acquired on a 
USGS (United States Geological Survey) portal, known as 
Earth Explorer. Then, they were selected for cloud 
interference. Vegetation indices were then estimated using 
seven cloud-free images for the entire cycle of irrigated corn. 

After this procedure, images were redesigned for the 
southern hemisphere, in the WGS84 reference system and 
UTM Zone 23S projection. After being selected, images 
were corrected for atmospheric effects by DOS1 method 
(Chavez, 1996); then, digital numbers were converted to a 
physical basis, i.e., reflectance. Radiometric image 
conversion was performed following the method used by 
Ariza (2013), for bands 2 to 7, as in [eq. (1)], using the QGIS 
2.8 software (QGIS Development Team, 2017).  
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 L஛ =  M୐ Qୡୟ୪ +  A୐                                  (1) 

Where: 

𝐿ఒ is the radiance at the top of the atmosphere;  

𝑀௅ is the specific scale multiplication factor (gain),  

𝐴௅ is the specific additive scale factor (offset). Both 
gain and offset are provided in the metadata file 
(MLT.txt). 

 
Radiance of each band was converted into 

reflectance at the top of the atmosphere, in images from the 
OLI sensor, using [eq. (2)]. 

ρ஛ =  
஠×୐ಓ×ୢమ

୉ୗ୙୒ಓ ×ୡ୭ୱ୞ 
                                                (2) 

Where: 

Lλ is the radiance of each band, in W.m-2.sr-1.μm-1;  

ESUNλ is the spectral irradiance at the top of the 
atmosphere, in W.m-2.sr-1.μm-1;  

Z is the zenith angle (rad), and  

d is the Earth-Sun distance, in astronomical units, 
provided by the Landsat-8 image metadata file. 

 
Figure 2 is an explanatory flowchart of the method 

used in this study. 

 

 

FIGURE 2. Methodological process for obtaining vegetation indices for analysis of irrigated corn crop behavior. 
 
After image selection and pre-processing, 

vegetation indices were calculated according to Equations 3 
to 9. The adopted indices were: NDVI, EVI, SAVI, GNDVI, 

SR, NDWI, and MSI. Each of them has special features that 
set it apart from the others, which instigates analysis of its 
use in monitoring irrigated corn crops. 
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TABLE 2. Algebraic and authorial descriptions of the indices used in the study. 

Index Author Equation  n° 

NDVI =
ρNIR −  ρRED

ρNIR +  ρRED
 (Rouse JR et al., 1974)  (3) 

EVI = G ×
஡୒୍ୖି ஡ୖ୉ୈ

஡୒୍ୖାେଵ × ஡ୖ୉ୈିେଶ ×஡୆୪୳ୣା୐
 (1 + L)  (Liu & Huete, 1995) (4) 

SAVI =
(𝜌NIR − 𝜌Red)(1 + L)

 𝜌NIR + 𝜌Red + L
 (Huete, 1988) (5) 

GNDVI =  
𝜌𝑁𝐼𝑅 − 𝜌𝑉𝐸𝑅𝐷𝐸

𝜌𝑁𝐼𝑅 + 𝜌𝑉𝐸𝑅𝐷𝐸
 (Gitelson et al., 1996) (6) 

SR =  
ρNIR

ρRED
 (Birth & Mcvey, 1968)  (7) 

MSI =  
ρSWIR1

𝜌𝑁𝐼𝑅
 (Hunt JR & Rock, 1989) (8) 

NDWI =  
ρNIR −  𝜌SWIR1 

ρNIR +  𝜌SWIR1
 (Gao, 1996) (9) 

Where: ρGreen - green-band reflectance; ρRed - red-band reflectance; ρNIR = near-infrared reflectance; ρNIR = short-wave infrared 
reflectance; L = adjustment factor in equations 4 and 5, which may vary from 0 to 1; C1 and C2 are adjustment coefficients for aerosol effects 
in the atmosphere; and G adjusted gain. Coefficients in Eq. 4 are in accordance with the literature, namely, L = 0.5, C1 = 6, C2 = 7.5, and G = 
2.5 (Huete, 1988; Justice et al., 2002; Ponzoni et al., 2012). 

 
Data for processing indices were extracted from all 

central pivots (Figure 1). After calculating indices in each 
central pivot, for different dates of image acquisition, 
phenological behavior of corn crops was assessed over a 
cycle, for each index, qualitatively and quantitatively. 

 
RESULTS AND DISCUSSION 

Figures 3 to 9 show the vegetation indices used for 
monitoring of irrigated corn crop in five central pivots. 
These figures depict the phenological stages of corn 
cropping, from germination to senescence. Between July 
28, 2015 and August 29, 2015, crop reached the highest 
vegetative vigor according to a holistic analysis of all 
indices. Within these dates, crop had been sown for 73 and 
105 days in pivot 16A; 74 and 106 days in pivot 15A; 76 
and 108 days in pivot 14A; 77 and 109 days in pivot 13A; 
and 80 and 112 days in pivot 12A. For all five central pivots, 
corn crop was spread over the entire area, highlighting 
vegetative (VT)/reproductive (R1) stages on July 28, 2015 
and reproductive R4/R5 on August 29, 2015. 

Regarding the sensitivity of all indices on different 
dates, the descriptive boxplot analysis in Figures 3 to 9 show 
that  EVI (Figure 4) and SR (Figure 6) were more effective 
in discriminating differences from July 10, 2015 to August 
29, 2015. This was confirmed by a greater range of the 
boxplots referring to the SR when compared to the other 
indices, in addition to the differentiation observed on 
August 13, 2015 and August 29, 2015 for EVI. Conversely, 
the other indices were more sensitive in early crop stages, 
on May 25, 2015 and June 10, 2015, showing an increased 
capacity for differentiating low-biomass vegetation. 

Figure 3 shows the results of NDVI, which ranged 
between 0.14 and 0.93, in which, the acquired image 
displayed lower values on the first date (May 25, 2015). 
Therefore, on this date, there was a predominance of 
exposed soil in the study areas, that is, plants were in 
emergency or germination stages, as exhibited in Table 1. 

NDVI ranges from -1.0 to 1.0, wherein the closer to 
the unity, the higher the vegetation cover density. Negative 
values are mostly associated with water bodies or clouds 
(Ponzoni et al., 2012). For Souza et al. (2009), NDVI is 
related to irrigated-corn phenological stages and increases 
as plants grow. 

Studies by Gameiro et al. (2017) showed high NDVI 
in vegetation with greater biomass and good water 
availability in the soil, while in less dense vegetation and 
with exposed soil, NDVI is lower. 

NDVI low sensitivity between July 10, 2015 and 
August 29, 2015 is mainly due to its saturation in high-
biomass conditions (Jensen & Epiphanio, 2011). It tends to 
occur during flowering and grain-filling stages, when corn 
crops reach greater biomass. Under these conditions, NDVI 
tends to vary less along agricultural parcels, as shown in 
Figure 3.  

From September 14 to 30, 2015, there was a 
significant drop in NDVI, that is, vegetation lost its vigor, 
indicating that crop had started its maturation process and 
hence senescence. This corroborates with the finding of 
Risso et al. (2012), who observed low NDVIs during 
senescence of soybeans.
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FIGURE 3. NDVI for five different irrigation pivots on seven different dates during irrigated corn cycle in 2015, followed by 
descriptive statistics (Boxplot) of vegetation indices of the studied farm for the dates of acquired images. 

Figure 4 displays EVI index response, which were 
similar to that of NDVI. However, EVI had a slight decrease 
between August 13 and 29, 2015. Thus, this index was more 
sensitive to high-biomass crops since corn was no longer in 
full vegetative vigor (R4/R5) on August 29, 2015. For 
Latorre et al. (2003), EVI is a vegetation index developed to 
improve sensitivity in areas with higher biomass density 
values and smooth influence of signals from soil. 

Figure 5 shows SAVI temporal dynamics. This index 
has an adjustment factor to attenuate soil effects on crop 
spectral responses. Like EVI (Figure 4), SAVI decreased 
between August 13 and 29, 2015. Therefore, such 
adjustment factor (L) is important in the equation since it 
differentiates SAVI from NDVI. 

A suitable adjustment of the L factor in SAVI index 
could improve even more results. However, for this, more 

data is required, what makes the method complex. By 
contrast, values between 0.25 and 1.0, depending on the 
amount of crop biomass (Boratto & Gomide, 2013) may 
be subjective. 

As in our study, Rosendo (2005) observed 
similarities between EVI and SAVI indices for agricultural 
crop monitoring, using MODIS/TERRA images. This 
author followed monthly and seasonally changes in these 
indices in various crops (pasture, irrigated crops, and 
coffee) and at different phenological stages. 

When monitoring forest plantations and native 
forests by NDVI and SAVI, Leite et al. (2017) found that 
both indices are able to detect forest cover changes. These 
authors also concluded that both indices had similar results; 
however, in high vegetation density sites, NDVI proved to 
be more suitable if compared to SAVI. 
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FIGURE 4. EVI for five different irrigation pivots on seven different dates during irrigated corn cycle in 2015, followed by 
descriptive statistics (Boxplot) of vegetation indices of the studied farm for the dates of acquired images. 

 
Between July 28 and August 13, 2015, corn crop was 

between vegetative and grain-filling stages, respectively, 
wherein SAVI reached the highest value (0.73) during 

reproductive stage (Figure 5). Likewise, Gameiro et al. 
(2017) observed SAVI of 0.7 during fruiting in irrigated 
fruit trees. 

 

 

FIGURE 5. SAVI for five different irrigation pivots on seven different dates during irrigated corn cycle in 2015, followed by 
descriptive statistics (Boxplot) of vegetation indices of the studied farm for the dates of acquired images. 
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Figure 6 presents the results of SR. Based on image 
and boxplot analyses, we observed that such index could 
discriminate changes in crop phenological stage, in 
addition to being more sensitive to high biomass (between 
July 28 and August 29, 2015). Jensen & Epiphanio (2011) 
also pointed out SR as more sensitive to high biomass but 

less sensitive to low amounts. 
SR could discriminate crops in each central pivot on 

August 29, 2015 (Figure 6). It can be evidenced by a darker 
shade of green in pivots 14A, 15A, and 16A when compared 
to those in 12A and 13A. It noteworthy mentioning that this 
finding was not made for the other indices. 

 

 

FIGURE 6. SR for five different irrigation pivots on seven different dates during irrigated corn cycle in 2015, followed by 
descriptive statistics (Boxplot) of vegetation indices of the studied farm for the dates of acquired images. 

The behavior of GNDVI on all analyzed dates and 
central pivots can be seen in Figure 7. This index is a 
modification of NDVI where the red band is replaced with 
the green band. If compared to NDVI, this index had a 
lower sensitivity on May 25, 2015 for pivots 15A and 16A. 
On that date, corn had only 10 DAS, that is, in initial 
emergence, which shows the lower capacity of this index 
to differentiate surfaces. Such lower sensitivity is related 
to a greater similarity of the green spectral response to 
exposed soils and vegetation, which does not occur with 

the red wavelength spectrum.  
Regarding phenological changes, GNDVI also 

showed less sensitivity compared to NDVI between August 
29 and September 14, 2015. During this period, NDVI 
decreases (Figure 3) were more abrupt than those of GNDVI 
(Figure 7). This is because of the green band, which 
corresponds less to plant physiological changes and more to 
small changes in plant vigor. Moreover, Silva Júnior et al. 
(2008) verified that GNDVI was more sensitive than NDVI 
to identify chlorophyll concentration in forage plants. 
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FIGURE 7. GNDVI for five different irrigation pivots on seven different dates during irrigated corn cycle in 2015, followed by 
descriptive statistics (Boxplot) of vegetation indices of the studied farm for the dates of acquired images. 

 
MSI had a high sensitivity to water content changes 

in corn canopy since as crop stage changed, irrigation 
demand increased and hence MSI decreased (Figure 8). 
Such sensitivity can be explained through MSI equation, in 
which it is the ratio between short-wave infrared spectral 
and near-infrared spectral responses. 

Short-wave infrared has a higher absorption 
behavior when leaf water content increases, while near 
infrared does not tend to show absorption directly related to 
leaf water contents (Hunt JR & Rock, 1989). This fact warns 
that higher MSI values indicate lower water contents in crop 
canopy. The same was seen in the study of Elhag & Bahrawi 
(2017), who noted that plants under water stress have high 
MSI indices. 

The high MSI values in Figure 8 are not indicative 
of lower canopy water content since plants were in the 

beginning of the vegetative period (May 25, 2015), when 
soil is more exposed. During tasseling (July 28, 2015) and 
grain filling (August 13, 2015), MSI was around 0.27, as 
seen in the third and fourth images in Figure 8. Overall, 
irrigated corn behavior was well evidenced by this index, as 
it varied with crop water demand. 

The first and second images in Figure 8 show the 
presence of exposed soil, which corresponds to crop 
germination and the onset of the third and seventh fully 
developed leaves, when corn requires less water. 
Benabdelouahab et al. (2015) found good correlations 
between MSI and water content in wheat canopy during 
growth and grain filling. By using multiple data from time 
series and MSI index, Yu et al. (2018) could detect 
disturbances in forest species due to water stress.
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FIGURE 8. MSI for five different irrigation pivots on seven different dates during irrigated corn cycle in 2015, followed by 
descriptive statistics (Boxplot) of vegetation indices of the studied farm for the dates of acquired images. 

 

Another index with direct correspondence to corn 
canopy water content was NDWI (Figure 9). This index is 
important for analysis in irrigated areas. The results in 
irrigated corn showed its ability to monitor and relate 
significantly to water contents in corn canopy. The index 
increased from –0.34 to 0.61, as crop water demand 
increased. Between May 25 and June 10, 2015, this index 
may show negative values in corn as a result of low 
vegetation biomass and due to exposed soil areas. As for 
Gao (1996), Ceccato et al. (2001), and Gu et al. (2013), 
NDWI ranges between -1 and +1, depending on crop water 
content, vegetation species, ground cover and bottom effect. 

A high NDWI, green color, corresponds to high water 
content in vegetation and wider vegetation cover, whereas 
negative NDWI, red color, corresponds to low vegetation 
biomass and more exposed soil, as crops in central pivots 
are subjected to irrigation management. Gu et al. (2013) 
achieved significant results when using NDWI to detect and 
monitor canopy moisture in plants grown in large farming 
areas. Our findings on MSI and NDWI, along with those 
of the above-mentioned studies, demonstrate the ability of 
these indices to monitor changes in vegetation water 
content, and thus can be used to improve irrigation and 
crop monitoring. 

 
FIGURE 9. NDWI for five different irrigation pivots on seven different dates during irrigated corn cycle in 2015, followed by 
descriptive statistics (Boxplot) of vegetation indices of the studied farm for the dates of acquired images. 
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Figure 10 shows that all vegetation índices had 
correlations with each other, which can be seen by the 
scatter plots, wherein some indices are more sensitive to 
biomass than are others. The correlation coefficients were 
positive among all indices except for those involving MSI. 
Although correlations of the other indices with MSI were 
negative, these were extremely high. 

When correlated with NDVI, the indices GNDVI, 
SAVI, and EVI showed high correlations, with coefficients 
of 0.996, 0.983, and 0.974, respectively. Such correlations 
indicate similarities and strong relationship among them, all 
being good indicators of biomass in vegetation. But, when 
these indices were analyzed during corn reproductive stage, 

they showed slight differences, among which EVI was more 
sensitive than GNDVI, NDVI, and SAVI. 

The indices that showed correspondence with leaf 
water content (MSI and NDWI) also showed high 
correlation between each other. What justifies their similar 
behavior and sensitivity to changes in plant water content. 
Nonetheless, NDWI was more sensitive during the end of 
the crop cycle, which can be observed by its greater values 
compared to those of MSI, between September 14 and 30, 
2015. Zhang et al. (2018) also observed that estimation of 
water content in wheat canopy using such indices, based on 
the Sentinel-2 band reflectance, was feasible and can be 
used to support irrigation decision-making. 

 

 

FIGURE 10. Correlation between the studied vegetation indices, wherein the blue line represents the fitted linear model and the 
red line the fitted local regression model. 

CONCLUSIONS 

All the studied indices are suitable tools for 
irrigated corn management and monitoring since they 
detect vegetation cover changes quickly and at low 
operational cost.  

NDVI, EVI, and SAVI showed better results during 
corn crop development, even though NDVI was less 
sensitive to high biomass amounts and SAVI was subjective 
in terms of adjustment factor weight. SR showed the highest 
sensitivity during tasseling and grain-filling. Yet, MSI and 
NDWI can be used as further information regarding leaf 
water content in corn plants.  

In general, all indices were concordant with each 
other, therefore, all can all be used to discriminate corn 
phenological stages. However, the use of a set of these 
indices is advisable since some respond better to certain 
peculiarities than others. 
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