
 

Engenharia Agrícola 
 

ISSN: 1809-4430 (on-line) 
www.engenhariaagricola.org.br 

 

 

 
1 XinJiang University/Urumuqi, China. 

Area Editor: Gizele Ingrid Gadotti 
Received in: 5-30-2023 
Accepted in: 11-15-2023 

Engenharia Agrícola, Jaboticabal, v.44, e20230175, 2024 
Edited by SBEA 

Scientific Paper 
Doi: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v44e20230175/2024 

 
LIGHTWEIGHT YOLOV5S-SUPER ALGORITHM FOR MULTI-DEFECT  

DETECTION IN APPLES 
 

Jinan Yu1, Rongchang Fu1* 
 
1*Corresponding author. XinJiang University/Urumuqi, China.  
E-mail: 2781642414@qq.com | ORCID ID: https://orcid.org/0000-0002-7045-7597 

 
 
KEYWORDS 

apple defect, 
Yolov5s-Super, 
lightweighting, EAM 
attention, Wise-IoU. 
 

ABSTRACT 

As the application scenarios of embedded devices become increasingly extensive, the use 
of high-performance convolutional neural networks can solve the problem of low 
accuracy of multiple defects detection in apples. However, owing to the overly large 
parameters and network structure of the convolutional neural network, perfectly 
integrating it with the embedded devices is difficult. Therefore, this study proposes a 
lightweight and improved algorithm based on Yolov5s. First, the structure of the 
optimized MobileNetV3 is introduced in the backbone layer to reduce the computational 
and parametric quantities of the model. Wise-IoU is used as the loss function of the 
localization regression of the bounding box to reduce the harm of low-quality samples on 
anchor box regression. The efficient multiscale attention mechanism is embedded in each 
downsampling layer of the backbone, and small target detection is added to the neck layer 
to improve the attention of the convolutional layer on important features. The 
experimental results showed that the Yolov5s-Super model parametric count decreased 
by 78%, and accuracy P, mAP@50, and mAP@50:95 improved by 10.3%, 3.2%, and 
4.2%, respectively, compared to the original model. Theoretical support is provided for 
the migration of this network model to embedded devices.  

 
 
INTRODUCTION 

The yield of crops significantly affects the economic 
and social development (Wang et al., 2023). As the country 
with the largest apple production and the largest planting area 
in the world (Yu et al., 2022), China has a pivotal position in 
the agricultural field of apples in China. However, owing to 
the backwardness of the existing apple grading technology in 
China that leads to the uneven quality of apples, enterprises 
and farmers are unable to obtain higher sales profits (Wang et 
al., 2022). Real-time detection of the health status of apples 
can effectively control the large-scale proliferation of 
pathogens (Samajpati & Degadwala, 2015) and avoid 
incalculable losses. Most farm managers select apples 
manually, a monotonous and tedious process that is inefficient 
and expensive. In recent years, deep learning has also been 
widely used in apple defect detection (Kamilaris & Prenafeta, 
2018). The use of convolutional neural networks to achieve 
intelligent, high-precision identification of apple surface 
defects is of great significance (Dong et al., 2024) to ensure 

the food safety of people and improve the income of 
enterprises and farmers. 

With the development of machine vision technology, 
particularly the application of image processing and pattern 
recognition technology (Dong & Wang, 2023), the current 
vision algorithms based on deep learning are divided into two 
types: one-stage, where typical algorithms are the Yolo and 
SSD (Liu et al., 2016); and two-stage, where typical 
algorithms are R-CNN (Ross et al., 2014) and Faster R-CNN 
(Ren et al., 2015). Among these algorithms, the Yolo 
algorithm has the advantages of high detection accuracy and 
fast detection speed and is currently widely used in various 
fields. Among the Yolo series, Yolov5 is widely used in the 
field of target detection owing to its advantages of small 
model size, low deployment cost, high flexibility, fast 
detection speed, and high detection accuracy. However, the 
disadvantages of its oversized downsampling rate and the lack 
of feature fusion in the first-order algorithm of the SSD lead 
to poor detection of small targets (Hu et al., 2023). 
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Scholars worldwide have conducted relevant research 
to address these problems. Mei et al. (2023) proposed a 
lightweight apple defect detection method based on Mo-
M2Det that reduces the number of parameters; however, the 
value of its model loss function is high that is prone to leakage 
and misdetection. Hu et al. (2023) proposed an architecture 
based on the Yolov5l model for the detection of defects in 
apples, that increases the channel attention mechanism, and a 
small target detection layer to improve the accuracy; however, 
owing to the use of a large network structure, the number of 
parameters is large, the requirements on the device are high, 
and perfectly integrating it with embedded devices is difficult. 
Tian et al. (2019) proposed a Yolov3-based surface defect 
detection method for apples; based on the use of image data 
enhancement, the use of densely connected neural networks 
(DenseNet) for the lower resolution of the Yolov3 model 
feature layer was optimized. Valdez (2020) classified the 
detection of defects in apples as an object detection problem 
rather than a simple image classification problem and used the 
Yolov3 network for the detection that had a detection 
accuracy of only 69%; this must still be improved. 

Because general detection and sorting devices are 
embedded devices, their storage capacity is small. However, 
convolutional neural networks have a large number of 
parameters and high computational complexity; hence, 
perfectly integrating them with embedded devices is difficult 
(Han et al., 2020). To improve the accuracy of the apple defect 
detection model and reduce the number of parameters, this 
study proposes a high-precision, lightweight apple surface 
multi-defect detection algorithm based on Yolov5s. First, the 
network of MobileNetv3 is modified to eliminate its 
redundant SELayer, and the modified model is used as the 
backbone of Yolov5s to realize an entire network model that 
is lightweight. Second, to reduce the damage caused by low-

quality images to the anchor frame regression, W-IoU is 
introduced. Finally, because the target detected in this case is 
a small target in the entire image, the efficient multiscale 
attention (EMA) mechanism and small-target detection layer 
are embedded in each downsampling layer of the backbone, 
thereby improving the attention to the features and enhancing 
the sensory field of the deep convolution. The improved 
model temporarily uses less space and also improves the 
detection accuracy, thereby effectively improving the 
efficiency of apple defect detection. 
 
MATERIAL AND METHODS 

To make the algorithm lightweight while improving 
detection accuracy, the network structure is first slimmed 
down. Subsequently, an attention mechanism is added to 
improve the detection accuracy. To reduce the damage caused 
by the box regression, the loss function is modified. Finally, 
for the characteristics of apple defects that are small targets in 
the entire apple, a feature extractor is added to ensure the 
detection accuracy of the small targets. 

Improvement Of The Backbone Network 

Certain embedded and edge devices are difficult to 
integrate perfectly with convolutional reach-in networks owing 
to their smaller storage capacities. To realize the slimming of 
the network model, the more lightweight MobileNetv3 
(Howard et al., 2019) is used to replace the backbone network, 
CSPDarknet-53, of Yolov5s. In this study, MobileNetv3 is 
further lightened by removing the redundant SELayer. The core 
task is to develop the model using the separable convolution 
and linear activation functions, thus reducing the number of 
parameters and computation of the model to achieve a faster 
operation speed, as shown in Figure 1. 

 

 

FIGURE 1. MobileNetV3 structure. 

 
MobileNet is a lightweight neural network model 

proposed by the Google team that uses the idea of the 
depthwise separable convolution and inverse residual 
structure to build the model (Yi & Jia, 2023). As a lightweight 
network structure, it has considerably fewer operations and 
parameters than the traditional convolution modules. 

MobileNetv3 not only has the depth-separable convolutional 
structure of MobileNetv1 but also inherits the linear bottleneck-
to-residual structure of MobileNetV2, in addition to the 
introduction of the Hard-swish function instead of the previous 
swish function that reduces the number of operations and 
improves performance. Table 1 presents the structural hierarchy. 
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TABLE 1. MobileNetV3 structure. 

Input Operator Exp size # Out SE NL S 

2242*3 Conv2d - 16 - HS 2 

1122*16 Bneck,3*3 16 16 √ RE 2 

562*16 Bneck,3*3 72 24 - RE 2 

282*24 Bneck,3*3 88 24 - RE 1 

282*24 Bneck,5*5 96 40 √ HS 2 

142*40 Bneck,5*5 240 40 √ HS 1 

142*40 Bneck,5*5 240 40 √ HS 1 

142*40 Bneck,5*5 120 48 √ HS 1 

142*48 Bneck,5*5 144 48 √ HS 1 

142*48 Bneck,5*5 288 96 √ HS 2 

72*96 Bneck,5*5 576 96 √ HS 1 

72*96 Bneck,5*5 576 96 √ HS 1 

72*96 Conv2d,1*1 - 576 √ HS 1 

72*576 Pool,7*7 - - - - 1 

12*576 Conv2d 1*1,NBN - 1024 - HS 1 

12*1024 Conv2d 1*1,NBN - K - - 1 

MobileNetv3 optimizes the backbone network through two aspects. 
 

(1) The main feature of MobileNetV3 is channel 
separable convolution (Howard et al., 2017). Compared with 
the traditional convolution process, channel separable 
convolution reduces the parameters and computational 
complexity while retaining the model feature expression 
capability. This is mainly divided into two processes. The first 
step is deep convolution. Each channel has its own individual 
convolution kernel for the convolution operation as a way of 

extracting features, compared with the traditional convolution 
process. This operation greatly reduces the computational 
complexity. The second step is point-by-point convolution, 
the results obtained in the first step, point-by-point 
convolution with a 1*1 convolution kernel for convolution 
operation. This operation makes the features of each channel 
get excellent integration effect. The specific process is shown 
in Figure 2. 

 

 
FIGURE 2. Depth-separable convolution process. 
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(2) MobileNetV3 introduces the H-swish function that 
not only solves the problem of one-sided suppression of the 
ReLU function but also has less computational overhead than 
the Swish function that is more suitable for mobile devices. 
The expression for the H-swish function is as follows. 

ℎ − 𝑠𝑤𝑖𝑠ℎ[𝑥] = 𝑥
ோ௘ ௅௎଺(௫ାଷ)

଺
             (1) 

 
Attention Mechanism 

The EMA mechanism (Ouyang et al., 2023) can fuse 
the feature information under different scale pictures, divide 
the channel dimension into multiple sub-features, encode the 
global information, and aggregate the output features of two 
parallel branches using the cross-dimension interaction 
method. First, the attention weight descriptors of the grouped 
feature maps are extracted using three parallel routes, where 
two parallel routes are located in the 1*1 branch and the third 
route is located in the 3*3 branch. Two one-dimensional 
average pooling operations are used to encode the channels 
along two different directions in the 1*1 branch. In the 3*3 
branch, a 3*3 convolutional kernel is placed to capture 

multiscale features. Two-dimensional global average pooling 
is used to encode the global information in the 1*1 branch, 
where the encoded one-dimensional global average pooling 
operations at H and W along the horizontal direction in C can 
be expressed as in eqs (2)-(4). 

𝑍஼
ு(𝐻) =

ଵ

ௐ
∑ 𝑋஼(𝐻, 𝑖)ௐ

଴             (2)                           

 𝑍஼
ு(𝑊) =

ଵ

ு
∑ 𝑋஼(𝑗, 𝑊)ு

଴              (3) 

𝑍௖ =
ଵ

ு∗௪
∑ ∑ 𝑋஼(𝑖, 𝑗)௪

௜
ு
௝              (4) 

 

EMA is added after each downsampling layer in the 
backbone layer. This attention mechanism can obtain the 
feature information of the image in different sizes, perform the 
weighting operation, and place it in each downsampling layer 
such that the EMA mechanism can link the context and can 
better handle the relationship between the feature maps of each 
channel. The specific network structure is illustrated in Figure 3.

 

 

FIGURE 3. EMA network architecture diagram. 
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Improvement of the loss function 

The loss function is used to measure the difference 
between the predicted and real values of a model. During 
model training, the loss function calculates a value based on 
the predicted output value of the model and the actual labeled 
value; this value is the loss value during training. The smaller 
the loss value, the more accurate the model prediction ability, 
the closer the model parameter update will be to the optimal 
solution, and the better the training results. IoU refers to the 
intersection and merger of the target and prediction frames, as 
shown in Figure 4. 

 

FIGURE 4. IoU loss function. 
 
IoU loss is the edge loss regression function used by 

the YOLO algorithm that is mainly used to calculate the 
intersection of the predicted and real regions and calculate the 
de-intersection ratio; the smaller the value, the lower the 
overlap between the predicted region and the real region, and 
the higher the loss, that is written as LioU. However, when 
BOX1 and BOX2 do not intersect, the value of IoU is zero, 
and a specific intersection between the two frames cannot be 
derived. Zheng et al. (2020) and other researchers proposed 
D-IoU using IoU as the basis and adding a penalty term to 
converge the distance between the predicted box and the 
standard box more quickly. Thus, D-IoU fills a part of the IoU 
gap but does not consider the aspect ratio of the bounding box, 
and in Yolov5, C-IoU (Bodla et al., 2017) is used to solve the 
problem of bounding box accuracy. The specific expressions 
for IoU and C-IoU are presented in eqs (5)-(8). 

𝐿ூ௢௎ = 1 − 𝐼𝑜𝑈 = 1 − ቤ
𝐵 ⋂ 𝐵௚௧

𝐵 ⋃ 𝐵௚௧
ቤ (5)
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v
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 (7)
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arctan arctangt

gt

w w
v

h h
 

   
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 (8)

 

Here: 

B represents the range of the target frame; 

Bgt represents the range of the prediction frame; 

ρ() represents the Euclidean distance; 

c denotes the diagonal length of the minimum 
envelope of the two frames; 

β denotes the influence factor; the larger the IoU, the 
larger it influences; 

v characterizes the consistency of the aspect ratio; 

w and h represent the width and height of the target 
frame, respectively; 

wgt and hgt represent the width and height of the 
prediction frame, respectively. 
 
Because low-quality examples inevitably appear in the 

training dataset and C-IoU adopts a monotonic focusing 
mechanism, if we continue emphasizing the regression of the 
bounding box on the low-quality examples, it will inevitably 
affect the enhancement of the detection performance of the 
model. In this study, to enhance the generalization 
performance of the model, the loss function of Yolov5s is 
improved to that of the V3 version of Wise-IoU (Tong et al., 
2023). The Wise- IoU is a dynamic non-monotonic FM loss 
that reduces the competitiveness of high-quality anchor 
frames and reduces the deleterious gradient generated by low-
quality samples; this allows the Wise-IoU loss function to 
better improve the detection performance of the network. The 
anchor and target frames of Wise-IoU are shown in Figure 5. 

 

FIGURE. 5. Schematic of W-IoU. 
 

Here, B represents the anchor frame and Bgt represents 
the target frame that are expressed as in eqs (9)-(11). 

𝑅ௐூ௢௎ = exp(
(𝑥 − 𝑥௚௧)ଶ + (𝑦 − 𝑦௚௧)ଶ

(𝑊௚
ଶ + 𝐻௚

ଶ)∗
) (9)

𝐿ௐூ௢௎௩ଵ = 𝑅ௐூ௢௎𝐿ூ௢௎ (10)

𝛽 =
௅∗ூ௢௎

௅ூ௢௎തതതതതതത
    𝑟 =

ఉ

ఋఈഁ (11)
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[0,1]IoUL   significantly reduces WIoUR  of the 

high-quality anchor frame and reduces the effect of geometric 

factors when the center distance between the anchor frame 

and the target frame is small. [1, )WIoUR e  significantly 

amplifies IoUL  of the general quality anchor frame. Wg and 

Hg represent the width and height of the minimum enclosing 

frame, respectively; (x,y) and (xgt,ygt) represent the centroids 

of the anchor and target frames, respectively; r denotes the 

nonmonotonic focusing coefficient;  denotes the degree of 

outlier that represents the quality of the regression frames; 
*L IoU denotes the monotonic focusing coefficient; LIoU

represents the sliding mean of momentum m;   and α 

represent the hyperparameters that can be tuned according to 

the different environments. 

Feature Extractor 

The feature pyramid network structure used by 
Yolov5s uses 8-fold, 16-fold, and 32-fold downsampling to 
obtain three additional sizes of feature images. However, 
according to the idea of a feature pyramid network (Lin et al., 
2017a), after many convolution and feature extraction 
operations, a part of the feature information is lost in the deep 
and large feature maps. Because deep feature maps have a 
large sensory field, the loss of a small portion of the 
information will result in the incomplete extraction of the 

features of the entire image. 
By combining the feature pyramid with the path 

aggregation network, the feature pyramid network conveys 
deep semantic features from top to bottom, and the path 
aggregation network conveys the location information of the 
target from bottom to top. By fusing top-down and bottom-up 
feature information, the model can learn features better and 
improve its accuracy for small target detection (Li & Wu, 
2022). The target in this study occupies only a small part of 
the image; therefore, adding a detection layer with four times 
downsampling in the head layer can provide more attention to 
the small target, increase the accuracy of small target detection, 
and retain more feature information. The working principle of 
the small target detection layer is illustrated in Figure 6. 

 

FIGURE 6. Small target detection layer.

 
Yolov5s-Super Network Structure 
 

 

FIGURE 7. Yolov5s-Super network structure. 
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Experimental Environment and Datasets 

The GPU used for the experiment is Nvidia GeForce 
RTX 3080, CPU is Xeon(R) Platinum 8255C, graphics driver 
is CUDA 11.7, programming language is Python 3.8, 
programming platform is PyCharm 2023, batch size is 24, and 
the maximum number of epochs is 700. 

In this study, we use web public and homemade 
datasets. A total of 374 images are included, and 1196 training 
sets, 60 image validation sets, and 80 test sets are obtained by 
adding noise, rotating, cropping, and other operations. 
Labeling is performed using LabelImg with four categories: 
Blotch, Healthy, Rot, and Scab. 

Evaluation Indicators 

This study uses precision, recall, mAP@50 (Girshick, 
2015), map@50:95 (Lin et al., 2017b), and F1 (Dempster et 
al., 1977) scores. Precision P is the ratio of positive samples 
correctly identified by the algorithm to the total number of 
samples identified as positive. Recall R, also known as the 
check-all rate, is the ratio of positive samples correctly 
identified by the algorithm to the total number of positive 
samples in the original sample. See eqs (12) and (13). 

𝑃 =
்௉

்௉ାி௉
                               (12) 

𝑅 =
்௉

ிேା்௉
                               (13) 

Here: 
TP indicates a positive sample and positive test result;  

FP indicates a negative sample and positive test result;  

TN indicates a negative sample and negative test result;  

FN indicates a positive sample and negative test result. 
 
mAP@50 is the mean accuracy value, a widely used 

metric to measure the performance of target detection and 
object recognition algorithms. The mAP combines precision 
and recall to comprehensively evaluate the detection accuracy 
and detection rate of the model in different categories (Lowe 
1999). Denotes the average AP of each category over all 
images calculated for IoU=0.5. mAP@0.5:0.95 means 
stacked starting with step i=0.05 until the average IoU=0.95. 
The calculation formula is expressed as in [eq. (14)]. 

𝑚𝐴𝑃 =
∑ ஺಼

೔సభ ௉೔

௄
                           (14) 

F1 is another performance metric that combines 
precision and recall and represents the reconciled average of 
precision and recall. Its expression is as in [eq. (15)]. 

F1=2 ∗
（௣௥௘௖௜௦௜௢௡∗௥௘௖௔௟௟）

௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟
                   (15) 

 
RESULTS AND DISCUSSION 

Comparison Experiment 

Comparative experiments were conducted to compare 
the training performances of Yolov5s-Super and Yolov5s. To 
more intuitively visualize the gap between the original 
Yolov5s algorithm and the Yolov5s-Super algorithm, we 
plotted line graphs and tables. The results are presented in 
Figure 8 and Table 2.

 

 

   (a)                                             (b)  
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                           (c)                                             (d)  

FIGURE 8. Comparison results between Yolov5s and Yolov5s-Super in 700 epochs. (a) mAP@50, (b) mAP@50:95, (c) precision, 
(d) recall. 
 
TABLE 2. Comparison results between Yolov5s and Yolov5s-Super.  

Model mAP@50(%) mAP@50:95(%) P(%) R(%) Parameter(M) F1(%) 

 Yolov5s 90 65.4 84.3 87.4  7.23 87 

Yolov5s-Super 93.2 69.6 94.6 88.2 1.6 91 

 

As shown in Figure 8 and Table 2, the improved 
algorithm achieved significant improvements in all indicators, 
including key indicators, while reducing the overall network 
structure parameter count by 77.8%. mAP@0.5, mAP@50:95, 
and F1 improved by 5%, 6%, and 3%, respectively, with an 
accuracy (P) improvement of approximately 10%. This 
indicated that the model structure proposed in this study 
achieved light weight and significantly improved the key 
indicators of each visual algorithm, with all indicators 
performing better than the original Yolov5s algorithm. 

The loss of the detection frame indicates how well the 
algorithm can localize the centroid of the object and whether 
the detection target is covered by the predicted bounding box. 

The smaller the value of the loss function, the more accurate 
the predicted frame. The target loss function is essentially a 
measure of the probability that the detection target exists in 
the anchor frame region; the smaller the value of the loss 
function, the higher the accuracy (Chen et al., 2022). 
Box_loss denotes the box regression loss that is used to 
measure the difference between the positions of the predicted 
and actual frames in the target detection; a lower value 
indicates that it is closer to the position of the real frame. 
Obj_loss denotes the target confidence loss that indicates the 
accuracy of the judgment of the model regarding the presence 
of a target to be detected in the image; a lower value indicates 
that the model can accurately identify the target in the image.
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                            (a)                                              (b)         

FIGURE 9. Bounding box loss functions. (a) Yolov5s-super, (b) Yolov5s. 

 

As shown in Figure 9, in the entire training process, 
the function image exhibited a downward trend, with the 
stochastic gradient algorithm used to optimize the network, 
and the model in the continuous learning process of weights 
and parameters was constantly updated and finally converged. 
In the original Yolov5s algorithm, the convergence speed is 
slower and its function image has a large fluctuation, 
indicating that the model for target detection is prone to 
omission and incorrect detection. In summary, the final effect 

and convergence results of the proposed method were better 
than those of the original Yolov5 algorithm. 

Results Of Ablation Experiments 

To analyze the effect of introducing each module in the 
model for apple defect detection, ablation experiments were 
designed to characterize different defects in apples, improve 
target, and calculate the contribution of each module 
independently, as listed in Table 3.

 
TABLE 3. Results of ablation experiments. 

Model P（%） R（%） mAP@50(%) mAP@50:95(%) Parameter(M) 

Yolov5s 84.3 87.4 90 65.4 7.2 

Yolov5-MobileNetV3 78.5 84.8 86.3 60.8 0.93 

Yolov5s-MobileNetV3+W-IoU 83.1 76.9 89.2 63 0.93 

Yolov5s-MobileNetV3+W-IoU+EMA 88.1 84.5 88.9 66.7 0.94 

Improved-Yolov5 94.6 88.2 93.2 69.6 1.6 

 
As presented in Table 3, replacing the backbone 

network of Yolov5s with the improved MobileNetV3 
achieved overall network lightweighting, with a decrease of 
87% in parameter count, but resulted in improved accuracy, 
recall, mAP@50 and mAP@50:95 decreased by 9.1%, 3.4%, 
3.7%, and 4.6%, respectively. To reduce the decrease in 
detection accuracy caused by box regression, the loss function 
was replaced with W-IoU that significantly improved the 
other indicators but decreased the recall rate. At this time, the 
model could not correctly and completely identify the target 
object. Therefore, by introducing the EMA mechanism and 
embedding it into each downsampling layer of the backbone, 
the ability of the model to extract targets and their features 
was improved. Finally, by combining several improved 
methods with a small object detection layer, Yolov5s-Super 
achieved not only a lightweight structure but also improved 
accuracy, recall, mAP@50, and mAP@50:95. 

The ablation experiment proved that the improved 
MobileNetV3 backbone network in this study effectively 
achieved lightweighting of the model and did not conflict 
with the neck layer of the original network. Targeted 
improvements were then made based on the different 
characteristics of apple defects. The results presented in Table 
3 proved the effectiveness of each improvement method, 
providing theoretical support for the migration of the network 
model to apple defect detection embedded devices. 

Comparison Of Experimental Results With Other Visual 
Networks 

To verify the performance of the proposed model, the 
model was compared with four other commonly used depth 
detection based target detection models in the same 
experimental environment; the results are presented in Table 4.
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TABLE 4. Results of comparative experiments with other models. 

Object Detection Networks P(%) Number of Parameters(M) Size of Model(MB) mAP@50(%) 

Yolov5s 84.3 7.2 14.1 90 

Yolov5m 86.2 21.2 42.3 91.8 

Yolov5l 79 109.1 92.9 85.3 

Yolov8s 95 11.01 21.5 95.2 

Improved Yolov5s 94.6 1.6 4.3 93.2 

 
As presented in Table 4, the proposed algorithm was 

the lightest among the five models and outperformed the other 
algorithms in the Yolov5 series in terms of accuracy and mAP 
values. Yolov5s-Super differed in detection accuracy and 
mAP values by only 0.4% and 2% when the number of 
parameters was 85.4% less than that of Yolov8s. 

Test Results 

To better demonstrate the detection effect of 
Yolov5s-Super in this study, the detection results of 
Yolov5s-Super and the original Yolov5s were compared, as 
shown in Figure 10.
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FIGURE 10. Comparison of the detection effect. (a),(b),(c),(d) are the test results of Yolov5s-Super, and (e),(f),(g),(h) are the 
test results of Yolov5s.  
 

As shown in Figure 10, Yolov5s incorrectly detected 
the entire apple as a certain defect in the first two detections; 
in the third detection, Scab was undetected. In contrast, 
Yolov5s-Super effectively prevented this situation, and the 
detection accuracy of the target was higher than that of the 
original Yolov5s model, making Yolov5s-Super more suitable 
for the detection of apple defects. 

 
CONCLUSIONS 

Effective detection of defects in apples plays an 
important role in the economy of the farmer and company. In 
this study, we proposed a lightweight multi-defect vision 
algorithm for apples based on Yolov5s. To adapt to embedded 
devices, the entire network structure was lightened, and the loss 
function was optimized for the problem of difficult detection of 
low-quality pictures. Because the defects of apples are smaller 

targets in the entire detection range, an attention mechanism 
and a small target detection layer were introduced to improve 
detection precision and localization accuracy. The 
experimental results demonstrated the effectiveness of 
Yolov5s-Super in detecting defects in apples. This provides 
theoretical support for the migration to embedded devices. 
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