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Abstract

A new microsatellite locus (SAS1) for Squalius alburnoides was obtained through cloning by serendipity. The possi-
ble usefulness of this new species-specific microsatellite in genetic studies of this hybrid-species complex, was ex-
plored. The polymorphism exhibited by SAS1 microsatellite is an important addition to the set of microsatellites
previously used in genetic studies in S. alburnoides complex, that mostly relied in markers described for other spe-
cies. Moreover, the SAS1 microsatellite could be used to identify the parental genomes of the complex, complement-
ing other methods recently described for the same purpose..
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The taxon Squalius alburnoides is a small endemic

cyprinid inhabiting the rivers of the Iberian Peninsula and is

among the most complex polyploid systems known in ver-

tebrates.

Based on molecular markers information, S.

alburnoides is recognized as a hybrid taxon resulting from

an ancient and unidirectional hybridization between S.

pyrenaicus females (P genome) and males (A genome) of

an extinct species sister to Anaecypris hispanica (reviewed

in Alves et al. 2001, Robalo et al. 2006). For this reason, all

the S.alburnoides fishes carry S.pyrenaicus mitochondrial

DNA.

Actually, the S. alburnoides complex combines the

diploid (2n = 50) and polyploid (3n = 75 and 4n = 100) bio-

types of both sexes and different nuclear genomes, that, by

intercrossing, combine sexual and asexual reproductive

modes.

The asexual modes range from clonal inheritance to

hybridogenesis or meiotic hybridogenesis (in which one

genome is excluded from gamete formation), whereby

sympatric bisexual Squalius species act as sperm donors

and contribute with new genetic material, i.e.., S.

pyrenaicus, mainly in the southern basins of the Iberian

Peninsula (P genome), and S. carolitertii in the northern (C

genome)) (reviewed in Alves et al., 2001; Pala et al., 2009).

The predominant S. alburnoides specimens in nature are

triploids with the sex ratio biased towards females, with the

CAA biotype across the distribution range of S. carolitertii,

and the PAA biotype across the S. pyrenaicus range.

As in other asexual complexes (Ambystoma: Bogart,

1989; Rana: Hotz et al.,1992; Phoxinus: Goddard and

Schultz, 1993), the S. alburnoides complex have regener-

ated and maintained the extinct parental species genotype

(AA, all males) through the fertilization of A ovocytes from

PAA females by reduced A sperm produced by AA males

of hybrid origin (Alves et al., 2002). This AA genotype is

apparently absent from the northern populations

Although in recent times, single nucleotide polymor-

phisms (SNPs) have disputed with microsatellites the role

of a prominent tool in genetic studies (Coates et al. 2009),

mainly through single nucleotide changes being universally

comparable, polymorphic DNA microsatellites remain as a

very useful (and less expensive) class of genetic markers in

population genetics. Moreover, in general, microsatellites

are more neutral than SNPs, since the latter frequently give

evidence of selection

Microsatellites, by addressing topics, such as genetic

identification, population structure, parentage, kinship and

population variability assessment (Jarne and Lagoda, 1996;

Goldstein et al., 1999; Ellegren, 2004; Hamilton and Tyler,

2008), are traditionally considered as the markers of choice

for genotyping, due to their abundance, polymorphism in

repeat numbers and reliability (Jones et al. 1997).
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Microsatellites display a very high content of genetic

information, as they are codominant, with multiple alleles,

and showing high expected heterozygosity values.

In addition to the abundance of microsatellites in ver-

tebrate genomes (Weber, 1990; Jarne and Lagoda, 1996;

Goldstein and Schlötterer, 1999), it is notable that, in fish,

microsatellite-loci are longer, have a larger range in allele

size, are more degenerated (i.e., contain more base substitu-

tions or deletions), and are very abundant, when compared

to mammals (e.g., Brooker et al.,1994; Colbourne et al.,

1996; O'Reilly et al., 1996; Neff and Gross, 2001). The pos-

sibility of using microsatellites described for another

closely related species (transferability of microsatellite

loci) is a consequence of homology of flanking regions in

simple sequence repeats (Turner et al., 2004). Studies in

freshwater fish have already demonstrated the high rate of

transferability of microsatellite loci among taxonomically

related species (e.g. Huang et al., 2003; Salgueiro et al.,

2003; Turner et al., 2004; Holmen et al., 2005).

Efforts to determine the copy number of micro-

satellite alleles in polyploid species have, in many cases,

been unsuccessful (Falque et al., 1998) and in some cases

no attempts have even been made to assign precise allelic

configurations (Becher et al., 2000; Bockelmann et al.,

2003). There are many applications where considerably

more information would be gained from a proper quantifi-

cation of the alleles in the loci analysed, such as population

genetics and paternity analysis.

In the S. alburnoides complex, microsatellite loci are

often used for estimating population genetic diversity and

evolutionary potential (Pala and Coelho, 2005; Crespo-

López et al., 2007; Cunha et al., 2008, 2011), verifying in-

heritance patterns (Alves et al., 2004), and analyzing repro-

duction modes (Crespo-López et al., 2006). They are also

efficient markers, not only for detecting diagnostic alleles

for each parental genome, but also for characterizing ge-

netic variability in polyploids (e.g. Christiansen, 2005;

Lampert et al., 2006; Ramsden et al., 2006; Cunha et al.,

2008).

In the present report, the cloning by serendipity of a

polymorphic microsatellite from a diploid S. alburnoides

specimen from Estena River (Guadiana basin, Spain) is de-

scribed, with a discussion of its possible application in stud-

ies of the characterization of genetic variability and paren-

tal assignment in this species complex.

The microsatellite was discovered during a series of

trials for cloning short opsin fragments from S. alburnoides

(Boto unpublished). Briefly, amplification of a short frag-

ment of the exon five in the putative SWS1 opsin gene was

attempted, by using a degenerate universal vertebrate for-

ward primer OPF 5GCGAATTCGCNTCNACNCARA

ARGCNGA 3 (Carleton et al., 2000) and a primer designed

against a short Cyprinus carpio SWS1 sequence OPC1R

5CCTTGTTTGTATCCTCAGCA 3. DNA was extracted

from fins preserved in ethanol, using standard methods

(Sambrook et al., 1989).

Gradient Polymerase Chain Reaction (Eppendorf

MasterCycler Gradient) (3 min. at 94 °C, 35 cycles of

1 min. at 94 °C, 1 min. at 52 � 10 °C, 1 min. at 72 °C, and a

final step of 3 min. at 72 °C), yielded bands compatible with

the expected opsin fragment at temperatures of 42.1 to

44.2 °C.

An aliquot of 15 �L of a pooled mix of amplified frag-

ments was precipitated with isopropanol and ligated to a

PGEM-T vector. TOPO-competent bacteria were trans-

formed with the ligation mix and plated onto LB/agar/am-

picilin.

From the 18 transformants bearing an insert of com-

patible length with the expected fragment sequenced (ABI

3730), 15 bore an AG microsatellite sequence.

Three of these sequences presented 12 repeats of the

AG motif, five 13, two 24 , two 25 and three 26. Seeing that

DNA polymerase is capable of copying the same allele with

different repeat numbers (Hauge and Litt, 1993; Clarke et

al., 2001; Ellegren, 2004), the cloning of two different al-

leles (12-13 repeats and 24-26 repeats) from this micro-

satellite can be inferred.

A representative sequence, denominated SASI, is de-

posited in GenBank under accession number FJ652104.

In order to explore both the polymorphic character of

this microsatellite, and its usefulness in further studies of

the S. alburnoides complex, DNA from individuals of dif-

ferent geographic origin, genome composition and ploidy

level, as well as several S.pyrenaicus and S. carolitertii

samples, was amplified (Table 1), using OPF and OPC1R

primers (the latter marked with FAM), at a hybridization

temperature of 43.5 °C. Fragments were analyzed with an

ABI 3730 using GeneMapper v3.7.

After prior identification of the biotype, according to

procedures by Cunha et al. (2008, 2009), ploidy levels were

determined through flow cytometry (FCM) of blood cells,

as previously described (Collares-Pereira and Moreira de

Costa, 1999).

As shown (Table 1), this microsatellite facilitates the

discrimination between alleles coming from the genome of

the extinct ancestor close to Anaecypris hispanica (Robalo

et al., 2006) - genome A (allele length below 100 bp), and

those from the P or C genomes corresponding to the S.

pyrenaicus and S. carolitertii sperm donors (allele lengths

above 100 bp). As such, this microsatellite could be used to

differentiate individuals with hybrid genomes from indi-

viduals with a single genome.

This microsatellite does not allow distinguishing the

alleles coming from the sperm donors, with genomes P or

C, whose alleles overlap in length. However, this is a minor

problem, since populations carrying P or C genomes are

allopatric

Due to manifest polymorphism, the SAS1 micro-

satellite became an important addition to those previously
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used in genetic studies of the S. alburnoides hybrid com-

plex [n7k4, n7j4, e2f8 and e1g6 (Mesquita et al., 2003; Pala

and Coelho, 2005) lco1, lco3, lco4 and lco5 (Turner et al.

2004) loci], since only two (e2f8 and e1g6) were really

S.alburnoides-complex specific.

Furthermore, the identification of heterozygotes with

the SAS1 microsatellite could be of use for detecting the

genome copy number of intergeneric hybrids, despite the

existence of new methods for quickly defining the genomic

composition of Squalius alburnoides, based on determin-

ing the relative genome dosage by the semiquantitative

polymerase chain reaction (PCR) method (Sousa-Santos et

al., 2005; Inacio et al., 2010).

As shown above, the microsatellite loci previously

used in genetic studies of S. alburnoides (Pala and Coelho,

2005; Crespo-López et. al., 2006, 2007; Cunha et al., 2008)

were mostly heterologous ones. This frequently leads to the

appearance of null alleles (alleles which are not amplified)

and a loss in polymorphism information in the species in

which the marker was being tested. The increase in the

number of microsatellite loci in genetic studies has been

shown to be a beneficial strategy, through minimizing pro-

blems derived from characteristics of the microsatellites

themselves (high mutation rate, presence of null alleles,

size homoplasy, etc.). Hence, the addition of a new one

constitutes a powerful tool for increasing knowledge
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