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Abstract

Besides reviewing the unusual case of sex-ratio in the lemming and presenting alternative analyses of general models 
in which the shift in the usual sex-ratio 1:1 is determined by autosomal or sex-linked mutant alleles, three novel models 
are presented, in which the shift on the progeny sex-ratio depends on the number of copies of a mutant allele present 
in the parental pair. The analysis of these models with additive effects shows that: 1) autosomal mutations that alter 
the usual sex-ratio are eliminated from the population; 2) mutations occurring on the X chromosome lead to an 
evolutionary stable 1:1 sex-ratio only if the mutation favors the production of males; when the mutant allele favors the 
production of females, however, females will prevail in the population, with a frequency dependent impact on δ (the 
deviation from the usual 0.5 proportion) ; for most of the range of possible values of δ the stable but extraordinary 
sex-ratio will vary from 1 male : 1 female to 1 male : 3 females or 1 male : 2 females approximately depending 
whether the mutant allele is randomly inactivated or not.
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Introduction
The main purpose of this paper is to deal with the 

problem of sex-ratio determination among mammalians in 
general, that is, with a group where primary sex determination 
depends exclusively on a simple symmetric chromosomal 
mechanism XX-XY, purposefully avoiding complicated 
mechanisms of sex-ratio control and sex determination that 
are fairly common in other groups of animals (as in the case, 
for example, of many insects). The text starts with this general 
introduction, reviewing the issue on its basic aspects; the 
section is then followed by the analysis of six different models 
(numbered 1 to 6), which are grouped together at the end of the 
paper, using elementary mathematical methods usually within 
the grasp of biologists and geneticists interested in general 
issues outside their specialized area of professional expertise. 

Three out of the six models (numbered as 2, 5 and 6) 
assume that the shift on the progeny sex-ratio is dependent on 
the number of copies of a mutant allele present in the parental 
pair. Model 2 assumes that the sex-ratio is dependent on an 
autosomal mutant allele; models 5 and 6 deal with one of such 
alleles located on the X-chromosome, taking into account or not 
the process of random inactivation of the corresponding locus. 

The analytical methods in all models are (at least partly) 
original in spite of their flagrant simplicity. Only models 
numbered as 2, 5 and 6 are novel, in spite of producing results 
that at least partly coincide with some important or basic results 
already widely reported in the literature on the subject. So, 
this paper should be considered a review article in spite of 
its sparse humble novelties and contributions. 

The intuitive argumentation summarized in the next 
paragraph, showing that the 1 male : 1 female sex-ratio is 
evolutionary stable, is simple but subtle since it requires the 
analysis of two generations. During many years the reasoning 
was attributed to Fisher (1930), but Edwards (1998) showed 
that the idea was actually fathered by other authors in the 
middle and late years of the 19th century, among them Carl 
Düsing (1983, 1884), a German biologist.

Let us suppose that in a given population for any 
reason there exists a surplus of males. Since each individual 
results from a fertilization in which the two gametes equally 
participate, females will have on average a larger offspring 
number than males. The individuals from this population 
that have a proportion of female progeny larger than the 
average frequency of females will have on average more 
grandchildren than the rest of the population, and this will play 
down the existing excess of males. The inverse argumentation 
(a population where initially there exists more females than 
males) is identical, that is, individuals from this population 
that have a proportion of male progeny larger than the average 
frequency of males will have on average more grandchildren 
than the rest of the population, and this will play down the 
existing excess of females.

If the tendency to produce a progeny sex-ratio outside 
the usual ratio 1:1 is hereditary, at equilibrium a sex-ratio of 
approximately 1 male :1 female is expected: let us suppose, 
for example, that the factor responsible for an excess of males 
is a mutation that makes its carriers produce more males than 
females. Then the individuals that don’t carry this mutation will 
produce on average more females (individuals that on average 
have a larger offspring number); therefore these individuals 
will have on average more grandchildren and the wild-type 
allele, responsible for the usual 1 male : 1 female sex-ratio 
(and that in this case represents a allele producing an excess 
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of females while any excess of males persists) will tend to 
increase in frequency. The inverse argumentation is identical, 
that is, in populations where the mutation effect is to produce 
an excess of females, alleles responsible for the usual 1 male : 
1 female sex-ratio (in this case producing an excess of males) 
tend to increase in frequency. We conclude therefore that the 
1 male : 1 female sex-ratio is evolutionary stable.

The subject is mathematically attractive and has received 
many theoretical contributions, listed or discussed in good 
reviews like the one by Charnov (1982). Following the 
reasoning developed in the previous paragraph and the ideas 
of Fisher (1930) on parental expenditure, many authors, using 
different models, showed that the sex-ratio is evolutionary 
stable when autosomal mutations that produce a shift on the 
1 male : 1 female sex-ratio are carried by the individuals or 
their parents (Scudo, 1946; Shaw and Mohler, 1953; Shaw, 
1958; Bodmer and Edwards, 1960; Nur, 1974; Uyenoyama 
and Bengtsson, 1979). The mathematical level of most of these 
papers is generally beyond the grasp of the usual biologist, 
but in any case the reading of these excellent papers (as 
well as the many others cited in this review) is especially 
recommended to anyone interested on the issue of sex-ratio. 
Fairly good descriptions and analyses in a more accessible 
level of mathematics without significant loss of rigor are 
found in the textbooks of Crow and Kimura (1970) and 
Maynard-Smith (1989). 

The simplified general mathematical argumentation 
detailed below follows the reasoning of the papers above and 
was adopted from Maynard-Smith (1989), who considered the 
rare autosomal allele M, with no expression in males but that 
makes females produce m* sons and f* daughters, contrarily 
to the offspring of other individuals (carriers of the wild-type 
allele +), that have m sons and f daughters. As pointed out by 
this and other authors as well, it is important to stress that the 
presence of the allele M produces only a shift or distortion in 

the sex-ratio, so that m + f = m* + f*. Letting P and p be the 
frequencies of M/+ females and M/+ males and considering 
the frequencies of M/M males and females as negligible, 
from the possible crossings between females and males (M/+ 
× +/+, +/+ × M/+ and +/+ × +/+) a total of P’ = f*P/2f + p/2 
and p’ = m*P/2m + p/2 heterozygous M/+ females and males 
respectively will exist in the following generation. So it comes 
out that P’+p’ = p + P(fm*+mf*)/2mf = p + P + P(fm*+mf*-
2mf)/2mf = p + P + RP, where R = (fm*+mf*-2mf)/2mf = 
(1-2x)(x*-x)/[2x(1-x)], where x = proportion of males and 
1-x = proportion of females. P’+p’ will be larger than P+p 
if R > 0. R is larger than zero if x < 1/2 and x* > x or if x 
> 1/2 and x > x*. Therefore, when x < 1/2, the mutants that 
increase the sex-ratio increase their frequency; and when x 
> 1/2 the mutants that decrease the sex-ratio increase their 
frequency. Therefore, the solution of the equation R = 0 (x = 
1/2), is an evolutionary stable sex-ratio (Figure 1).

This general issue is analyzed in detail by an alternative 
method (Model 1: Sex-ratio disruption promoted by an 
autosomal mutant allele A present in the parental pair) and 
also revisited under a novel perspective (Model 2: Autosomal 
allele A, without sex limitation, that alters the progeny 
sex-ratio according to the number of mutant allele copies 
present in the parental pair); these two models are presented 
at the end of this introduction, together with four other models, 
in the section Analysis of some sex-ratio models.

The argument discussed above can be easily generalized 
for the generic situation of parental expenditure suggested by 
Fisher (1930). Using the same symbols as before and adopting 
again the reasoning in Maynard-Smith (1989), let m + kf = 
m* + kf* = C, where C represents the total expenditure in 
the offspring, a female costing k times more than a male. 
From these two equations we obtain f = (C-m)/k and f* = 
(C-m*)/k. Replacing these values in R = (f*/f + m*/m)/2 - 
1, we immediately obtain R = (C-2m)(m*-m)/[2m(1-m)]. 

Figure 1 ‒ Behavior of the function R = (1-2x)(x*-x)/[2x(1-x)], where x and 1-x are the usual proportions of males and females respectively and x* is 
the proportion of males determined by a mutant autosomal allele (please consult the paragraph above for other details).
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R will be greater than zero if m < C/2 and m* > m or 
if m > C/2 and m > m*. Therefore, if m < C/2, mutants that 
increase the value of m will tend to increase their frequency; 
if m > C/2, mutants that decrease the value of m will tend to 
increase their frequency. Therefore the evolutionary stable 
sex-ratio is given by m = C/2. If k = 1, C = = m* + f* and x 
= 1/2 (as seen before).

It has been shown, however, that the 1 male : 1 female 
prediction may fail when sex-linked (either on the X or in 
the Y chromosome) factors influencing the sex-ratio are 
considered; this case of extraordinary sex-ratios was also the 
subject of several in-depth papers (Hamilton, 1967; Thomson 
and Feldman, 1975; Uyenoyama and Bengtsson, 1981; Eshel 
and Feldman, 1982). The models used are in general more 
complicated, in addition to having a large number of restrictive 
assumptions and, in general, making use of fancier methods 
of mathematics.

In the case of a mutant allele located on the Y chromosome 
the reason for an unusual sex-ratio is very simple, because 
(1) the grandchild progeny number from daughters has no 
association at all with the allele carried on the Y chromosome 
by their fathers; and (2), if the mutant determines a larger 
proportion of male progeny, it will compete freely with its 
normal allele, eventually replacing it. When the deviation is 
relatively large from the usual 1:1 sex-ratio, the population 
itself will become extinct due to the lack of a minimally 
feasible number of female individuals, as pointed out by 
many authors (e.g., Hamilton, 1967).

The case of the mutant allele located in the Y chromosome 
is analyzed in detail, together with other models presented, 
as afore-mentioned, at the end of this introduction (Model 
3: Sex-ratio disruption promoted by a mutant allele A 
present in the Y chromosome).

In the case of a mutation carried on the X chromosome 
the situation is more complicated because heterozygous 
females transmit the allele with equal probabilities to all 
their children irrespective of their sex, but hemizygous male 
carriers transmit the allele to all their female progeny but to 
none of their male progeny. This fact disrupts to a certain 
degree the clear grandparent-grandchild association that is 
intuitively obvious in the autosomal case. When an X-linked 
mutation inducing the production of a surplus of males is 
expressed only in the spermatozoa from these individuals 
a catastrophic population fate similar to what takes place in 
the Y mutant case is expected, as shown by Hamilton (1967) 
using intuitive argumentation and simulation studies. In 
some instances, however, the result is not so drastic, as is the 
case of the wood lemming, a small rodent from the Arctic 
tundra, whose populations are characterized by drastic size 
number fluctuations and by a conspicuous excess of females. 
This special case of unusual sex-ratio, whose dynamics is 
already known in the literature, is also analyzed in detail in 
the model section at the end of this introduction (Model 4: 
Sex-ratio disruption in lemming populations), together with 
two additional novel models dealing with X-linked mutant 
alleles determining a shift in the usual 1:1 sex-ratio under the 
perspective that the progeny sex-ratio depends on the number 
of mutant alleles present in the parental pair (Models 5 and 
6: X-linked mutant allele located in active or in randomly 
inactivated loci respectively).

Analysis of some sex-ratio models

Model 1: Sex-ratio disruption promoted by an autosomal 
mutant allele A present in the parental pair

We start by considering, like Maynard-Smith did, the 
population proportion of males as x (corresponding to a sex-
ratio of x/(1-x) : 1) and x + δ1 (such that 1-x > |δ1| > 0) the 
proportion of males in the progeny of male or female carriers 
of an autosomal mutant allele A, that exhibits (unlike the 
example used by Maynard-Smith) no sex limitation. Since x = 
1/2 + δ2 (such that 1/2 > |δ2| > 0), the model analysis becomes 
much more direct and simplified if we use x + δ1 = 1/2 + δ2 + 
δ1 = 1/2 + δ (such that 1/2 > |δ| > 0) instead of x + δ1. Let the 
frequency of the mutant A allele be qt. Since this frequency 
is (at least initially) very small, because the mutant allele is 
introduced by mutation, population frequencies of AA, Aa 
and aa individuals can be taken respectively as Pt(AA) = qt

2 
≈ 0, Pt(Aa) = 2ptqt ≈ 2qt and Pt(aa) = (1-qt)

2 ≈ 1-2qt. Since 
random mating is expected to occur, the frequencies of the 
various crossings are:

Pt(Aa × Aa) = 4qt
2 ≈ 0, 

Pt(Aa × aa) = 4qt(1-2qt) ≈ 4qt, 
and 
Pt(aa × aa) = (1-2qt)

2 ≈ 1-4qt.
The expected progeny frequencies of heterozygous (Aa) 

and homozygous (aa) males and females are respectively
mt+1(Aa) = 2qt(1/2+δ) , 
mt+1(aa) = 2qt(1/2+δ)+(1-4qt)/2 , 
and
ft+1(Aa) = 2qt(1/2-δ) ,
ft+1(aa) = 2qt(1/2-δ)+(1-4qt)/2 ;
from these quantities we derive the population 

frequencies of males and females in the offspring generation, 
which are respectively

mt+1(Aa)+mt+1(aa) = mt+1 = 1/2 + 4qtδ 
and 
ft+1(Aa)+ft+1(aa) = ft+1 = 1/2 - 4qtδ .
We notice that genotype frequencies did not change in 

the whole offspring population, because mt+1(Aa)+ft+1(Aa) = 
2q and mt+1(aa)+ft+1(aa) = 1-2q , as in the previous generation; 
however, the genotypes occur now with different frequencies 
among males and females:

Pmt+1(Aa) = mt+1(Aa)/mt+1 = qt(1+2δ)/(1/2+4qtδ)
Pmt+1(aa) = mt+1(aa)/mt+1 = (1/2-qt+2qtδ)/(1/2+4qtδ)
and
ft+1(Aa) = ft+1(Aa)/ft+1 = qt(1-2δ)/(1/2-4qtδ)
ft+1(aa) = ft+1(aa)/ft+1 = (1/2-qt-2qtδ)/(1/2-4qtδ) ,
so that the frequencies of the A allele among males and 

females are respectively
Pmt+1(A) = Pmt+1(Aa)/2 = qt(1/2+δ)/(1/2+4qtδ)
and 
Pft+1(A) = Pft+1(Aa)/2 = qt(1/2-δ)/(1/2-4qtδ).
Since each individual results from the fertilization of a 

female gamete by a male one, independently from the sex-ratio 
prevailing in the population, the next generation frequency 
q’ of allele A in the whole population is given by

q’ = [Pmt+1(A)+ Pft+1(A)]/2 
= qt[(1/2+δ)/(1/2+4qtδ)+(1/2-δ)/(1/2-4qtδ)]/2
= qt(1-16qtδ

2)/(1-64qt
2δ2) ≈ qt – 16qt

2δ2 = qt – (4qtδ)2 .
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Since 1/2 > |δ| > 0, it comes out that q’ is always smaller 
than qt, so that any autosomal mutant allele that disrupts the 
usual 1:1 sex-ratio is always eliminated from the population.

Model 2: Autosomal allele A, without sex limitation, that 
alters the progeny sex-ratio according to the number of 
mutant allele copies present in the parental pair

In the offspring of aa × aa crossings the frequency of 
males and females is 0.5, that corresponds to an 1 male : 1 
female sex-ratio. The offspring of other possible crossings 
has a proportion of males and females respectively higher 
and smaller than 0.5, proportionally to the number of A 
genes present in the parental pair. We shall have, therefore, 
five offspring types with different proportions of males and 
females (Table 1), in which qt and pt are the frequencies of 
alleles A and a in generation t .

If we define, as above, δ as a positive quantity, its domain 
is obviously 0 ≤ δ ≤ 1/8. But of course δ can be a negative 
quantity as well: in this case, its domain is -1/8 ≤ δ ≤ 0. In fact, 
when δ = -1/8, the five possible offspring male proportions 
listed on the table above take values 1/2, 3/8, 1/4, 1/8, and 
0, respectively; when δ = 1/8, the corresponding values are 
1/2, 5/8, 3/4, 7/8, and 1.

The proportions mt+1(aa), mt+1(Aa) and mt+1(AA) of aa, 
Aa and AA males as well as the population frequency of males 
mt+1 = mt+1(aa) + mt+1(Aa) + mt+1(AA) and the corresponding 
proportions of females ft+1(aa), ft+1(Aa), ft+1(AA), and ft+1 
= ft+1(aa) + ft+1(Aa) + ft+1(AA) in the offspring generation 
(t+1) are straightforwardly taken from the table above, after 
weighing the possible offspring proportions of males (0.5, 
0.5+δ, ..., 0.5+4δ) and females (0.5, 0.5-δ, ..., 0.5-4δ) from 
each crossing type by their corresponding parental mating 
frequencies pt

4, ..., qt
4 (Table 2), so that the frequencies of aa, 

Aa and AA individuals among males of generation t+1 are:
Pmt+1(aa) = mt+1(aa)/mt+1 = pt

2.(1/2+2δqt)/(1/2+4δqt)
Pmt+1(Aa) = mt+1(Aa)/mt+1 = 2ptqt.[1/2+2δ(1/2+qt)]/

(1/2+4δqt)
Pmt+1(AA) = mt+1(AA)/mt+1 = qt

2.[1/2+2δ(1+qt)]/
(1/2+4δqt) .

An identical procedure is used to obtain the corresponding 
frequencies of aa, Aa and AA individuals among females of 
this same generation t+1 :

Pft+1(aa) = pt
2.(1/2-2δqt)/(1/2-4δqt)

Pft+1(Aa) = 2ptqt.[1/2-2δ(1/2+qt)]/(1/2-4δqt)
Pft+1(AA) = qt

2.[1/2-2δ(1+qt)]/(1/2-4δqt) .
The allele A frequencies Pmt+1(A) and Pft+1(A) among 

males and females are straightforwardly obtained from the 
genotype frequencies above, taking values:

Pmt+1(A) = Pmt+1(AA) + Pmt+1(Aa)/2 
= [qt.(1/2 + 3δqt) + δqt]/(1/2 + 4δqt)
Pft+1(A) = Pft+1(AA) + Pft+1(Aa)/2 
= [qt.(1/2 - 3δqt) - δqt]/(1/2 - 4δqt) .
Since each individual results from the fertilization of a 

female gamete by a male one, independently from the sex-ratio 
prevailing in the population, the next generation frequency 
qt+2 = q’ of allele A in the whole population is given by

q’ = [Pmt+1(A)+Pft+1(A)]/2 = qt(1/4-12δ2qt
2-4δ2qt)/

(1/4-16δ2qt
2)

= qt - 4δ2qt
2(1-qt)/(1/4-16δ2qt

2).
The inspection of this formula shows clearly that q’ < qt , 

given the obvious restrictions 1 > qt - 4δ2qt
2(1-qt)/(1/4-16δ2qt

2) 
> 0 , 1 > qt > 0 , and 1/8 > |δ| > 0; therefore, at equilibrium, 
that is when t tends to infinity, q = 0, that is, any mutation that 
alters the sex-ratio 1 male : 1 female (or the proportion c = 
1/2 of males) is eliminated from the population, irrespective 
whether δ is larger or smaller than zero.

The frequency of the autosomal mutant A allele is 
always very small, because the allele is not only introduced by 
mutation but strongly selected as well. Then the frequencies of 
aa, Aa, and AA individuals can be approximated as (1-qt

2) ≈ 
1-2qt, 2ptqt ≈ 2qt, and qt

2 ≈ 0, and the only possible population 
crossings are aa × aa and aa × Aa, that will take place with 
corresponding probabilities (1-2qt)

2 ≈ 1-4qt and 4qt. Under 
this approximation, the model just detailed coincides almost 
exactly with the generalized one derived before (model 1), 
with the final result q’ = qt – 16qt

2δ22 = qt – (4qtδ)2 (a result 
that can also be obtained straightforwardly from the complete 
formula just derived by neglecting most non-linear terms of qt).

Table 1 ‒ Population frequencies of crossing types and progeny sex proportions (model 2). A is an autosomal mutant allele responsible for a distortion 
in the sex-ratio depending on the number of copies present in the parental pair.

crossing types crossing freq. male proportion female proportion

aa × aa pt
4 0.5 0.5

aa × Aa 4pt
3qt 0.5 + δ 0.5 - δ

aa × AA 2pt
2qt

2 0.5 + 2δ 0.5 - 2δ

Aa x Aa 4pt
2qt

2 0.5 + 2δ 0.5 - 2δ

AA × Aa 4ptqt
3 0.5 + 3δ 0.5 - 3δ

AA × AA qt
4 0.5 + 4δ 0.5 - 4δ

Table 2 ‒ Progeny AA, Aa and aa genotype frequencies among males and females after one generation of random crossings (model 2).

genotypes males females total

aa pt
2.(1/2+2δqt) pt

2.(1/2-2δqt) pt
2

Aa 2ptqt[1/2+2δ(1/2+qt)] 2ptqt[1/2-2δ(1/2+qt)] 2ptqt

AA qt
2.[1/2+2δ(1+qt)] qt

2.[1/2-2δ(1+qt)] qt
2

total 1/2 + 4δqt 1/2 - 4δqt 1
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Model 3: Sex-ratio disruption promoted by a mutant 
allele A present in the Y chromosome

The relatively simple model detailed in the lines 
below explains the behavior of the allele a, situated on the Y 
chromosome, that determines, in the offspring of their carriers, 
a proportion of males c = 1/2; its mutant allele A determines 
a proportion of males s = c + δ = 1/2 + δ. Letting pt and qt = 
1 - pt be the frequencies, in generation t, of alleles a and A, 
the following recurrence relation is obtained: pt+1 = pt/[1 + 
2δ(1-pt)]. If δ < 0, pt/[1 + 2δ(1-pt)] > pt and therefore pt+1 > pt 
so that the limit of pt as t tends to infinity is one; the mutant 
allele A will then be completely eliminated from the population 
and the proportion of males in the entire population will be 
given by c = 1/2. Conversely, if δ > 0, pt/[1 + 2δ(1-pt)] < pt and 
therefore pt+1 < pt so that the limit of pt as t tends to infinity 
would be zero and the mutant allele A would be fixed in the 
population, whose proportion of males will then be given 
by s = c + δ = 1/2 + δ. The same results are obtained when 
one considers the general solution pt = p0/[p0 + (1-p0)(1+2δ)
t] of the fractional difference equation of first order pt+1 = pt/
[1 + 2δ(1-pt)]: taking the limit of the general expression as t 
tends to infinity we obtain straightforwardly the equilibrium 
values {p = 1, q = 0} when δ < 0 or {p = 0, q = 1} when δ > 
0. Figure 2 shows the evolution of the frequency p0 → p100 
of the wild-type allele a as function of several negative (-1/5 
, ... , -1/40) and positive (1/5 , ... , 1/40) values of δ, for the 
hypothetical case p0 = 0.999 (when the initial frequency q0 
of the mutant allele A is 1/1000). 

The main conclusion from the simplified analysis 
shown above is that the 1 male : 1 female ratio is attained at 
equilibrium only if the mutant A allele on the Y chromosome 
determines an excess of females. When this allele shifts 
the 1 male : 1 female ratio favoring the production of 
males, however, stable proportions of c + δ = 0.5 + δ and 
c - δ = 0.5 - δ of males and females respectively will be 
expected at equilibrium. This situation (δ > 0) represents an 
important case in which the 1 male : 1 female prediction fails.  
As already suggested by several authors, the extinction of the 
population (that for large values of δ could eventually take 
place on the long range of time when all individuals produced 
in the population would be males) would be prevented by the 
occurrence of independent autosomal mutations that would 

revert the situation, shifting the population eventually to an 
approximate 1 male : 1 female stable ratio again.

Model 4: Sex-ratio disruption in lemming populations 
(Bengtsson, 1977; Fredga et al., 1977)

Unlike all other five models presented here and that 
depend on autosomal or sex-linked alleles disrupting the 
usual 1:1 sex-ratio, the lemming case is somewhat different, 
since the sex-ratio shift in populations of this rodent is 
determined by a mutant chromosome X’ whose effect is to 
produce a complete sex reversal on individuals X’Y, who 
are phenotypically females, like XX and X’X individuals. 
As a result, the male phenotype is associated only to the 
XY constitution. XX and XY individuals produce X and Y 
gametes in the usual way; X’Y individuals, besides being 
phenotypically females, produce only X’ gametes (complete 
segregation distortion); and X’X individuals produce X’ and 
X gametes with equal chances (Bengtsson, 1977; Fredga et 
al., 1977). If matings occur randomly and we let a0, b0, c0 
and d0 be the initial population frequencies of XY, X’Y, XX, 
and X’X individuals respectively, the frequencies of these 
genotypes after a single generation of random crossings are 
respectively a1 = c1 = (2c0+d0)/4(b0+c0+d0), and b1 = d1 = 
(2b0+d0)/[4(b0+c0+d0)]. The general recurrence equation for 
bt is given by bt+1 = (2bt+dt)/[4(bt+ct+dt)]. Since c1 = a1 , d1 
= b1 and a1 + b1 = c1 + d1 = 1/2, this formula can be rewritten 
as bt+1 = 3bt/(4bt + 2), that is valid for t ≥ 1. At equilibrium, 
b = 3b/(4b+2), 4b+2 = 3 and therefore a = b = c = d = 1/4, 
that is, all genotypes occur with equal population frequencies 
but there will be three times more females than males, 
independently from the initial frequencies of the four types 
XY, X’Y, XX, X’X.

Model 5: allele A, X-linked, that alters the sex-ratio, 
and that is located in a locus that is active in both X 
chromosomes in females 

Similarly to the autosomal model, the offspring of the 
possible crossings at generation t+1 has a proportion of males 
higher than 0.5, proportional to the number of A genes present 
in the parental pair. We shall have, therefore, six offspring 
types with a total of four different proportions of males and 
females (Table 3).

Figure 2 ‒ Evolution of the wild type allele that determines the usual male population proportion; when the mutant allele on the Y chromosome determines 
a male progeny frequency larger than c, the normal allele is eliminated from the population; when the mutant allele produces a male progeny smaller 
than c, the mutant allele is eliminated so that the c population frequency of males is restored (model 3).
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If we define, as above, δ as a positive quantity, its 
domain is obviously 0 ≤ δ ≤ 1/6. But of course δ can be a 
negative quantity as well: in this case, its domain is -1/6 ≤ δ 
≤ 0. In fact, when δ = -1/6, the four possible offspring male 
proportions listed on the table above take values 1/2, 1/3, 1/6, 
and 0, respectively; when δ = 1/6, the corresponding values 
are 1/2, 2/3, 5/6, and 1.

If we depart from an initial equilibrium population, 
assuming that genotype frequencies do not differ significantly 
from HW proportions, that is, Pt(a) ≈ pt, Pt(A) ≈ qt, Pt(aa) 
≈ pt

2, Pt(Aa) ≈ 2ptqt, and Pt(AA) ≈ qt
2, and proceeding as in 

the autosomal case, we obtain the following male and female 
genotype frequencies at generation t+1:

Pmt+1(a) = mt+1(a)/mt+1 = (pt/2+2δptqt)/(1/2+3δqt)
Pmt+1(A) = mt+1(A)/mt+1 = (qt/2+δptqt+3δqt

2)/(1/2+3δqt)
Pft+1(aa) = ft+1(aa)/ft+1 = (pt

2/2-δpt
2qt)/(1/2-3δqt)

Pft+1(Aa) = ft+1(Aa)/ft+1 = (2ptqt/2-2δptqt-2δptqt
2)/(1/2-

3δqt)
Pft+1(AA) = ft+1(AA)/ft+1 = (qt

2/2-2δptqt
2-3δqt

3)/(1/2-3δqt).
From these quantities we calculate the frequencies 

Pmt+1(A) and Pft+1(A) of the A allele among males and females:
Pmt+1(A) = mt+1(A)/mt+1 = (qt/2 + δptqt + 3δqt

2)/(1/2 
+ 3δqt)

Pft+1(A) = Pft+1(AA) + Pft+1(Aa)/2 = (qt/2 - δptqt - 3δqt
2)/

(1/2 - 3δqt)
so that the next generation frequency qt+2 = q’ of the A 

allele in the whole population will be given by
q’ = [Pmt+1(A) + 2Pft+1(A)]/3
= qt – 2δ(1-qt)qt(1-18δqt)/[3(1-36δ2qt

2)].
Since -1/6 < δ < 1/6 and 0 < qt < 1, when δ > 0 it comes 

out that q’ < qt, so that as t tends to infinity qt tends to zero and 
at equilibrium the proportion of males is 1/2, corresponding 
to an 1 male : 1 female sex-ratio. When δ < 0, however, it 
comes out that q’ > qt so that the frequency of females will 
increase beyond 0.5. Extensive calculations using iteratively 
the formula above show that at equilibrium there will be an 
excess of females in the population and that in the range –1/16 
< δ < 0 approximately the allele A becomes entirely fixed (q = 
1) in the population. With the exception of cases in which the 
modulus of δ < 0 is 1/20 or less, the equilibrium frequencies 
of males and females will be approximately 1/3 and 2/3 (what 
corresponds roughly to a 1 male : 2 females sex-ratio). In any 
case, the equilibrium value q is independent from the initial 
conditions and is a function of δ alone, as Figure 3 clearly 
shows. In this graph the curve for the equilibrium value q in 
the negative domain of δ was obtained by applying iteratively 
the recursion formula q’ = f(qt, δ) or, when –1/6 ≥ δ ≥ -1/16, 

by using the numerical approximation (Bronstein et al., 2001) 
q = a.Δb.ecΔ , where Δ = |δ|, with the coefficients a = 0.098, 
b = -0.91 and c = -3.32 obtained with the help of computer 
programs of non-linear regression analysis such as Sherrod’s 
NLREG software (2000).

When δ > 0 (the case in which the X-linked mutation 
favors the production of males) a stable 1 male : 1 female sex-
ratio is attained, but the reverse situation (δ < 0) represents an 
important case in which the 1 male : 1 female prediction fails. 
The situation is however not so drastic like the one in the Y 
allele case, since |δ| cannot have values larger than 1/6 and for 
most values of the frequency |δ| the population proportion of 
females would be at most twice that of males, what corresponds 
to a sex-ratio of 1 male : 2 females approximately.

When δ > 0, q’ < qt, so the frequency of the mutant 
allele A (introduced by mutation and subjected to selection) 
is always very small, and the evolution of its frequency can 
be approximated with no significant loss of accuracy by the 
formula q’ = qt - 2δqt(1-qt)/3 , obtained directly from the 
complete formula by neglecting most squared and cubic 
terms of qt. For the case δ < 0, however, only the complete 
recursion formula should be used.

Model 6: allele A, X-linked, that alters the sex-ratio, 
and that is located in a randomly inactivated locus 

Similarly to the previous model, the offspring of the 
possible crossings at generation t has a proportion of males 
higher than 0.5, proportionally to the number of active A 
genes present in the parental pair. We shall have, therefore, 
six offspring types with a total of five different proportions 
of males and females (Table 4).

If we define, as above, δ as a positive quantity, its domain 
is obviously 0 ≤ δ ≤ 1/4. But of course δ can be a negative 
quantity as well: in this case, its domain is -1/4 ≤ δ ≤ 0. In fact, 
when δ = -1/4, the five possible offspring male proportions 
listed on the table above take values 1/2, 3/8, 1/4, 1/8, and 
0, respectively; when δ = 1/4, the corresponding values are 
1/2, 5/8, 3/4, 7/8, and 1.

If we depart from an initial equilibrium population, that 
is, Pt(a) ≈ pt, Pt(A) ≈ qt, Pt(aa) ≈ pt

2, Pt(Aa) ≈ 2ptqt, Pt(AA) 
≈ qt

2, the frequency of males in the offspring generation t+1 
is given by

mt+1 = Pt(a).Pt(aa).1/2 + ... + Pt(A).Pt(AA).(1/2+2δ)
= 1/2 + 2δqt ,
while the frequency of females in this same generation 

(t+1) is given by
ft+1 = 1 – mt+1 = 1/2 - 2δqt .

Table 3 ‒ Population frequencies of crossing types and progeny sex proportions. A is an X-linked mutant allele responsible for a distortion in the sex-ratio 
depending on the number of copies present in the parental pair. It is assumed that the (A, a) locus is active in both X chromosomes among females (model 5). 

crossing types crossing freq. male proportion female proportion

aa × a Pt(a).Pt(aa) 0.5 0.5

aa × A Pt(A).Pt(aa) 0.5 + δ 0.5 - δ

Aa × a Pt(a).Pt(Aa) 0.5 + δ 0.5 - δ

Aa x A Pt(A).Pt(Aa) 0.5 + 2δ 0.5 - 2δ

AA × a Pt(a).Pt(AA) 0.5 + 2δ 0.5 - 2δ

AA × A Pt(A).Pt(AA) 0.5 + 3δ 0.5 - 3δ
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Table 4 ‒ Population frequencies of crossing types and progeny sex proportions. A is an X-linked mutant allele responsible for a distortion in the sex-
ratio depending on the number of copies present in the parental pair. It is assumed that the (A, a) locus is randomly inactivated among females (model 6).

crossing types crossing freq. male proportion female proportion

aa × a Pt(a).Pt(aa) 0.5 0.5

aa × A Pt(A).Pt(aa) 0.5 + δ 0.5 - δ

Aa × a Pt(a).Pt(Aa) 0.5 + δ/2 0.5 - δ/2

Aa x A Pt(A).Pt(Aa) 0.5 + 3δ/2 0.5 - 3δ/2

AA × a Pt(a).Pt(AA) 0.5 + δ 0.5 - δ

AA × A Pt(A).Pt(AA) 0.5 + 2δ 0.5 - 2δ

Figure 3 ‒ Population equilibrium frequencies of the mutant X-linked allele A (q) and of corresponding female frequencies (f), according to the value 
of the distortion factor δ (model 5).

The genotype frequencies of a and A males and of aa, 
Aa and AA females in this generation t+1 are obtained as in 
the previous model, taking the following values:

Pmt+1(a) = mt+1(a)/mt+1 
= [(1-qt)/2 + 3δqt(1-qt)/2]/(1/2 + 2δqt)
Pmt+1(A) = mt+1(A)/mt+1 
= [qt/2 + δqt(1+3qt)/2]/(1/2 + 2δqt)
Pft+1(aa) = ft+1(aa)/ft+1 
= [(1-qt)

2/2 - δqt(1-qt)
2/2]/(1/2 - 2δqt)

Pft+1(Aa) = ft+1(Aa)/ft+1 
= [qt(1-qt) – δqt(1-qt)(3+2qt)/2]/(1/2 - 2δqt)
Pft+1(AA) = ft+1(AA)/ft+1
= [qt

2/2 - δqt
2(3+qt)/2]/(1/2 - 2δqt) .

The allele A frequencies Pmt+1(A) and Pft+1(A) among 
males and females are given by

Pmt+1(A) = mt+1(A)/mt+1
= [qt/2 + δqt(1+3qt)/2]/(1/2 + 2δqt)
Pft+1(A) = Pft+1(Aa)/2 + Pft+1(AA) 
= [qt/2 - δqt(3+5qt)/4]/(1/2 - 2δqt),
so that, similarly to the previous case, the next generation 

frequency of the A allele in the whole population is given by
q’ = [Pmt+1(A)+2Pft+1(A)]/3 
= qt - 2δqt(1-qt)(1+8δqt)/[3(1-16δ2qt

2)] .

Since -1/4 < δ < 1/4 and 0 < qt < 1, when δ > 0 it comes 
out that q’ < qt , so that as t tends to infinity qt tends to zero and 
at equilibrium the proportion of males is 1/2, corresponding 
to a sex-ratio of 1 male : 1 female. When δ < 0, however, it 
comes out that q’ > qt so that the frequency of females will 
increase beyond 0.5. Extensive calculations using iteratively 
the formula above show that at equilibrium there will be an 
excess of females in the population and that for approximately 
–1/7 < δ < 0 the allele A becomes entirely fixed (q = 1) in the 
population. With the exception of cases in which |δ| is 1/20 
or less, at equilibrium the frequencies of males and females 
will be approximately 1/4 and 3/4 (what corresponds roughly 
to a sex-ratio of 1 male : 3 females); this represents another 
important case in which the 1 male : 1 female prediction fails. 
In any case, the equilibrium value q is independent from the 
initial conditions and is a function of δ alone, as Figure 4 clearly 
shows. In this graph the curve for the equilibrium value q in 
the negative domain of δ was obtained by applying iteratively 
the recursion formula q’ = f(qt, δ) or, when –1/4 ≥ δ ≥ -1/7, by 
using the numerical approximation (Bronstein et al., 2001) q 
= a.Δb.ecΔ, where Δ = |δ|, with the coefficients a = 0.22, b = 
-0.89 and c = -1.34 obtained, as in the previous case, with the 
help of computer programs of non-linear regression analysis.
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Even when δ > 0 (the case in which the X-linked 
mutation favors the production of males) a stable 1 male : 
1 female sex-ratio is attained, but the reverse situation (δ < 
0) represents another important case in which the 1 male : 1 
female prediction fails. This situation, which is analogous to 
the one found in the previous model (without X chromosome 
inactivation), is however not so crucial like the one in the Y 
allele case, since |δ| cannot have values larger than 1/4 and 
for most values of the frequency |δ| the population proportion 
of females would be at most three times that of males, what 
corresponds to a sex-ratio of 1 male : 3 females approximately.

Just like the case δ > 0 of the previous model 5, the 
frequency of the mutant allele A is always very small, and 
the evolution of its frequency can be approximated with no 
significant loss of accuracy by the formula q’ = qt - 2δqt(1-
qt)/3, obtained from the last complete formula. So for small 
values of qt and when δ > 0, the evolutionary behavior of 
the A allele frequency is practically the same in both models 
5 and 6. For the case δ < 0, however, the evolution of allele 
frequency qt is different in both cases and only the complete 
recursion formula should be used.

The models just presented/reviewd point out that 
disruptions of the 1:1 sex-ratio do not evolve under autosomal 
inheritance, but can evolve with sex-chromosome inheritance. 
Moreover, most serious disruptions, even leading to extinction, 
are only likely with Y-linked inheritance. Most of these 
conclusions are not novel in the general context, but some 
details are new, such as the models with alleles having 
additive effects on the sex-ratio, regardless of their parental 
origin. In fact, unlike basic models with sex limitation and 
non-additive effects (Hamilton, 1967), X-linked models in 
which the shift on the usual 1:1 sex-ratio is due to the number 
of copies of the mutant allele present in the parental pair lead 

to extraordinary but apparently well-tolerated population 
equilibrium proportions of males and females varying from 
1:1 to 1:2 or 1:3 respectively, depending on the value of the 
distortion factor and whether the mutant allele is randomly 
inactivated or not.
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