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Abstract

Centromochlinae is a widely diverse subfamily with more than 50 species and several taxonomic conflicts due to 
morphological similarity between Tatia and Centromochlus species. However, cytogenetic studies on this group have 
been limited to only four species so far. Therefore, here we present the karyotype of Centromochlus schultzi from the 
Xingu River in Brazil using classic cytogenetic techniques, physical mapping of the 5S and 18S rDNAs, and telomeric 
sequences (TTAGGG)n. The species had 58 chromosomes, simple NORs and 18S rDNA sites. Heterochromatic 
regions were detected on the terminal position of most chromosomes, including pericentromeric and centromeric 
blocks that correspond to interstitial telomeric sites. The 5S rDNA had multiple sites, including a synteny with the 18S 
rDNA in the pair 24st, which is an ancestral feature for Doradidae, sister group of Auchenipteridae, but appears to be a 
homoplastic trait in this species. So far, C. schultzi is only the second species within Centromochlus to be karyotyped, 
but it has already presented characteristics with great potential to assist in future discussions on taxonomic issues in 
the subfamily Centromochlinae, including the first synteny between rDNAs in Auchenipteridae and also the presence 
of heterochromatic ITSs that could represent remnants of ancient chromosomal fusions.
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Introduction
The driftwood catfish family, Auchenipteridae, is a 

monophyletic clade supported by morphological and molecular 
synapomorphies (Birindelli, 2014; Calegari et al., 2019). This 
family is composed by 25 genera and 128 valid species (Fricke 
et al., 2023) and is currently divided into two subfamilies: 
Auchenipterinae, comprising 18 genera and 78 species, and 
Centromochlinae, with 7 genera and 50 species (Fricke et al., 
2023). Centromochlinae is the most unstable subfamily from 
the taxonomic point of view, with the diagnostic limits of some 
genera still fragilely defined, even after several and recent 
taxonomic revisions (Calegari et al., 2019; Sarmento-Soares 
and Martins-Pinheiro, 2020).

According to Fricke et al. (2023), the genus 
Centromochlus Kner 1858 consists of nine species: 
Centromochlus heckelii (De Filippi 1853), Centromochlus 
schultzi Rössel, 1962, Centromochlus existimatus Mees 1974, 
Centromochlus musaicus (Royero 1992), Centromochlus 

macracanthus Soares-Porto 2000, Centromochlus carolae 
(Vari and Ferraris 2013), Centromochlus melanoleucus (Vari 
and Calegari 2014), Centromochlus orca Sarmento-Soares, 
Lazzarotto, Py-Daniel and Leitão 2017, and Centromochlus 
akwe Coelho, Chamon and Sarmento-Soares 2021. However, 
the Centromochlus species are morphologically similar to 
other genera of Centromochlinae, which historically resulted 
in several reallocations, mainly involving Tatia Miranda-
Ribeiro 1911. As a result, establishing taxonomic limits 
for these species remains a major challenge. For instance, 
Grant (2015) proposed that Centromochlus would consist of 
four subgenera: Balroglanis, Duringlanis, Sauronglanis and 
Ferrarissoaresia. Calegari et al. (2019) elevated Balroglanis, 
Duringlanis and Ferrarissoaresia to the level of genera and 
synonymized Sauronglanis with Tatia. Recently, Balroglanis 
which included B. schultzi, B. macracanthus and B. carolae 
was synonymized with Centromochlus (Sarmento-Soares 
and Martins-Pinheiro, 2020), and only Duringlanis and 
Ferrarissoaresia remains as valid genera (Fricke et al., 2023).

The difficulty in determining external morphological 
characters for delimiting the taxonomic status of 
Centromochlus species interferes with the estimate of diversity 
of the group and the understanding of its phylogenetic 
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relationships. In similar contexts, cytogenetics has proved 
to be an important tool, contributing to solve taxonomic 
and phylogenetic problematics (e.g., Bertollo et al., 2000; 
Artoni et al., 2015; Santos et al., 2021; Takagui et al., 
2021). However, cytogenetic studies in Auchenipteridae 
are restricted to 12 species, which are distributed in five 
genera of Auchenipterinae (Ageneiosus Lacepède 1803, 
Auchenipterus Bleeker 1862, Entomocorus Eigenmann 
1917, Trachelyopterus Cuvier and Valenciennes 1840, and 

Tympanopleura Eigenmann 1912), and three genera of 
Centromochlinae (Centromochlus, Tatia and Glanidium 
Lütken 1874) (Table 1).

Considering this context, this work presents the 
chromosomal analyses of Centromochlus schultzi from the 
Xingu River basin. We aimed to discuss evolutionary aspects 
of the C. schultzi karyotype as well as provide cytotaxonomic 
markers that may contribute to the discussions about the 
organization of Centromochlinae.

Table 1 – Cytogenetic data in Auchenipteridae. 2n: diploid number; m: metacentric; sm: submetacentric; st: subtelocentric; a: acrocentric; p: short arm; 
q: long arm; AM: Amazonas state; GO: Goiás state; PR: Paraná state; MT: Mato Grosso state; MS: Mato Grosso do Sul state; MG: Minas Gerais state; 
RN: Rio Grande do Norte state; Pará state; NI: ITS not investigated; ND: ITS not detected.

Species Location 2n NORs/
18S rDNA 5S rDNA ITS Ref.

Auchenipterinae

Ageneiosus inermis
(*cited as Ageneiosus brevifilis)

Solimões River basin, 
Manaus (AM) 56 p, sm - NI Fenocchio and 

Bertollo (1992)*

Araguaia River basin, 
Aragarças (GO) 56 pair 20, p, sm pair 4, p, m pair 1, 

p, m Lui et al. (2013a)

Auchenipterus nuchalis Araguaia River basin, 
Aragarças (GO) 58 pair 14, p, sm pair 22, p, st NI Machado et al. 

(2021)

Auchenipterus osteomystax
(cited as Auchenipterus nuchalis)

Paraná River basin, Porto 
Rico (PR) 58 pair 15, p, sm - NI Ravedutti and 

Júlio Jr (2001)

Entomocorus radiosus Paraguay River basin, 
Poconé (MT) 58 pair 21, p, st

pair 12, p, sm
pair 13, p, sm
pair 14, p, sm
pair 15, p, sm
pair 16, p, sm
pair 18, p, st
pair 19, p, st

NI Machado et al. 
(2021)

Trachelyopterus coriaceus Araguaia River basin, São 
Miguel do Araguaia (GO) 58 pair 23, p, st pair 3, p, m

pair 16, q, sm NI
Santos et al. (2021); 

Haerter et al. 
(2022, 2023)

Trachelyopterus aff. coriaceus 
(*cited as Trachelyopterus sp.)

Bento Gomes River basin 
(MT) 58 pair 22, p, st pair 16, q, sm

pair 18, p, sm ND
Lui et al. (2021)*; 

Haerter et al. 
(2022, 2023)

Trachelyopterus galeatus
(*cited as Parauchenipterus galeatus)

Paraná River basin, Porto 
Rico (PR) 58 pair 15, p, sm - NI Ravedutti and 

Júlio Jr (2001)*

Paraná River basin, Três 
Lagoas (MS) 58 pair 25, p, st pair 16, p, sm

pair 17, q, sm NI Lui et al. (2010)*

Piumhi River basin, 
Capitólio (MG) 58 pair 24, p, st pair 15, p, sm

pair 16, q, sm NI Lui et al. (2010)*

São Francisco River basin, 
Lagoa da Prata (MG) 58 pair 23, p, st pair 16, p, sm

pair 17, q, sm ND Lui et al. (2010)*

Pium River basin, NE 
Oriental (RN) 58 p, sm - NI Araújo and 

Molina (2013)*

Amazon River basin, 
Manaus (AM) 58 pair 20, p, st pair 14, p, sm

pair 16, q, sm ND Haerter et al. 
(2022, 2023)

Trachelyopterus aff. galeatus 
(*cited as Parauchenipterus galeatus)

Araguaia River basin, São 
Miguel do Araguaia (GO) 58 pair 24, p, st pair 3, q, m NI

Santos et al. 
(2021)*; Haerter 

et al. (2022, 2023)
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Species Location 2n NORs/
18S rDNA 5S rDNA ITS Ref.

Trachelyopterus porosus Amazon River basin, 
Manaus (AM) 58 pair 23, p, st pair 3, p, m

pair 4, p, m ND Haerter et al. 
(2022, 2023)

Trachelyopterus striatulus
(*cited as Parauchenipterus 
striatulus)

Doce River basin, Mariléia 
(MG) 58 pair 23, p, st

pair 10, p, sm
pair 13, p, sm
pair 15, q, sm

NI
Santos et al. 

(2021)*; Haerter 
et al. (2022, 2023)

Tympanopleura atronasus 
(cited as Ageneiosus atronases)

Solimões River basin, 
Manaus (AM) 56 q, sm - NI Fenocchio and 

Bertollo (1992)

Centromochlinae

Centromochlus heckelii Solimões River, Manaus 
(AM) 46 pair 20, p, a

pair 12, p(W) - NI Kowalski et al. 
(2020)

Centromochlus schultzi Xingu River basin, Altamira 
(PA) 58 pair 24, p, st

pair 4, p, m
pair 24, p, st
pair 27, p, a
pair 28, p, a

pair 1, 
p, m

pair 3, 
c, m

Present study

Glanidium ribeiroi

Segredo reservoir, Iguazu 
River basin (PR) 58 pair 13, p, sm - NI Fenocchio et al. 

(2008)

Salto Osório reservoir, 
Iguazu River basin (PR) 58 pair 13, p, sm - NI Fenocchio et al. 

(2008)

Salto Caxias reservoir, 
Iguazu River basin (PR) 58 pair 17, p, sm - NI Ravedutti and 

Júlio Jr (2001)

Iguazu River basin, 
Capanema (PR) 58 pair 14, p, sm pair 16, q, sm ND Lui et al. (2015)

Tatia jaracatia Iguazu River basin, 
Capanema (PR) 58 pair 28, p, st

pair 4, p, m
pair 18, p, sm
pair 19, q, sm
pair 29, p, sm

NI Lui et al. (2013b)

Tatia neivai Machado River basin, 
Denise (MT) 58 pair 28, p, st

pair 4, p, sm
pair 21, p, sm
pair 22, q, sm

NI Lui et al. (2013b)

Table 1 – Cont.

Material and Methods
Eight specimens (five females and three males) of 

Centromochlus schultzi were collected in the Xingu River, 
Altamira region (PA), Brazil (2º53’49’’S; 51º56’09’’W) 
(Permanent License SISBIO 49379). The specimens were 
transported to the Instituto Nacional de Pesquisas da Amazônia 
(INPA), and deposited in the INPA Fish Zoological Collection 
(INPA/MCTI) (INPA-ICT 059877). The mitotic chromosome 
suspensions were obtained according to Moreira-Filho and 
Bertollo (1990) authorized by the Committee on Ethics in 
Animal Experimentation and Practical Classes of Unioeste 
(Protocol 09/13 – CEEAAP/Unioeste).

The chromosomes were stained with Giemsa 5% to 
classify the morphology according to Levan et al. (1964). 
The constitutive heterochromatin analysis (C-banding) was 
performed following the protocol described by Sumner (1972), 
with modifications by Lui et al. (2012). The detection of 
the Nucleolus Organizing Regions (AgNORs) was realized 
according to Howell and Black (1980).

Fluorescent in situ hybridization (FISH) was performed 
according to Pinkel et al. (1986) and modifications suggested by 
Margarido and Moreira-Filho (2008), with 77% of stringency 
(200ng of each probe, 50% formamide, 10% sulfate dextran, 
2xSSC, pH 7.0 – 7.2, 37 ºC overnight). The (TTAGGG)n 
probe was amplified by PCR (Ijdo et al., 1991) and labeled 
with tetramethyl-rodhamine-5-dUTP (Roche). The 18S rDNA 
probes were obtained through Mini-prep of Prochilodus 
argenteus Spix and Agassiz, 1829 (Hatanaka and Galetti Jr, 
2004), labeled by Bio-Nick Translation Mix (Roche), detected 
by antibiotin-avidin-FITC and amplified with biotinylated anti-
avidin (Roche). The 5S rDNA probes were obtained through 
Mini-prep of Megaleporinus elongatus Valenciennes, 1850 
(Martins and Galetti Jr, 1999), labeled by Dig-Nick Translation 
Mix (Roche) and detected by antidigoxigenin-rhodamine 
(Roche). For the double-FISH with telomeric and 5S rDNA 
probes, the ribosomal 5S DNA was also labeled by Bio-Nick 
Translation Mix (Roche), detected with antibiotin-avidin-FITC 
and amplified with biotinylated anti-avidin.
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Results
All chromosomal data described below were the same 

for both sexes. The diploid number of Centromochlus schultzi 
was 58 chromosomes, organized as 26 metacentric (m), 16 
submetacentric (sm), 8 subtelocentric (st) and 8 acrocentric (a), 
with a fundamental number (FN) of 108 (Figure 1a). Pale sites 
of heterochromatin were observed in the terminal regions of 
most chromosomes. It was also observed a large pericentromeric 
block on the short arm of pair 1m, on the centromere of pair 
3m and on the short arm of pair 24st, which also presented the 
secondary constriction (Figure 1a), and in the short arm of the 
chromosomes 18sm and 29a (Figure 1b). The AgNOR was 
observed on the interstitial region of the short arm of pair 24 

(Figure 1a, box), confirmed by mapping of 18S rDNA (Figure 
2a). The 5S rDNA sites were found on the interstitial region 
of the short arm of pair 4m, terminal region of the short arm 
of the pairs 27a and 28a, and also in synteny with the 18S 
rDNA in the short arm of the pair 24sm (Figure 2a, box).  
FISH with the telomeric probes (TTAGGG)n evidenced sites 
in the terminal position of all chromosomes, in addition to 
non-telomeric sites (ITS – Interstitial Telomeric Site) on the 
short arm of the pair 1m and on the centromere of the pair 3m 
(Figure 2b), coinciding with the location of heterochromatic 
blocks (Figure 1b). Double FISH with telomeric and 5S rDNA 
probes confirmed the lack of synteny between the ITS and the 
ribosomal DNA (Figure S1).

Figure 1 – Centromochlus schultzi karyotype stained with Giemsa (a) and submitted to C-banding stained with propidium iodide (b). Ag-NORs are 
presented in box. There were no chromosomal differences between the sexes.
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Discussion
The few chromosomal data available for Auchenipteridae 

species show a diploid number of 58 chromosomes in most 
species (Table 1). Divergent data have been observed in 
Ageneiosus and Tympanopleura with 56 chromosomes of the 
Ageneiosini tribe (Fenocchio and Bertollo, 1992; Lui et al., 
2013a). This deviation has been attributed to a chromosomal 
fusion event, as evidenced by the presence of ITS in Ageneiosus 
inermis Linnaeus 1766 (Lui et al., 2013a). Another exception 
is found in C. heckelii, which exhibits a diploid number of 46 
chromosomes, the lowest diploid number for Auchenipteridae 
family (Kowalski et al., 2020). These reductions in the 
number of chromosomes between members of Ageneiosini 

and C. heckelii seem to have originated from independent 
fusion events, as evidenced by the large phylogenetic distance 
between them (Kowalski et al., 2020). Meyne et al. (1990) 
presented the first cytogenetic evidence of the presence of 
ITSs in the karyotypes of different vertebrate species by 
identifying large blocks of telomeric sequences, preferably 
located on pericentromeric regions, which have more recently 
been referred to as heterochromatic ITSs (het-ITSs) (Ruiz-
Herrera et al., 2008; Bolzán, 2017). 

ITSs have been described in several fish groups 
(Ocalewicz, 2013; Vicari et al., 2022); for the Auchenipteridae 
family, they have been reported only in A. inermis (Lui 
et al., 2013a), although there are data of hybridization with 

Figure 2 – (a) Centromochlus schultzi karyotype hybridized with 18S rDNA (green signal on pair 24) and 5S rDNA (red signal on pairs 4, 24, 27 e 28) 
probes, counterstained with DAPI. (b) Centromochlus schultzi metaphase hybridized with telomeric sequence (TTAGGG)n. The ITSs are indicated on 
pairs 1 and 3. There were no chromosomal differences between the sexes.
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telomeric probes in some species of Trachelyopterus and a 
sample of Glanidium ribeiroi (Table 1). The occurrence of 
het-ITSs in chromosomes can be explained through a four-step 
mechanism: [1] fusion without loss of telomeric sequence; 
[2] amplification and/or degeneration of these sequences; [3] 
new chromosome rearrangements; [4] breakage or fission 
on the heterochromatic site (Ruiz-Herrera et al., 2008). The 
ITS detected in C. schultzi indicate a slightly more complex 
scenario than that observed in A. inermis, which likely only 
reached the second step, amplification and/or degeneration of 
these sequences. This is suggested by the fact that C. schultzi 
maintains the common 2n for the family and the position of 
the ITS in the chromosomes.

The large centromeric ITS blocks (pairs 1m and 3m) 
observed in C. schultzi can potentially be explained through two 
hypotheses: [1] pericentric inversions followed by telomeric 
sequence amplification (see Rovatsos et al., 2011); and [2] 
occurrence of fusions and fissions in different chromosomes 
during the karyotypic evolution followed by amplification 
events. Both hypotheses may account for the presence of 
the ITSs as well as the maintenance of the diploid number. 
Inversion followed by amplification is an old known event in 
vertebrate species (see Rovatsos et al., 2011), as can be seen 
in snakes (Viana et al., 2016) and rodent species (Rovatsos 
et al., 2011). In the same way, the presence of these sequences 
as components of centromeric satellite DNA is also reported 
in several vertebrate groups (Metcalfe et al., 2004; Nanda 
et al., 2008; Swier et al., 2012; Bruschi et al., 2014; Viana 
et al., 2016), which may have gone through later amplification 
events and originated the ITSs in C. schultzi. We believe that 
the mechanism of origin by inversion is more probable, as it 
is parsimonious in allowing the conservation of the diploid 
number. If this hypothesis represents a real scenario, this 
would be the first report in Auchenipteridae.

On the other hand, the cytogenetic study in C. heckelii 
demonstrated 2n=46 chromosomes, showing a large reduction 
of the diploid number (Kowalski et al., 2020). Alternatively, 
and less probable, it may indicate that C. schultzi would 
have undergone chromosomal fissions and fusions along its 
evolutionary history, leading to the formation of ITS that 
would be sequentially amplified, maintaining the diploid 
number. This hypothesis considers the proposal of 2n=58 as 
a plesiomorphic state in Auchenipteridae, or at least in part 
of the family lineages, as has been deeply investigated and 
discussed in Doradidae (see Takagui et al., 2021).

In Siluriformes, the presence of ITSs as well as diploid 
number variation is not a rare event. Fusions have been 
described in species of some genera, such as Ageneiosus 
(Lui et al., 2013a), Bunocephalus (Ferreira et al., 2016), 
Trachydoras (Baumgärtner et al., 2016), Harttia (Blanco 
et al., 2013, 2017; Deon et al., 2020) and Hemiodontichthys 
(Carvalho et al., 2018). Centric fissions were described in 
Rineloricaria (Rosa et al., 2012), Hypostomus (Traldi et al., 
2013) and some Harttia species (Deon et al., 2020), leading to 
a probable increase of the diploid number. In Auchenipteridae, 
the mechanisms of these genetic reorganizations, specifically 
those we have found in C. schultzi still require further analysis.

The common distribution pattern of heterochromatin in 
Auchenipteridae is terminal pale blocks in most chromosomes 

(e.g., Lui et al., 2013a,b; Machado et al., 2021; Santos et al., 
2021). Centromochlus schultzi exhibited few chromosomal 
pairs with heterochromatic blocks and the coincidence with 
the NORs (Figure 1b) and ITSs (pairs 1m and 3m) sites are 
worthy of note. In Centromochlinae, stronger heterochromatic 
markings can be observed on the W chromosome of C. 
heckelii (Kowalski et al., 2020) and in the submetacentric 
pair 15 of T. neivai (Lui et al., 2013b). In Auchenipterinae 
species, pericentromeric markings were observed only in 
some chromosomes (Machado et al., 2021).

Simple NORs are a common feature among 
Auchenipteridae species, with variation in position (terminal 
or interstitial) and morphology of the chromosomal pair. 
Centromochlus heckelii is the only species of the family with 
multiple NORs (Kowalski et al., 2020). If we consider the 
morphology of the chromosomal pair bearing the NORs and 
the position of the site in comparison with the currently studied 
Centromochlus and Tatia species, it is possible to highlight 
the following aspect: in both Tatia species (T. jaracatia and T. 
neivai) and in C. schultzi the NORs are in subtelocentric pairs, 
while in C. heckelii the NORs are in an acrocentric pair and 
also in the sex chromosome pair (Table 1, Figure 3). This data 
demonstrates a greater similarity for this marker between the 
Tatia species and C. schultzi than between congener species 
in Centromochlus. In Doradidae, the simple NOR is probably 
the ancestral feature for most clades, wherein Platydoras 
hancockii Valenciennes 1840 is the only species in the family 
to present multiple NORs (Takagui et al., 2021).

The ribosomal DNA mapping in Auchenipteridae is 
limited to a few species (Table 1). Despite the 18S rDNA sites 
being conserved in relation to the number of carrier pairs, 
the 5S rDNA is more variable among the studied species of 
Auchenipteridae. Centromochlus schultzi presented the 5S 
rDNA sites in four chromosomal pairs, in which, the site 
in pair 3m may be considered a homeologue to the pairs 
4m of both Tatia species (as reported in Lui et al., 2013b) 
based on the similarities in morphology and location of 
the sites, as well as the phylogenetic proximity within the 
Auchenipteridae family. Although there is similarity in the 
rDNA distribution in the C. schultzi karyotype in comparison 
to the Tatia species, C. schultzi exhibits 18S/5S rDNAs 
synteny detected in pair 24st. Therefore, since the 5S rDNA 
is the most variable chromosomal marker within this fish 
group (Table 1), it consequently holds significant potential 
to elucidate the mechanisms involved in the chromosomal 
evolution of Centromochlinae.

In fish, the standard arrangement of ribosomal sites 
is usually in distinct chromosomes (Martins and Galetti 
Jr, 2001; Gornung, 2013). Studies suggest that since these 
genes are transcribed by different polymerases and the 
processes occur in distinct nuclear territories (Amarasinghe 
and Carlson, 1998), the location of ribosomal genes in 
different chromosomes and positions would be a way to 
limit the occurrence of adverse rearrangements (Dover, 
1986; Martins and Galetti Jr, 1999, 2000; Martins and 
Wasko, 2004; Diniz et al., 2009). However, several groups 
of Neotropical fish carry these ribosomal genes in synteny, 
distant or colocalized. Several recent studies in Siluriformes 
showed the synteny of these genes (e.g., Baumgärtner 
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et al., 2018; Fonseca et al., 2018; Lorscheider et al., 2018; 
Takagui et al., 2019; Terra et al., 2019), being considered as 
a plesiomorphic feature in Tricomycteridae and Loricariidae 
(Ziemniczak et al., 2012), and an ancestral condition in 
the sister group of Auchenipteridae, the Doradidae family 
(Baumgärtner et al., 2018; Takagui et al., 2019).

Considering this recent proposal made for Doradidae 
(Takagui et al., 2019), two hypotheses can be made regarding 
the evolution of this character in the Doradoidea superfamily: 
(1) the 18S/5S rDNA synteny, detected for the first time in 
Auchenipteridae in C. schultzi, comprises a plesiomorphic 
state congruent to the proposal of synteny is ancestral in 
Doradidae; or (2) this synteny in C. schultzi should only be 
interpreted as an apomorphy of the species or a synapomorphy 
of some Centromochlinae species. We believe that the second 
hypothesis is more parsimonious and that the study of additional 
taxa is required to clarify this issue properly.

Considering the proposal by Sarmento-Soares 
and Martins-Pinheiro (2020) for Centromochlinae, both 
Centromochlus species that have been studied cytogenetically 
exhibit signs of Robertsonian rearrangements, as indicated 
by the presence of ITS in C. schultzi and the lowest diploid 
number in C. heckelii; whilst Tatia species do not present any 
signs that Robertsonian rearrangements may have played a role 
during the group’s diversification. However, it is important to 
note that the possibility of this characteristic being exclusive 
to C. heckelii cannot be ruled out. It is noteworthy that the 
only Glanidium species studied so far had the telomeric 
sequence mapping performed and no ITS was detected (Lui 
et al., 2015). Another aspect that differs Centromochlus and 
Tatia considering the current data is the absence of acrocentric 
chromosomes in the clade formed by T. jaracatia and T. 

neivai, which are observed in both Centromochlus species, 
with C. heckelii presenting a larger number of acrocentric 
chromosomes despite having a smaller diploid number. The 
5S/18S rDNA synteny in C. schultzi may be another interesting 
character in this scenario, since this arrangement has not been 
visualized in the Tatia species. It is also worth mentioning that 
the data related to these genes have not yet been generated 
for C. heckelii (Figure 3). However, the distribution pattern 
of NORs in C. schultzi is more similar to Tatia species, since 
C. heckelii presents NORs in an acrocentric pair and on the 
Z and W chromosomes (multiple sites), while both Tatia 
species (T. jaracatia and T. neivai) and C. schultzi present 
NORs in only one subtelocentric pair. Although the Z is also 
a subtelocentric chromosome, it can be clearly distinguished 
from the NOR-bearing chromosomes of Tatia species and 
C. schultzi based on the C-positive heterochromatin blocks 
(Table 1, Figure 3). These characters need further investigation 
and will only be better understood with more Centromochlinae 
taxa being studied.

The cytogenetic data presented here, compared to the 
limited available data for Centromochlinae, demonstrate 
an intriguing level of chromosomal variability among 
Centromochlus and Tatia species (Figure 3), even when 
compared to the data available for other genera and species 
within the family Auchenipteridae. Furthermore, by analyzing 
a single taxon, unprecedented chromosomal information was 
generated for Centromochlinae, which when compared to 
previously published data, makes cytogenetic analyzes even 
more valuable and promising for uncovering the evolutionary 
complexities within Centromochlinae. Therefore, it represents 
a potential tool to support the taxonomy and the allocation of 
species among the genera of Centromochlinae.

Figure 3 – Idiograms representing the karyotypes and locations of heterochromatin, Ag-NORs, 5S rDNA, 18S rDNA, and ITSs in C. schultzi compared 
to C. heckelii (Kowalski et al., 2020), T. neivai and T. jaracatia (Lui et al., 2013b).
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