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Orbital Control of a Satellite Using the 
Gravity of the Moon 
Abstract. In this paper, a study is made in the problem of the orbital control of an Earth´s 
satellite using the gravity of the Moon. The main objective is to study a technique to 
decrease the fuel consumption of a plane change maneuver to be performed in a satellite 
that is in orbit around the Earth. The main idea of this approach is to send the spacecraft 
to the Moon using a single impulsive maneuver, use the gravity field of the Moon to make 
the desired plane change of the trajectory, and then return the spacecraft to its nominal 
semi-major axis and eccentricity using a bi-impulsive Hohmann type maneuver. The 
spacecraft is assumed to start in a circular orbit in the plane of the lunar orbit around the 
Earth and the goal is to put it in a similar orbit that differs from the initial orbit only by the 
inclination. A description of the close approach maneuver is made in the three-
dimensional space. Analytical equations based in the patched conics approximation are 
used to calculate the variation in velocity, angular momentum, energy and inclination of 
the spacecraft that realizes this maneuver. Then, several simulations are made to evaluate 
the savings involved. 
Keywords: Astrodynamics, orbital maneuver, swing-by 
 
 
 

Introduction 

The Swing-By maneuver is a very popular technique used to 
decrease the fuel expenditure in space missions. The standard 
maneuver uses a close approach with a celestial body to modify the 
velocity, energy and angular momentum of the spacecraft. The 
literature shows several applications of the swing-by technique. 
Some of them can be found in Swenson (1992), that studied a 
mission to Neptune using swing-bys to gain energy to accomplish 
the mission; Weinstein (1992), that made a similar study for a 
mission to Pluto; Farquhar and Dunham (1981), that formulated a 
mission to study the Earth’s geomagnetic tail; Farquhar, Muhonen 
and Church (1985), Efron, Yeomans, and Schanzle (1985) and 
Muhonen, Davis, and Dunham (1985), that planned the mission 
ISEE-3/ICE; Flandro (1966), that made the first studies for the 
Voyager mission; Byrnes and D'Amario (1982), that design a 
mission to flyby the comet Halley; D'Amario, Byrnes and Stanford 
(1981 and 1982) that studied multiple flyby for interplanetary 
missions; Marsh and Howell (1988) and Dunham and Davis (1985) 
that design missions with multiple lunar swing-bys; Prado and 
Broucke (1994), that studied the effects of the atmosphere in a 
swing-by trajectory; Striepe and Braun (1991), that used a swing-by 
in Venus to reach Mars; Felipe and Prado (1999 and 2000), that 
studied numerically a swing-by in three dimensions, including the 
effects in the inclination; Prado (1996), that considered the 
possibility of applying an impulse during the passage by the 
periapsis; Prado and Broucke (1995), that classified trajectories 
making a swing-by with the Moon. The most usual approach to 
study this problem is to divide the problem in three phases 
dominated by the “two-body” celestial mechanics. Other models 
used to study this problem are the circular restricted three-body 
problem (like in Broucke (1988), Broucke and Prado (1993), and 
Prado (1993)) and the elliptic restricted three-body problem (Prado 
(1997)).1 

The goal of this paper is to use analytical equations for the 
variations of velocity, energy, angular momentum and inclination to 
find an economical strategy to change the inclination of the orbit of 
a spacecraft by using a close approach with the Moon. The idea is to 
replace the expensive impulse required to make the plane change by 
a series of three impulses: the first one used to send the spacecraft in 
a planar trajectory to the Moon, to use the swing-by to make a free 
plane change and then to use the two remaining impulses to make a 
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Hohmann type planar transfer to change the semi-major axis and 
eccentricity that resulted from the swing-by to the desired nominal 
values. This maneuver was used by Hughes to save the AsiaSat 3 
satellite after a failure with the rocket Proton, that delivered the 
spacecraft in a wrong orbit. Another advantage of this approach is 
that it allows the possibility of studying the Moon, making it a 
double objective mission. This maneuver will be compared with a 
direct single impulsive maneuver. There are other maneuvers that 
consider more impulses, like the bi-elliptic transfer with plane 
change, but they are not considered in this paper. Among the several 
sets of initial conditions that can be used to identify uniquely one 
swing-by trajectory, the following five variables are used (see Fig. 
(1)): Vp, the velocity of the spacecraft at periapsis of the orbit 
around the secondary body; two angles (α and β), that specify the 
direction of the periapsis of the trajectory of the spacecraft around 
the secondary body in a three-dimensional space; rp the distance 
from the spacecraft to the center of the secondary body in the 
moment of the closest approach to this secondary body (periapsis 
distance); γ, the angle between the velocity vector at periapsis and 
the intersection between the horizontal plane that passes by the 

periapsis and the plane perpendicular to the periapsis that holds pV
r

. 

Figure 1 also shows the sequence for this maneuver. It is 
assumed that the system has three bodies: a primary (M1, the Earth) 
and a secondary (M2, the Moon) bodies with finite masses that are 
assumed to be in circular orbits around their common center of mass 
and a third body with negligible mass (the spacecraft) that has its 
motion governed by the two other bodies. The spacecraft leaves the 
point A, passes by the point P (the periapsis of the trajectory of the 
spacecraft in its orbit around M2) and goes to the point B. The points 
A and B are chosen in a such way that the influence of the Moon at 
those two points can be neglected and, consequently, the energy can 
be assumed to remain constant after B and before A (the system 
follows the two-body celestial mechanics). The initial conditions are 
clearly identified in Fig. 1. The distance rp is not to scale, to make 
the figure easier to understand. The result of this maneuver is a 
change in velocity, energy, angular momentum and inclination in 
the Keplerian orbit of the spacecraft around the central body.  
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Figure 1. The swing-by in three dimensions. 

Mathematical model 

To start the description of the mathematical model used in this 
research, we briefly describe the orbital change of a single particle 
subjected to a close approach with the Moon under the “patched-
conics” model. It is assumed that the particle is in an initial orbit 
around the Earth with given semi-major axis (a) and eccentricity (e) 
such that it crosses the orbit of the Moon and that this orbit is 
coplanar with the orbit of the Moon. Then, the swing-by is assumed 
to be planar for the equations developed below. The periapsis 
distance (rp) for the swing-by is assumed to be known. The 
canonical system of units is used, and it implies that: i) The unit of 
distance is the distance between the Earth and the Moon; ii) The 
angular velocity of the motion of the Earth and the Moon is assumed 

to be one; iii) The mass of the Moon is given by µ = 
21

2

mm

m

+
 

(where m1 and m2 are the real masses of the Earth and the Moon, 
respectively) and the mass of the Earth is (1-µ), so the total mass of 
the system is one; iv) The unit of time is defined such that the period 
of the motion of the Earth and the Moon is 2π; v) The gravitational 
constant is one. 

The first step is to obtain the magnitude of the first impulse, the 
one used to send the spacecraft from its initial parking orbit around 
the Earth to the Moon. It is assumed that the initial orbit around the 
Earth is circular with semi-major axis a0 and that the transfer orbit is 
chosen to have semi-major axis a and eccentricity e. The minimum 
value for the semi-major axis that allows a transfer to the Moon is 
given by ( ) 2a1 0+ . In this way, the magnitude of the impulse 

required for this transfer and the eccentricity of the transfer orbit are 
given by: 

 

 
( ) ( ) ( )
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Then, it is possible to calculate the magnitude of the velocity of 

the particle with respect to the Earth in the moment of the crossing 
with the Moon’s orbit (Vi), as well as the true anomaly of that point 
(θ). They come from 
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In those equations the fact that the distance between the Earth 

and the Moon is one was used and we took only the positive value 
of the true anomaly. Next, it is calculated the angle between the 
inertial velocity of the particle and the velocity of the Moon (the 
flight path angle γ), as well as the magnitude of the velocity of the 
particle with respect to the Moon in the moment that the approach 
starts (V∞). They are given by (assuming a counter-clock-wise orbit 
for the particle) 
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Later we can use the fact that the velocity of the Moon around 

the Earth (V2) is one. Figure 2 shows the vector addition used to 
derive the equations. 
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Figure 2. Vector addition during the close-approach. 

 
The angle β shown in Fig. 2 is given by 
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Those information allow us to obtain the turning angle (2δ) of 

the particle around the Moon, from 
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The angle of approach (α) has two values, depending if the 

particle is passing in front or behind Jupiter. These two values will 
be called α1 and α2. They are obtained from δ+β+π=α1  and 

δ−β+π=α 22 . In this paper only the first value is used, because 

the second one does not improve the efficiency of the swing-by 
maneuver. 

Assuming that the spacecraft is coming from the same plane that 
the Moon orbits around the Earth and that the angle β and the 
periapsis distance rp are used as control variables of the maneuver 
(they can be reached with maneuvers that has negligible 
consumption), we can obtain the following relation for the angle γ 

 

( ) ( )[ ]βδ−=γ − tgtgsin 1  (9) 
 
Now it is necessary to have equations for the inertial velocities 

of the spacecraft before (Vi) and after (V0) the close approach. They 
are (Prado, 2000) 
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From those equations, it is possible to obtain expressions for the 

variations in velocity, energy and angular momentum of the 
spacecraft. They are 
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which implies that 
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For the angular momentum (C) the results are: 
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Where )0,0,d(=R  is the position vector of the Moon. Then 
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Using the definition of angular velocity 
d

V2=ω  it is possible 

to get 
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The inclination before the close approach is assumed to be zero 

and the equation for the inclination after the passage is obtained by 
the following set of equations 
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Where C0 is the final angular momentum and io is the final 

inclination. The subscript Z stands for the z-component of the 
angular momentum. Equation 22 is a function of the two variables 
used as the control for the maneuver: the angle β and the periapsis 
distance rp.  The values for the other variables are known: V2 = 1, 
V∞ is given by Eq. 6, δ is given by Eq. 8, γ is given by Eq. 9 and α 
is obtained from δ+β+π=α . After all those considerations and 
also using the values a = 0.51; a0 = 0.017, the final equation for the 
inclination is given by 
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Figure 3 shows the three-dimensional view of this function. The 

function is not defined for all values of the angle β and the periapsis 
distance rp, because the equation has several square roots and 
inverse trigonometric functions that have limits of in their 
definitions. 

 

 
Figure 3. Inclination obtained by the swing-by (in radians) as a function of 
the angle ββββ (in radians, at the right side of the figure) and the periapsis 
distance rp (in canonical units, at the left of the figure). 

 
After that it is necessary to obtain the semi-major axis (af) and 

the eccentricity (ef) of the orbit after the close approach. They are 
given by 

 

( )
( ) 2

0
f

V12

1
a

−µ−
µ−=  (24) 

 

( ) f

2
0

f a1

C
1e

µ−
−=  (25) 

 
With those quantities available, it is possible to obtain the 

impulses required to perform the maneuver in inclination of the 
spacecraft under two approaches:  

i) The standard maneuver of applying one impulse in the 
spacecraft when it passes by the intersection of the two orbits. For 
this maneuver the impulse required is given by (Chobotov, 1996) 
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where ∆i is the inclination desired for the maneuver. 

ii) The proposed maneuver of sending the spacecraft to the 
Moon in a planar maneuver, to use the close approach with the 
Moon to change the inclination of the orbit with no cost, and then 
performing a two-impulsive maneuver to change the semi-major 
axis (af) and the eccentricity (ef) of the orbit after the close 
approach back to their original values a and zero. This bi-impulsive 
maneuver has a cost giving by 
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So, the total velocity increment is given by 

 

321t VVVV ∆+∆+∆=∆  (29) 

Results 

Several simulations were performed with the equations shown 
above. Figure (4) shows the difference in fuel consumption 
( Ht VV ∆−∆ ), measured in canonical units of increment of velocity 

to be applied in the spacecraft (1 canonical unit is equal to 1.023 
km/s) as a function of the angle β, in radians, for three values of the 
periapsis distance 0.0048 (1845 km), 0.0524 (20142 km) and 0.1000 
(38440 km). It is visible that the difference in fuel consumption 
decreases with this variable, what is expected because the effects of 
the swing-by increases when the spacecraft is passing closer to the 
Moon and the inclination change is higher, increasing the savings of 
the maneuver that uses the swing-by. This is confirmed by Fig. 5, 

io 
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which shows the inclination change, in radians, obtained by the 
swing-by maneuver. Another property shown by this figure is that 
the interval of definition of the function increases when the value of 
the periapsis distance increases. In particular, it is interesting to note 
that when the periapsis distance goes from 0.0048 to 0.0524 two 
new regions of savings for the maneuver proposed appears, close to 
β = 1 and β = 5. It means that a very careful analysis of those 
parameters has to be made before making a final decision of a 
practical maneuver. 
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Figure 4. H
�

Vt
�

V −  (canonical units) as a function of ββββ (in radians) for a0 

= 0.017 and a = 0.51. The darkest line represents the results for rp = 0.1, 
the intermediate line represents the results for rp = 0.0524 and the thinnest 
line represents the results for rp = 0.0048. 
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Figure 5. Inclination change (in radians) as a function of ββββ (in radians) for 
a0 = 0.017 and a = 0.51. The darkest line represents the results for rp = 0.1, 
the intermediate line represents the results for rp = 0.0524 and the thinnest 
line represents the results for rp = 0.0048. 

 
Next, the effect of the semi-major axis of the transfer orbit from 

the Earth to the Moon is studied. Figure 6 shows the same difference 
in fuel consumption ( Ht VV ∆−∆ ) as a function of β for a0 = 0.017 

and rp = 0.0048 and considering three values for a: 0.51 (the 
minimum to achieve the orbit of the Moon), 0.56 and 0.61. It is clear 
that the savings of the swing-by maneuver increase when the value 
of this variable increases. Simulations with a larger number of 
values for this variable show that this behavior stays the same until 
the infinity. The reason is that the increase in fuel consumption in 
the first impulse required to obtain a larger value of the semi-major 
axis is small when compared to the gains obtained with a swing-by 
performed with a higher approaching velocity. 
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Figure 6. H
�

Vt
�

V −  (in canonical units) as a function of ββββ (in radians) for 

a0 = 0.017 and rp = 0.0048. The darkest line represents the results for a = 
0.61, the intermediate line represents the results for a = 0.56 and the 
thinnest line represents the results for a = 0.51. 

 
Then, the effects of varying the initial orbit of the spacecraft 

around the Earth are considered. Figure 7 shows the difference in 
fuel consumption ( Ht VV ∆−∆ ) as a function of β for rp = 0.0048 

(1845 km), a = 0.51 (196044 km) and three values for the semi-
major axis of the initial orbit: 0.017 (6535 km), 0.024 (9226 km) 
and 0.030 (11532 km). The results show that the advantages of the 
swing-by maneuver increases when the value of the initial semi-
major axis decreases. This result is expected because the costs of the 
inclination change increase very much when the initial orbit gets 
closer to the Earth. 
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Figure 7. H
�

Vt
�

V −  (in canonical units) as a function of ββββ (in radians) for 

rp = 0.0048 and a = 0.51. The bottom line represents the results for a0 = 
0.017, the intermediate line represents the results for a0 = 0.024 and the 
superior line represents the results for a0 = 0.030. 

Conclusions 

A set of analytical equations is used to describe the swing-by in 
three dimensions and to evaluate the variation in the inclination of 
the orbit of a spacecraft that is passing by the Moon. Then, it is 
possible to compare analytically two schemes to make an orbital 
maneuver that has only an inclination change in the orbit as its goal: 
i) the standard single impulse maneuver that applies the impulse in 
the crossing point between the two orbits and, ii) a three-impulsive 
transfer that applies the first impulse to send the spacecraft to the 
Moon, uses the gravity field of the Moon to perform a zero cost 
inclination change maneuver, and then makes two more impulses to 
accomplish a planar Hohmann transfer from the orbit that is 

Ht VV ∆−∆  

Ht VV ∆−∆  

Ht VV ∆−∆  

Ht VV ∆−∆  
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obtained after the swing-by and the desired final orbit. The results 
showed that in several circumstances this second maneuver can be 
more economical than the standard maneuver, if a proper choice of 
the periapsis position is made. It is also showed that this maneuver 
is more economical if: i) the initial parking orbit is close to the 
Earth, ii) the semi-major axis of the transfer orbit from the Earth to 
the Moon tends to infinity, iii) the periapsis of the close approach to 
the Moon has the smallest possible value. Then, this research can be 
used to design maneuvers for low Earth orbit satellites that requires 
larger inclination changes. 
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