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Orbital Control of a Satellite Using the
Gravity of the Moon

Abstract. In this paper, a study is made in thebfgm of the orbital control of an Earth’s
satellite using the gravity of the Moon. The mabjective is to study a technique to
decrease the fuel consumption of a plane changesnvan to be performed in a satellite
that is in orbit around the Earth. The main ideatlit approach is to send the spacecraft
to the Moon using a single impulsive maneuver,thsegravity field of the Moon to make
the desired plane change of the trajectory, and tteturn the spacecraft to its nominal
semi-major axis and eccentricity using a bi-impegsiHohmann type maneuver. The
spacecraft is assumed to start in a circular oihithe plane of the lunar orbit around the
Earth and the goal is to put it in a similar orltitat differs from the initial orbit only by the
inclination. A description of the close approach meaver is made in the three-
dimensional space. Analytical equations based & ghtched conics approximation are
used to calculate the variation in velocity, angutaomentum, energy and inclination of
the spacecraft that realizes this maneuver. Theveral simulations are made to evaluate

the savings involved.
Keywords: Astrodynamics, orbital maneuver, swing-by

Introduction

The Swing-By maneuver is a very popular technigeeduto
decrease the fuel expenditure in space missiong. Standard
maneuver uses a close approach with a celestigl toochodify the
velocity, energy and angular momentum of the spaftecThe
literature shows several applications of the swiggtechnique.
Some of them can be found in Swenson (1992), thatied a
mission to Neptune using swing-bys to gain enemwadcomplish
the mission; Weinstein (1992), that made a simdardy for a
mission to Pluto; Farquhar and Dunham (1981), fbahulated a
mission to study the Earth’s geomagnetic tail; Bhay, Muhonen
and Church (1985), Efron, Yeomans, and SchanzI&5/1%nd
Muhonen, Davis, and Dunham (1985), that planned rnfi&sion
ISEE-3/ICE; Flandro (1966), that made the firstd&s for the
Voyager mission; Byrnes and D'Amario (1982), thasign a
mission to flyby the comet Halley; D'Amario, Byrnaed Stanford
(1981 and 1982) that studied multiple flyby for a@rglanetary
missions; Marsh and Howell (1988) and Dunham andiD@ 985)
that design missions with multiple lunar swing-byRrado and
Broucke (1994), that studied the effects of the csjphere in a
swing-by trajectory; Striepe and Braun (1991), tedd a swing-by
in Venus to reach Mars; Felipe and Prado (1999 20@D), that
studied numerically a swing-by in three dimensiansjuding the
effects in the inclination; Prado (1996), that ddesed the
possibility of applying an impulse during the pagsaby the
periapsis; Prado and Broucke (1995), that claskifimjectories
making a swing-by with the Moon. The most usual rapph to
study this problem is to divide the problem in #hrphases
dominated by the “two-body” celestial mechanicsh&t models
used to study this problem are the circular resticthree-body

Hohmann type planar transfer to change the senmmejis and
eccentricity that resulted from the swing-by to ttesired nominal
values. This maneuver was used by Hughes to savAdfaSat 3
satellite after a failure with the rocket Protohatt delivered the
spacecraft in a wrong orbit. Another advantagehdf approach is
that it allows the possibility of studying the Mgomaking it a
double objective mission. This maneuver will be paned with a
direct single impulsive maneuver. There are othaneavers that
consider more impulses, like the bi-elliptic trarsfwith plane
change, but they are not considered in this p#&genng the several
sets of initial conditions that can be used to ifigruniquely one
swing-by trajectory, the following five variableseaused (see Fig.
(1)): V,, the velocity of the spacecraft at periapsis & trbit
around the secondary body; two anglesad ), that specify the
direction of the periapsis of the trajectory of $macecraft around
the secondary body in a three-dimensional spacéher distance
from the spacecraft to the center of the secondenyy in the
moment of the closest approach to this secondady Kperiapsis
distance)yy, the angle between the velocity vector at persapsid
the intersection between the horizontal plane fhegses by the

periapsis and the plane perpendicular to the peEddpat holds\7p.

Figure 1 also shows the sequence for this maneuves
assumed that the system has three bodies: a pr{iMarghe Earth)
and a secondary (Mthe Moon) bodies with finite masses that are
assumed to be in circular orbits around their comeenter of mass
and a third body with negligible mass (the spadgcthat has its
motion governed by the two other bodies. The spafideaves the
point A, passes by the point P (the periapsis efttajectory of the
spacecraft in its orbit around,)Mand goes to the point B. The points
A and B are chosen in a such way that the influeficke Moon at
those two points can be neglected and, consequémtiyenergy can

problem (like inBroucke (1988), Broucke and Prado (1993), anfle sssumed to remain constant after B and befofthe system

Prado (1993)) and the elliptic restricted threeybpdoblem (Prado
(1997)).

The goal of this paper is to use analytical equatifor the
variations of velocity, energy, angular momenturd arclination to
find an economical strategy to change the inclomatf the orbit of
a spacecraft by using a close approach with thenMobe idea is to
replace the expensive impulse required to makeldree change by
a series of three impulses: the first one use@nad $he spacecraft in
a planar trajectory to the Moon, to use the swipgdomake a free
plane change and then to use the two remaininglgepuo make a
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follows the two-body celestial mechanics). Theidhitonditions are
clearly identified in Fig. 1. The distancgis not to scale, to make
the figure easier to understand. The result of thémeuver is a
change in velocity, energy, angular momentum amination in
the Keplerian orbit of the spacecraft around there¢body.
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e=1-— 2

Then, it is possible to calculate the magnitudéhefvelocity of
the particle with respect to the Earth in the monm@#rthe crossing
with the Moon'’s orbit (V), as well as the true anomaly of that point
(6). They come from

Vv, = (1—p)(2—1) ®)

a
0= cos‘l{l (a(l— e?) - l)} @)
e

In those equations the fact that the distance letwiee Earth
and the Moon is one was used and we took only dtiséipe value
of the true anomaly. Next, it is calculated the langetween the
inertial velocity of the particle and the velocity the Moon (the
flight path angley), as well as the magnitude of the velocity of the
particle with respect to the Moon in the moment th& approach
starts (\,). They are given by (assuming a counter-clock-weigst
for the particle)

1| esinB
=tan 7| — 5
Y L+ ecose} ®)
Figure 1. The swing-by in three dimensions.
V, = \/Vi2 +VZ -2V, V, cosy (6)

M athematical model

To start the description of the mathematical madsld in this Later we can use the fact that the velocity of Mw@on around
research, we briefly describe the orbital changa eingle particle the Earth (V) is one. Figure 2 shows the vector addition uged t
subjected to a close approach with the Moon unider‘patched- derive the equations.
conics” model. It is assumed that the particlenisan initial orbit
around the Earth with given semi-major axis (a) aockentricity (e)
such that it crosses the orbit of the Moon and that orbit is
coplanar with the orbit of the Moon. Then, the sgvby is assumed
to be planar for the equations developed below. pheapsis
distance () for the swing-by is assumed to be known. The
canonical system of units is used, and it implrest:ti) The unit of
distance is the distance between the Earth anditen; ii) The
angular velocity of the motion of the Earth and kheon is assumed

my
my +m,
(where m and m are the real masses of the Earth and the Moon,
respectively) and the mass of the Earth igl)1so the total mass of
the system is one; iv) The unit of time is defirsegh that the period
of the motion of the Earth and the Moon 1§ 2) The gravitational
constant is one.

The first step is to obtain the magnitude of thstfimpulse, the
one used to send the spacecraft from its initigkipg orbit around
the Earth to the Moon. It is assumed that theahirbit around the The angleg8 shown in Fig. 2 is given by
Earth is circular with semi-major axig and that the transfer orbit is
chosen to have semi-major axis a and eccentricifthe minimum

to be one; iii) The mass of the Moon is given |by

Figure 2. Vector addition during the close-approach.

2 _\y2 _\-
value for the semi-major axis that allows a transfethe Moon is B=cos?|- Vi"—V3 — Vo @)
given by (1+ ao)/2. In this way, the magnitude of the impulse 2V, Vg,
required for this transfer and the eccentricityhef transfer orbit are
given by: Those information allow us to obtain the turningylen(2) of

the particle around the Moon, from
AV, :Jz(l_u)_(l_“) _J(l_u) (1)
ag a ag
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2 . . . \Y
6:sin_l{]/1+ Ve J ®) Co=RxVy=dV,, (O,smBsmé—cosBcosESsmy,V—j<> + (16)

H + cosa cosd cosy — cog3sina sind — cosdsina sinfsiny)

The angle of approachof has two values, depending if the  WhereR = (d,0,0) is the position vector of the Moon. Then
particle is passing in front or behind Jupiter. S&éwo values will
be calleda; and a,. They are obtained fronm; =i+ +d& and AC =Cq - C; = 2dV,, sin5(0,sinB, - cosBsina) (17)
o, =2m+p-4. In this paper only the first value is used, beseau
the second one does not improve the efficiencyhef gwing-by and
maneuver.

Assuming that the spacecraft is coming from theesplane that
the Moon orbits around the Earth and that the afglend the
periapsis distance, fare used as control variables of the maneuver

|ac] = 2dv., sint’)(cos2 Bsin?a +sin? B)% (18)

(they can be reached with maneuvers that has iieglig  yging the definition of angular velocitw=ﬁ it is possible
consumption), we can obtain the following relationthe angley d
to get
-
=sin |- tgldt 9
Y [ g( )Q(B)] @) WAC, =-2V,V,, cossinasind = AE (19)

Now it is necessary to have equations for the imevelocities S )
of the spacecraft befor®j) and after Y,) the close approach. They ~ The inclination before the close approach is assutmde zero
are (Prado, 2000) and the equation for the inclination after the pgssis obtained by

the following set of equations
V, =V, +V, =V, sind(cosB cosa, cospsina,sinf) +
+V,, cosd(-sinysinfcosa — cosysina, - sinysinpsina + (10) (sinBsind - coBcosdsiny)? + Vel
+ cosycosa, cosBsiny) + (0,V, 0) \Co\ =dV,| (v 2
+(V—2+cowcosﬁcow—cosBsinasinES—cos&sinasin[}sinyj

J

(20)

V, =V, +V, =-V_ sind(cosBcosa,cosBsina,sinf) +
V. cosd(-sinysinpcosa - cosysina, - sinysinpsina +  (11) v
Coz = de,[\/—2 +cosu cosdcosy — coPBsina sind - cosdsina sinBsiny] (21)

o

+ cosycosa, cosfsiny) + (0,V,,0)

From those equations, it is possible to obtain esgions for the c 1
variations in velocity, energy and angular momentofn the — Codio)= é"z =
spacecraft. They are ©

I sinBsind — cosBcosdsiny

AV =V -V, = -2V, sind(cosa cosB, cosBsina,sinf)  (12) \\//—2 +COSN COSBCOSy — cosPsina sind — cosdsina sinBsiny
which implies that (22)
_ _ . Where C, is the final angular momentum ang is the final
AV =[aV| = 2V, sind (13) inclination. The subscript Z stands for the z-comgm of the
angular momentum. Equation 22 is a function oftthe variables
_ 1( 2 2)_ _ . . used as the control for the maneuver: the afghed the periapsis
AE = P Vo —Vi")= —2V2V,, cosBsinasind 14)  gistance J The values for the other variables are knowp=\1,
V., is given by Eq. 69 is given by Eq. 8y is given by Eq. 9 and
For the angular momentur@) the results are: is obtained froma =1+ +& . After all those considerations and
also using the values a = 0.53;=0.017, the final equation for the
C, =RxV, =dV,, (0,- sinBsin3 + cosp cosésiny,\\//—z 15) inclination is given by

o

+ cosa cosd cosy + cosBsina sind — cosdsina sinfsiny)
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Tan[p)]

1
1+ 55.807rpﬂ

i,=Cos’||1-
1+ 55807,

1+55807,

2
+08221- 1 Co43234+sin? 1- Tan'[g]
[t+55807, ) 1+55807T, ] 1
(1+55807 | 1-

O.822:05{[3]Sir{3.234+ Sin'll:

1+55807,

1+55807r, f
ﬂ 0.82$in[[3]8ir{3.234+ Sin'll: !

1+55807,

s

+

{L+s5807 F 1+55807,

N

2.708in?[g] +[ -

1+55807,

2
+0822[1- 1 Cog3234+sin T 1- Tar'[p]
[L+55807, ) 1+ 55807, ! 1
(L+55807, | 1-

Figure 3 shows the three-dimensional view of thisction. The

L +55807, }

(23)

i) The standard maneuver of applying one impulsethia

function is not defined for all values of the angland the periapsis spacecraft when it passes by the intersectionefw orbits. For
distance 4, because the equation has several square roots atfls maneuver the impulse required is given by {&hov, 1996)

inverse trigonometric functions that have limits @i their
definitions.

Figure 3. Inclination obtained by the swing-by (in radians) as a function of
the angle B (in radians, at the right side of the figure) and the periapsis
distance rp (in canonical units, at the left of the figure).

After that it is necessary to obtain the semi-maixis () and

the eccentricity (@ of the orbit after the close approach. They are

given by

(L-u)

24
2-p)-V§ e

as =

2
1- 0

il— uiaf

With those quantities available, it is possible diotain the
impulses required to perform the maneuver in imtlon of the
spacecraft under two approaches:

& = (25)
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. (Aij
sSinf —
ag 2

wherei is the inclination desired for the maneuver.

ii) The proposed maneuver of sending the spacetoathe
Moon in a planar maneuver, to use the close appreath the
Moon to change the inclination of the orbit with cast, and then
performing a two-impulsive maneuver to change thmisnajor
axis (@) and the eccentricity (e of the orbit after the close
approach back to their original values a and ZEnis bi-impulsive
maneuver has a cost giving by

AV =2 (26)

(27)
v, <[ 8)
ag a a
+ +
where a; = M .
2
So, the total velocity increment is given by

AV, = AV, + AV, + AV, (29)

Results

Several simulations were performed with the equatishown
above. Figure (4) shows the difference in fuel comgtion
(AV; - AVy ), measured in canonical units of increment of @igyo

to be applied in the spacecraft (1 canonical wieéqual to 1.023
km/s) as a function of the andlein radians, for three values of the
periapsis distance 0.0048 (1845 km), 0.0524 (2&iRand 0.1000
(38440 km). It is visible that the difference inefuconsumption
decreases with this variable, what is expectedusecthe effects of
the swing-by increases when the spacecraft is m@sddser to the
Moon and the inclination change is higher, incregs$he savings of
the maneuver that uses the swing-by. This is coefir by Fig. 5,
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which shows the inclination change, in radians,amgd by the
swing-by maneuver. Another property shown by tlgsire is that
the interval of definition of the function increasehen the value of
the periapsis distance increases. In particuls,iitteresting to note
that when the periapsis distance goes from 0.0048.0524 two
new regions of savings for the maneuver proposeeap, close to

B = 1 andp = 5. It means that a very careful analysis of ¢hos 4|

parameters has to be made before making a finasidecof a
practical maneuver.

AV, -AV,,
AV, - AV,

5

4

3

2

1

VYA 5 6

Figure 4. Av, - AV (canonical units) as a function of B (in radians) for ao

=0.017 and a = 0.51. The darkest line represents the results for r, = 0.1,
the intermediate line represents the results for r, = 0.0524 and the thinnest
line represents the results for r, = 0.0048.
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0.8+

0.6

0.4+

0.2+
2 3 4 5 6

Figure 5. Inclination change (in radians) as a function of B (in radians) for
ap = 0.017 and a = 0.51. The darkest line represents the results for r, = 0.1,
the intermediate line represents the results for r, = 0.0524 and the thinnest
line represents the results for r, = 0.0048.

Next, the effect of the semi-major axis of the sfen orbit from
the Earth to the Moon is studied. Figure 6 showesstime difference
in fuel consumption 4V, —AVy ) as a function op for & = 0.017

and p = 0.0048 and considering three values for a: Qthe

minimum to achieve the orbit of the Moon), 0.56 @@ll. It is clear
that the savings of the swing-by maneuver incredsen the value
of this variable increases. Simulations with a éarguumber of
values for this variable show that this behaviaystthe same until
the infinity. The reason is that the increase iel ftonsumption in
the first impulse required to obtain a larger vatdieghe semi-major
axis is small when compared to the gains obtainid avswing-by

performed with a higher approaching velocity.
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Figure 6. Av, - Avy (in canonical units) as a function of B (in radians) for

ap = 0.017 and r, = 0.0048. The darkest line represents the results for a =
0.61, the intermediate line represents the results for a = 0.56 and the
thinnest line represents the results for a = 0.51.

Then, the effects of varying the initial orbit dfet spacecraft
around the Earth are considered. Figure 7 showglifference in
fuel consumption AV, —AV,;) as a function off for r, = 0.0048

(1845 km), a = 0.51 (196044 km) and three valuesttie semi-

major axis of the initial orbit: 0.017 (6535 km).,024 (9226 km)

and 0.030 (11532 km). The results show that thewridiges of the
swing-by maneuver increases when the value of nit&li semi-

major axis decreases. This result is expected bedhe costs of the
inclination change increase very much when theainirbit gets

closer to the Earth.

AV, - AV

1 2 4 5

Figure 7. Av, - Avy (in canonical units) as a function of B (in radians) for

ro = 0.0048 and a = 0.51. The bottom line represents the results for ap =
0.017, the intermediate line represents the results for ap = 0.024 and the
superior line represents the results for a; = 0.030.

Conclusions

A set of analytical equations is used to desctifgestving-by in
three dimensions and to evaluate the variatiorhénitclination of
the orbit of a spacecraft that is passing by theoMorhen, it is
possible to compare analytically two schemes to eanak orbital
maneuver that has only an inclination change irothé as its goal:
i) the standard single impulse maneuver that applie impulse in
the crossing point between the two orbits anda ithree-impulsive
transfer that applies the first impulse to send ghacecraft to the
Moon, uses the gravity field of the Moon to perfoamzero cost
inclination change maneuver, and then makes twe rimpulses to
accomplish a planar Hohmann transfer from the othat is
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obtained after the swing-by and the desired fimhitoThe results

showed that in several circumstances this seconmemar can be

more economical than the standard maneuver, ibpgprchoice of

the periapsis position is made. It is also shovired this maneuver
is more economical if: i) the initial parking orbig close to the

Earth, ii) the semi-major axis of the transfer bfbdim the Earth to

the Moon tends to infinity, iii) the periapsis tifet close approach to
the Moon has the smallest possible value. Thes rédsearch can be
used to design maneuvers for low Earth orbit segelthat requires
larger inclination changes.
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