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Instituto Nacional de Pesquisas Espaciais - INPE This paper is concerned with trajectories to tramsd spacecraft between the Lagrangian
) Caixa Postal 515 points of the Sun-Earth system and the primariég Dagrangian points have important
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and very good candidates to locate a satellite ospace station. The planar circular
restricted three-body problem in two dimensionsised as the model for the Sun-Earth
system, and Lamaitre regularization is used to é&wngularities during the numerical
integration required to solve the Lambert's thremhp problem. The results show families
of transfer orbits, parameterized by the transfieret
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and Mp, respectively) and the mass obN& (141), so the total mass

Introduction of the system is one; iv) The unit of time is definsuch that the
) . ) period of the motion of the primaries ist2v) The gravitational
The well-known Lagrangian points that appear in f@nar .ongtant is one. Table 1 shows the values for thesameters for

restricted three-body problem (Szebehely, 1967verg important e gun(M)-Earth(Mp) system, that is the case considered in this
for astronautical applications. They are five psiot equilibrium in

the equations of motion, what means that a partidated at one of paper.

those points with zero velocity will remain theraléfinitely. Their

locations are shown in Fig. 1. The collinear poiftsg, Ly and Lg) Table 1. Canonical system of units.
are always unstable and the triangular poinisdhd Ls) are stable Unit of distance 149,596,000 km
in the present case studied (Sun-Earth system)y @he all very Unit of time 58.13 days
good points to locate a space-station, since tlegyire a small Unit of velocity 29.8 km/s
amount ofAV (and fuel) for station-keeping. The triangularinis

are specially good for this purpose, since theystable equilibrium Then, the equations of motion are:

points.

In this paper, the planar restricted three-bodyblem is L v 0Q
regularized (using Lamaitre regularization) and lkiored with X-2y = T ox  ox
numerical integration and gradient methods to stieetwo point oV 90
boundary value problem (the Lambert's three-bodyplem). This J+2Xk=y-—=—— 1)
combination is applied to the search of familiestrahsfer orbits dy o0y

between the Lagrangian points and the primarieshénSun-Earth
system, with the minimum possible energy. This paje a WhereQ is the pseudo-potential given by:
continuation of two previous papers that studiezhdfers in the
Earth-Moon system: Broucke (1979), that studiedchsfex orbits o =i(x2+y2)+ (L-p) + B @)
between the Lagrangian points and the Moon andoRiE@DP6), that 2 I Iy
studied transfer orbits between the Lagrangiantpa@ind the Earth.
This system of equations has no analytical solstioand
The Planar Circular Restricted Three-Body Problem numerical integration is required to solve the fgob This system
has an invariant called Jacobi integral. There raeny ways to
The model used in all phases of this paper is thi-kmown  define the Jacobi integral (see Szebehely, 19674#48). In this
planar circular restricted three-body problem. Timiedel assumes paper the definition shown in Broucke (1979) iscusender this
that two main bodies (land Mp) are orbiting their common center version, the Jacobi integral is given by:
of mass in circular Keplerian orbits and a thirddpdqM3), with
negligible mass, is orbiting these two primariese Thotion of M E= i(x2+y2)-Q(x,y):Const ®)
is supposed to stay in the plane of the motion gfavid Mp and it 2

is affected by both primaries, but it does not efftheir motion
(Szebehely, 1967). The canonical system of unitasisd, and it
implies that: i) The unit of distance (l) is thesdince between M

and Mp; ii) The angular velocityd) of the motion of M and M is

The three-body problem has also two important pitese
1) The existence of five equilibrium points (callethe
Lagrangian points {, L2, L3, L4 and Ls, as seen in Fig. 1), that are

assumed to be one; iii) The mass of the smallenay (Mp) is  the points where% = oQ = 0. It corresponds to say that a
given by = — 2 (where m and np are the real masses offM particle in this point with zero initial velocitemains in its position
Lt m, indefinitely. The first three (1, Lo, L3) are called collinear points
(because they are in the "X" axis) and they ar¢abiesfor any value

of p. The last two (g and Ls) are called triangular points (because
Paper accepted October, 2005. Technical Editor: Atila P. Silva Freire. they form an equilateral triangle with 1I\/land I\/Q) and they are
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stable forp< 0.03852, what means that they are stable in thenly one singularity is eliminated at a time is |edl "local

present case (Sun-Earth), since 0.0000030359. Their locations regularization”.

and potential energy are shown in Table 2.

A

Fixed
System

[

Ls

Figure 1. Geometry of the problem of three bodies.

Table 2. Position and potential energy of the five Lagrangian points.

X y Eo
L1 -0.9899909 0 -1.500448%
Lo -1.0100702 0 -1.5001481
L3 1.0000013 0 -1.500001%
Lg -0.4999969 +0.8660254|  -1.49999%4
Ls -0.4999969 -0.8660254 -1.4999984

2) The curves of zero velocity, that are
expression:

curvesegivy the

Eo=-Q(x.y) (3)
that is the equivalent of equation (2) in the spleciase where
x=y=0. They are important, because they determine fddsid
and allowed regions of motion for Mbased in its initial conditions.
More details about these and other properties ef tthree-body
problem can be found in Szebehely (1967) and Bre(tR79).

Lamaitre Regularization

The equations of motion given by Egs. (1) are nitable for
numerical integration in trajectories passing nesre of the
primaries. The reason is that the positions of bmtimaries are
singularities in the potential V (since or rp goes to zero, or near
zero) and the accuracy of the numerical integrasaaffected every
time this situation occurs. The solution for thisigem is the use of
regularization, that consists in a substitutiontloé variables for
position (x-y) and time (t) by another set of vates (*, w2, 1),
such that the singularities are eliminated in theses variables.
Several transformations with this goal are avadahlthe literature
(Szebehely, 1967, chapter 3), like Thiele-Burraamiitre and
Birkhoff. They are called "global regularizatioriy emphasize that
both singularities are eliminated at the same tilfee case where
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For the present research the Lagisl
regularization is used. To perform the transfororait is necessary
first to define a new complex variable q 3 4 iq, (i is the
imaginary unit), with gand g given by:
o, =x+1/2-y, a, =y 4)
Now, in terms of g, the transformation involved liamaitre
regularization is given by:

1 1
=f(w)==| ' +—= 5
q="f(w) 4(co wzj ®)
for the old variables for position (x-y) and:
2
at 2 |0
—=|f'(w) = 6
rRIAC (6)

of

where f ') denotesg—f , for the time.
w

In the new variables the equation of motion ofdhstem is:

W' +2if '(w)|2(.o'= grad,Q’ (5)

wherew = w1 + iwp is the new complex variable for positions,
andw" denotes first and second derivativesuoWwith respect to the
.0Q"

regularized timer, graq,Q" represents o +i andQ” is
0w, 00,
the transformed pseudo-potential given by:
. C 2
= Q-=||f (o 6
a=(a-Z ) ) ©

where C =u(1-u) - 2E.

Equations (5) in complex variables can be separatetivo
second order equations in the real variables and wp and
organized in the standard first order form, thatnisre suitable for
numerical integration. The final form, after defigithe regularized
velocity componentexg andwg asw:' = Wz andw,' = Wy, is:

W, = w,
W, =W,
w, = 20,|f ()" +%
o
w, = —2w,[f (o) + gw @
2

Another necessary set of equations is the one o vebocity
components from one set of variables to anothesyHhe:

'

ql - 2 (.03
()
6=, ®)
()
ABCM
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The Mirror Image Theorem Numerical Results

The mirror image theorem (Miele, 1960) is an imapttand The Lambert's three-body problem between the prasaand
helpful property of the planar circular restrictbdee-body problem. the Lagrangian points is solved for several valogshe time of
It says that: "In the rotating coordinate systear, dach trajectory flight. Since the regularized system is used twesahis problem,
defined by x(t), y(t), X(t), y(t) that is found, there is a symmetric (inthere is no need to specify the final position of &k lying in an
relation to the "x" axis) trajectory defined by primary's parking orbit (to avoid the singularitf)hen, to make a
X(-1), - Y(-t), - X(-t), - y(-t) ". The proof is omitted in this paper, but comparison with previous papers (Broucke, 1979 Rratio, 1996)

the reader can verify its veracity by substitutihgse two solutions
in the equations of motion. With this property,réhés no need to
calculate the returning trajectories from the priem to the
Lagrangian points. For the collinear points, thensetric of the
trajectory that goes from the Lagrangian pointhe Earth is the
trajectory that goes from the Earth to the Lagrangioint. For the
triangular points the situation is a little morerguex, since these
points are not in the "X" axis. The symmetric of tihajectory that
goes from lg to the Earth is the trajectory that goes from Eagth
to Ls and the symmetric of the trajectory that goes filogto the

Earth is the trajectory that goes from the Earth4o

The Lambert's Three-Body Problem

The problem that is considered in the present papedhe
problem of finding trajectories to travel betwedre tLagrangian
points and the primaries. Since the rotating cowigi system is
used and all the primaries and the Lagrangian pane in fixed
known positions, this problem can be formulated as:

"Find an orbit (in the three-body problem contekigt makes a
spacecraft to leave a given point A and goes tdh@naiven point
B". That is the famous TPBVP (two point boundarjuegproblem).
There are many orbits that satisfy this requiremant the way
used in this paper to find families of solutionsdsspecify a time of
flight for the transfer. Then, the problem becontles Lambert's
three-body problem, that can be formulated as:

"Find an orbit (in the three-body problem contekigt makes a
spacecraft to leave a given point A and goes tahanaiven point
B, arriving there after a specified time of flighThen, by varying
the specified time of flight it is possible to firdwhole family of
transfer orbits and study them in terms of \érequired, energy,
initial flight path angle, etc.

The Solution of the TPBVP

The restricted three-body problem is a problem with
analytical solutions, so numerical integration he tonly possible
approach to solve it. To solve the TPBVP in theulagzed
variables the following steps are used:

i) Guess a initial velocityV j, so together with the initial
prescribed positiorl j the complete initial state is known;

i) Guess a final regularized timg and integrate the
regularized equations of motion frap = O until ty;

i) Check the final positionl § obtained from the numerical

integration with the prescribed final position ahe final real time
with the specified time of flight. If there is agraement (difference
less than a specified error allowed) the soluti®rfound and the
process can stop here. If there is no agreemenhcaement in the

initial guessed velocity/ j and in the guessed final regularized time

is made and the process goes back to step i).

The method used to find the increment in the guksaeables
is the standard gradient method, as describedfererece 7. The
routines available in this reference are also uséhis research with
minor modifications.
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the primary's center is used as the final positiwrM3. The results
are organized in plots of the energy (as given by 3 and the
initial flight path angle in the rotating frame &ust the time of

flight. The definition of the angle is such thaethkero is in the "Xx"
axis, (pointing to the positive direction) and ftcieases in the
counter-clock-wise sense. Plots of the trajectorythe rotating

system are also included. This problem, as welihasLambert’s

original version, has two solutions for a givemsfer time: one in
the counter-clock-wise direction and one in theklwise direction

in the inertial frame. In this paper, emphasisii®g in finding the

families with the smallest possible energy (andoeiy at the

Lagrangian points, as a consequence of Eq. 3puwth many other
families do exist.

Trajectories from L ;

In the nomenclature used in this papen, is the collinear

Lagrangian point that exists between the Sun aedE#rth. It is
located about 1,496,867 km from the Earth. Figursh@ws the
results for the least expensive family of transferthe Sun that was
found in this research and Fig. 3 shows the trasdfe the Earth.
The local minimum for a transfer to the Sun ocdarsa time of
flight close to 64 days, requires an energy E 8101 and has a
initial flight path angle of 90 deg. In terms ofleety increment
(AV) it means an impulse of 29.5 km/s (0.9903 caranimits)
applied at ly. For a transfer to the Earth, the minimum occorsaf
time of flight close to 35 days, requires an endggy -1.5004 and
has a initial flight path angle of 248 deg. In termf velocity
increment 4AV) it means an impulse of 0.298 km/s (0.01 candnica
units) applied at §.

0.5

| Motion

L1 Sun

\
-0.6 -0.4 -0.2

X

Figure 2. Transfers from L, to the Sun.
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Figure 2. (Continued).
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Figure 3. Transfers from L, to the Earth.
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Figure 3. (Continued).

Trajectories from L,

In the nomenclature used in this papep, is the collinear
Lagrangian point that exists behind the Earthsliocated about
1,506,915 km from the Earth. Fig. 4 shows the tedolr the least
expensive family of transfers to the Sun that wasnél in this
research and Fig. 5 shows the transfers to thehEatie local
minimum for a transfer to the Sun occurs for a tohéight close to
64 days, requires an energy E =-0.9896 and haiial flight path
angle of 88 deg. In terms of velocity incremeAV) it means an
impulse of 30.1 km/s (1.0104 canonical units) aplat ly. For a
transfer to the Earth, the minimum occurs for aetiof flight close
to 35 days, requires an energy E = -1.5004 andahadgial flight
path angle of 67 deg. In terms of velocity increm@y) it means
an impulse of m/s (canonical units) applied @t L
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Figure 4. Transfers from L, to the Sun.
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Figure 5. Transfers from L, to the Earth.

Trajectories from L 3

In the nomenclature used in this papep is the collinear

Lagrangian point that exists on the opposite sidéhn® Sun (when
compared to the position of the Earth). It is ledatabout
149,595,740 km from the Sun, what means that @nost at the
same distance that the Earth is, but in the oppasiection. Figure
6 shows the results for the least expensive faofiyansfers to the
Sun that was found in this research and Fig. 7 shtbe transfers to
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the Earth. The local minimum for a transfer to 8wn occurs for a
time of flight close to 70 days, requires an endfgy -0.9965 and
has a initial flight path angle of 275 deg. In termf velocity
increment AV) it means an impulse of 29.9 km/s (1.0035 carainic
units) applied at k.. For a transfer to the Earth, the minimum occurs
for a time of flight close to 169 days, requiresesergy E = -1.4390
and has a initial flight path angle of 253 degténms of velocity
increment AV) it means an impulse of 10.4 km/s (0.3493 carainic

units) applied at f..

0.1
0_0; Sun L3
-0.1-
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Y : .
Motion
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220
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Figure 6. Transfers from L3 to the Sun.
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Figure 7. Transfers from Lj to the Earth.

Trajectories from L4

L4 is one of the triangular Lagrangian points. ltsalion is the

third vertice of the equilateral triangle formedttwthe Sun and the
Earth, in the semi-plane of positive y. In the préscase under
study (Sun-Earth system) it is a stable equilibripmint. It is a very
important point, because it is an excellent locatfor a space
station. Its stability property makes the fuel rieedh for station-
keeping almost zero. Figure 8 shows the results tfier least
expensive family of transfers to the Sun that wasnél in this
research and Fig. 9 shows the transfers to thenhEdte local

ABCM



Orbital Maneuvers Between the Lagrangian Points and the ...

minimum for a transfer to the Sun occurs for a tohé#ight close to
64 days, requires an energy E = -0.9999 and haisia flight path
angle of 29 deg. In terms of velocity incremefvV) it means an
impulse of 29.8 km/s (1.0001 canonical units) agplat ly. For a

transfer to the Earth, the minimum occurs for aetiofi flight close
to 174 days, requires an energy E = -1.4790 andhhiagial flight
path angle of 313 deg. In terms of velocity incratr@V) it means

an impulse of 6.1 km/s (0.2049 canonical units)iadpat L.
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Figure 8. Transfers from L, to the Sun.
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Trajectories from Lg

Lg is the other triangular Lagrangian point. Its tima is the
point symmetric to k (in relation to the "x" axis), the third vertice
of the equilateral triangle formed with the Eartidahe Moon, in
the semi-plane of negative y. It is also stable andry important
point, for the same reasons thaf is an important point. Figure 10
shows the results for the least expensive familyrarisfers to the
Sun that was found in this research and Fig. 1ivshhe transfers
to the Earth. The local minimum for a transfertte Sun occurs for
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a time of flight close to 64 days, requires an gné = -0.9999 and
has a initial flight path angle of 149 deg. In terrof velocity

0.2
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increment AV) it means an impulse of 29.8 km/s (1.0001 carainic 0.0 Earth
units) applied at k.. For a transfer to the Earth, the minimum occurs i
for a time of flight close to 291 days, requiresesergy E = -1.4910 -0.24 Motion
and has a initial flight path angle of 252.40 degerms of velocity 1e
increment AV) it means an impulse of 4.0 km/s (0.1342 candnica vy -0.4- *
units) applied at . T °
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Figure 10. Transfers from Ls to the Sun.
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here there is a family of smallV transfers to the Earth and those
families were not found in the case of transfergh® Sun. The
explanation is that the Sun, the Earth and thedreggan points are
fixed in the rotating system, but they are not dixa the Sideral
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(fixed) system. In the sideral system, all bodiesl goints are
rotating with unit angular velocity and it meanstthheir linear
velocity is equal to their distance from the cemtethe system. The
Earth and the Lagrangian points have distances ff@rcenter of
the system in the same order of magnitude (thecappate values
are: Earth = 0.9999969,1L = 0.9899909, b = 1.0100702, B =

the primaries and all the five Lagrangian points gxist in the Sun-
Earth system.

Families of transfer orbits with small residual o@ties at the
Lagrangian points were not found in this case,caltfn they do
exist in the case of transfers to the Moon. Inipaldr, it means that
the transfer with the absolute minimuky between the Earth and

1.0000013, 4 = Lg = 0.9999984), so their linear velocities arethe Moon passing byjwas not found.
similar and a smal\V is enough to cause an approximation and the

rendezvous desired.

However, the Sun has a very small distance fromcemer
(0.0000030359), and in consequence a very smatdimelocity. As
seen from the Sun, in the fixed coordinate systemiransfer a
satellite from one of the Lagrangian points (or HBeaath) to the Sun
is equivalent to transfer a satellite from a highqut 1,500,000 km)
circular orbit with a transverse velocity near 2Rr8/s (the circular
velocity for this altitude) to the Sun. The bestywa do it is to
apply aAV of about 29.8 km/s in the opposite direction bét
motion to reduce the velocity to a value in theeprdf magnitude of
the velocity required by a Hohmann-type transfest (the same
value, because this is not a two-body problem,esithe Moon is
still acting in the system). The order of magnitadé¢his velocity is
near zero, considering a two body Hohmann typesfearfrom the
Lagrangian point to the center of the Earth. Thé&ans that &V in
the order of magnitude of 29.8 km/s is always remlifor those
transfers, and there is no hope to reduce it laygelamount.

Conclusions

In this paper, the Lamaitre regularization is aggplio the planar
restricted three-body problem to solve the Lambetttree-body
problem (TPBVP) and it gives families of transfebits between
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