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Orbital Maneuvers Between the 
Lagrangian Points and the Primaries 
in the Earth-Sun System 
This paper is concerned with trajectories to transfer a spacecraft between the Lagrangian 
points of the Sun-Earth system and the primaries. The Lagrangian points have important 
applications in astronautics, since they are equilibrium points of the equation of motion 
and very good candidates to locate a satellite or a space station. The planar circular 
restricted three-body problem in two dimensions is used as the model for the Sun-Earth 
system, and Lamaître regularization is used to avoid singularities during the numerical 
integration required to solve the Lambert's three-body problem. The results show families 
of transfer orbits, parameterized by the transfer time. 
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Introduction 

The well-known Lagrangian points that appear in the planar 
restricted three-body problem (Szebehely, 1967) are very important 
for astronautical applications. They are five points of equilibrium in 
the equations of motion, what means that a particle located at one of 
those points with zero velocity will remain there indefinitely. Their 
locations are shown in Fig. 1. The collinear points (L1, L2 and L3) 
are always unstable and the triangular points (L4 and L5) are stable 
in the present case studied (Sun-Earth system). They are all very 
good points to locate a space-station, since they require a small 
amount of ∆V (and fuel) for station-keeping. The triangular points 
are specially good for this purpose, since they are stable equilibrium 
points.1 

In this paper, the planar restricted three-body problem is 
regularized (using Lamaître regularization) and combined with 
numerical integration and gradient methods to solve the two point 
boundary value problem (the Lambert's three-body problem). This 
combination is applied to the search of families of transfer orbits 
between the Lagrangian points and the primaries, in the Sun-Earth 
system, with the minimum possible energy. This paper is a 
continuation of two previous papers that studied transfers in the 
Earth-Moon system: Broucke (1979), that studied transfer orbits 
between the Lagrangian points and the Moon and Prado (1996), that 
studied transfer orbits between the Lagrangian points and the Earth. 

The Planar Circular Restricted Three-Body Problem 

The model used in all phases of this paper is the well-known 
planar circular restricted three-body problem. This model assumes 
that two main bodies (M1 and M2) are orbiting their common center 
of mass in circular Keplerian orbits and a third body (M3), with 
negligible mass, is orbiting these two primaries. The motion of M3 
is supposed to stay in the plane of the motion of M1 and M2 and it 
is affected by both primaries, but it does not affect their motion 
(Szebehely, 1967). The canonical system of units is used, and it 
implies that: i) The unit of distance (l) is the distance between M1 

and M2; ii) The angular velocity (ω) of the motion of M1 and M2 is 
assumed to be one; iii) The mass of the smaller primary (M2) is 

given by µ = 
21

2

mm

m

+
 (where m1 and m2 are the real masses of M1 
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and M2, respectively) and the mass of M2 is (1-µ), so the total mass 
of the system is one; iv) The unit of time is defined such that the 
period of the motion of the primaries is 2π; v) The gravitational 
constant is one. Table 1 shows the values for these parameters for 
the Sun(M1)-Earth(M2) system, that is the case considered in this 
paper. 

 

Table 1. Canonical system of units. 

Unit of distance 149,596,000 km 
Unit of time 58.13 days 
Unit of velocity 29.8 km/s 

 
Then, the equations of motion are: 
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where Ω is the pseudo-potential given by: 
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This system of equations has no analytical solutions, and 

numerical integration is required to solve the problem. This system 
has an invariant called Jacobi integral. There are many ways to 
define the Jacobi integral (see Szebehely, 1967, pg. 449). In this 
paper the definition shown in Broucke (1979) is used. Under this 
version, the Jacobi integral is given by:  

 

( ) ( ) Const = y,x-y+x
2

1
=E 22 Ω&&  (3) 

 
The three-body problem has also two important properties: 
1) The existence of five equilibrium points (called the 

Lagrangian points L1, L2, L3, L4 and L5, as seen in Fig. 1), that are 

the points where 
x∂
Ω∂

 = 
y∂
Ω∂

 = 0. It corresponds to say that a 

particle in this point with zero initial velocity remains in its position 
indefinitely. The first three (L1, L2, L3) are called collinear points 

(because they are in the "x" axis) and they are unstable for any value 
of µ. The last two (L4 and L5) are called triangular points (because 
they form an equilateral triangle with M1 and M2) and they are 
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stable for µ < 0.03852, what means that they are stable in the 
present case (Sun-Earth), since µ = 0.0000030359. Their locations 
and potential energy are shown in Table 2. 
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Figure 1. Geometry of the problem of three bodies. 

 

Table 2. Position and potential energy of the five Lagrangian points. 

 x y E0 

L1 -0.9899909 0 -1.5004485 

L2 -1.0100702 0 -1.5001481 

L3 1.0000013 0 -1.5000015 

L4 -0.4999969 +0.8660254 -1.4999984 

L5 -0.4999969 -0.8660254 -1.4999984 

 
2) The curves of zero velocity, that are curves given by the 

expression: 
 

( )y,x-=E0 Ω  (3) 
 

that is the equivalent of equation (2) in the special case where 
0=y=x && . They are important, because they determine forbidden 

and allowed regions of motion for M
3
 based in its initial conditions. 

More details about these and other properties of the three-body 
problem can be found in Szebehely (1967) and Broucke (1979). 

Lamaître Regularization 

The equations of motion given by Eqs. (1) are not suitable for 
numerical integration in trajectories passing near one of the 
primaries. The reason is that the positions of both primaries are 
singularities in the potential V (since r1 or r2 goes to zero, or near 
zero) and the accuracy of the numerical integration is affected every 
time this situation occurs. The solution for this problem is the use of 
regularization, that consists in a substitution of the variables for 
position (x-y) and time (t) by another set of variables (ω1, ω2, τ), 
such that the singularities are eliminated in these new variables. 
Several transformations with this goal are available in the literature 
(Szebehely, 1967, chapter 3), like Thiele-Burrau, Lamaître and 
Birkhoff. They are called "global regularization", to emphasize that 
both singularities are eliminated at the same time. The case where 

only one singularity is eliminated at a time is called "local 
regularization". For the present research the Lamaître's 
regularization is used. To perform the transformation it is necessary 
first to define a new complex variable  q = q

1 + iq
2
 (i is the 

imaginary unit), with q
1
 and q

2 given by: 
 

yq             ,2/1xq 21 =µ−+=  (4) 
 
Now, in terms of q, the transformation involved in Lamaître 

regularization is given by: 
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for the old variables for position (x-y) and: 
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In the new variables the equation of motion of the system is: 
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where ω = ω1 + iω2 is the new complex variable for positions, ω' 

and ω" denotes first and second derivatives of ω with respect to the 

regularized time τ, gradωΩ* represents  
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 and Ω* is 

the transformed pseudo-potential given by: 
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where C = µ(1-µ) - 2E. 

Equations (5) in complex variables can be separated in two 
second order equations in the real variables ω1 and ω2 and 
organized in the standard first order form, that is more suitable for 
numerical integration. The final form, after defining the regularized 
velocity components ω3 and ω4 as 1 3ω ω' =  and 2 4ω ω' = , is: 
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Another necessary set of equations is the one to map velocity 

components from one set of variables to another. They are: 
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The Mirror Image Theorem 

The mirror image theorem (Miele, 1960) is an important and 
helpful property of the planar circular restricted three-body problem. 
It says that: "In the rotating coordinate system, for each trajectory 
defined by (t)y (t),x y(t), x(t), &&  that is found, there is a symmetric (in 
relation to the "x" axis) trajectory defined by 

(-t)y- (-t),x- y(-t),- x(-t), && ". The proof is omitted in this paper, but 
the reader can verify its veracity by substituting those two solutions 
in the equations of motion. With this property, there is no need to 
calculate the returning trajectories from the primaries to the 
Lagrangian points. For the collinear points, the symmetric of the 
trajectory that goes from the Lagrangian point to the Earth is the 
trajectory that goes from the Earth to the Lagrangian point. For the 
triangular points the situation is a little more complex, since these 
points are not in the "x" axis. The symmetric of the trajectory that 
goes from L4 to the Earth is the trajectory that goes from the Earth 
to L5 and the symmetric of the trajectory that goes from L5 to the 
Earth is the trajectory that goes from the Earth to L4. 

The Lambert's Three-Body Problem 

The problem that is considered in the present paper is the 
problem of finding trajectories to travel between the Lagrangian 
points and the primaries. Since the rotating coordinate system is 
used and all the primaries and the Lagrangian points are in fixed 
known positions, this problem can be formulated as:  

"Find an orbit (in the three-body problem context) that makes a 
spacecraft to leave a given point A and goes to another given point 
B". That is the famous TPBVP (two point boundary value problem). 
There are many orbits that satisfy this requirement, and the way 
used in this paper to find families of solutions is to specify a time of 
flight for the transfer. Then, the problem becomes the Lambert's 
three-body problem, that can be formulated as: 

"Find an orbit (in the three-body problem context) that makes a 
spacecraft to leave a given point A and goes to another given point 
B, arriving there after a specified time of flight". Then, by varying 
the specified time of flight it is possible to find a whole family of 
transfer orbits and study them in terms of the ∆V required, energy, 
initial flight path angle, etc. 

The Solution of the TPBVP 

The restricted three-body problem is a problem with no 
analytical solutions, so numerical integration is the only possible 
approach to solve it. To solve the TPBVP in the regularized 
variables the following steps are used: 

i)   Guess a initial velocity 
r
V i, so together with the initial 

prescribed position 
r
r i the complete initial state is known; 

ii)   Guess a final regularized time τf  and integrate the 

regularized equations of motion from τ0   = 0 until τf; 

iii)   Check the final position 
r
r f obtained from the numerical 

integration with the prescribed final position and the final real time 
with the specified time of flight. If there is an agreement (difference 
less than a specified error allowed) the solution is found and the 
process can stop here. If there is no agreement, an increment in the 

initial guessed velocity 
r
V i and in the guessed final regularized time 

is made and the process goes back to step i). 
The method used to find the increment in the guessed variables 

is the standard gradient method, as described in reference 7. The 
routines available in this reference are also used in this research with 
minor modifications. 

Numerical Results 

The Lambert's three-body problem between the primaries and 
the Lagrangian points is solved for several values of the time of 
flight. Since the regularized system is used to solve this problem, 
there is no need to specify the final position of M3 as lying in an 
primary's parking orbit (to avoid the singularity). Then, to make a 
comparison with previous papers (Broucke, 1979 and Prado, 1996) 
the primary's center is used as the final position for M3. The results 
are organized in plots of the energy (as given by Eq. 3) and the 
initial flight path angle in the rotating frame against the time of 
flight. The definition of the angle is such that the zero is in the "x" 
axis, (pointing to the positive direction) and it increases in the 
counter-clock-wise sense. Plots of the trajectory in the rotating 
system are also included. This problem, as well as the Lambert’s 
original version, has two solutions for a given transfer time: one in 
the counter-clock-wise direction and one in the clock-wise direction 
in the inertial frame. In this paper, emphasis is given in finding the 
families with the smallest possible energy (and velocity at the 
Lagrangian points, as a consequence of Eq. 3), although many other 
families do exist. 

Trajectories from L 1 

In the nomenclature used in this paper, L1 is the collinear 
Lagrangian point that exists between the Sun and the Earth. It is 
located about 1,496,867 km from the Earth. Figure 2 shows the 
results for the least expensive family of transfers to the Sun that was 
found in this research and Fig. 3 shows the transfers to the Earth. 
The local minimum for a transfer to the Sun occurs for a time of 
flight close to 64 days, requires an energy E = -1.0101 and has a 
initial flight path angle of 90 deg. In terms of velocity increment 
(∆V) it means an impulse of 29.5 km/s (0.9903 canonical units) 
applied at L1. For a transfer to the Earth, the minimum occurs for a 
time of flight close to 35 days, requires an energy E = -1.5004 and 
has a initial flight path angle of 248 deg. In terms of velocity 
increment (∆V) it means an impulse of 0.298 km/s (0.01 canonical 
units) applied at L1. 
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Figure 2. Transfers from L1 to the Sun. 
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Figure 2. (Continued). 
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Figure 3. Transfers from L1 to the Earth. 
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Figure 3. (Continued). 

Trajectories from L 2 

In the nomenclature used in this paper, L2 is the collinear 
Lagrangian point that exists behind the Earth. It is located about 
1,506,915 km from the Earth. Fig. 4 shows the results for the least 
expensive family of transfers to the Sun that was found in this 
research and Fig. 5 shows the transfers to the Earth. The local 
minimum for a transfer to the Sun occurs for a time of flight close to 
64 days, requires an energy E = -0.9896 and has a initial flight path 
angle of 88 deg. In terms of velocity increment (∆V) it means an 
impulse of 30.1 km/s (1.0104 canonical units) applied at L1. For a 
transfer to the Earth, the minimum occurs for a time of flight close 
to 35 days, requires an energy E = -1.5004 and has a initial flight 
path angle of 67 deg. In terms of velocity increment (∆V) it means 
an impulse of m/s (canonical units) applied at L1. 
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Figure 4. Transfers from L2 to the Sun. 
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Figure 5. Transfers from L2 to the Earth. 

Trajectories from L 3 

In the nomenclature used in this paper, L3 is the collinear 

Lagrangian point that exists on the opposite side of the Sun (when 
compared to the position of the Earth). It is located about 
149,595,740 km from the Sun, what means that it is almost at the 
same distance that the Earth is, but in the opposite direction. Figure 
6 shows the results for the least expensive family of transfers to the 
Sun that was found in this research and Fig. 7 shows the transfers to 
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the Earth. The local minimum for a transfer to the Sun occurs for a 
time of flight close to 70 days, requires an energy E = -0.9965 and 
has a initial flight path angle of 275 deg. In terms of velocity 
increment (∆V) it means an impulse of 29.9 km/s (1.0035 canonical 
units) applied at L1. For a transfer to the Earth, the minimum occurs 
for a time of flight close to 169 days, requires an energy E = -1.4390 
and has a initial flight path angle of 253 deg. In terms of velocity 
increment (∆V) it means an impulse of 10.4 km/s (0.3493 canonical 
units) applied at L1. 
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Figure 6. Transfers from L3 to the Sun. 
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Figure 7. Transfers from L3 to the Earth. 

Trajectories from L 4 

L4 is one of the triangular Lagrangian points. Its location is the 
third vertice of the equilateral triangle formed with the Sun and the 
Earth, in the semi-plane of positive y. In the present case under 
study (Sun-Earth system) it is a stable equilibrium point. It is a very 
important point, because it is an excellent location for a space 
station. Its stability property makes the fuel required for station-
keeping almost zero. Figure 8 shows the results for the least 
expensive family of transfers to the Sun that was found in this 
research and Fig. 9 shows the transfers to the Earth. The local 
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minimum for a transfer to the Sun occurs for a time of flight close to 
64 days, requires an energy E = -0.9999 and has a initial flight path 
angle of 29 deg. In terms of velocity increment (∆V) it means an 
impulse of 29.8 km/s (1.0001 canonical units) applied at L1. For a 
transfer to the Earth, the minimum occurs for a time of flight close 
to 174 days, requires an energy E = -1.4790 and has a initial flight 
path angle of 313 deg. In terms of velocity increment (∆V) it means 
an impulse of 6.1 km/s (0.2049 canonical units) applied at L1. 
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Figure 8. Transfers from L4 to the Sun. 
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Figure 9. Transfers from L4  to the Earth. 

Trajectories from L 5 

L5 is the other triangular Lagrangian point. Its location is the 
point symmetric to L4 (in relation to the "x" axis), the third vertice 
of the equilateral triangle formed with the Earth and the Moon, in 
the semi-plane of negative y. It is also stable and a very important 
point, for the same reasons that L4 is an important point. Figure 10 

shows the results for the least expensive family of transfers to the 
Sun that was found in this research and Fig. 11 shows the transfers 
to the Earth. The local minimum for a transfer to the Sun occurs for 
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a time of flight close to 64 days, requires an energy E = -0.9999 and 
has a initial flight path angle of 149 deg. In terms of velocity 
increment (∆V) it means an impulse of 29.8 km/s (1.0001 canonical 
units) applied at L1. For a transfer to the Earth, the minimum occurs 
for a time of flight close to 291 days, requires an energy E = -1.4910 
and has a initial flight path angle of 252.40 deg. In terms of velocity 
increment (∆V) it means an impulse of 4.0 km/s (0.1342 canonical 
units) applied at L1. 

 

••••••••••••••••••••••••••

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•
•
•
•
•
•
••••••

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

-0.8 -0.6 -0.4 -0.2 0.0 0.2

Y

X

Sun

L5

Motion

 
 

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

0 10 20 30 40 50 60 70 80 90 100
Transfer Time (days)  

 

80

90

100

110

120

130

140

150

160

170

180

0 10 20 30 40 50 60 70 80 90 100
Transfer Time (days)  

Figure 10. Transfers from L5 to the Sun. 
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Figure 11. Transfers from L5 to the Earth. 

Comparison with Transfers in the Earth-Moon 

A quickly verification of the results available here and to 
Broucke (1979) and Prado (1996) shows that it is much more 
expensive (in terms of energy and ∆V) to go to the Sun from the 
Lagrangian points than to go to the Earth. For all points considered 
here there is a family of small ∆V transfers to the Earth and those 
families were not found in the case of transfers to the Sun. The 
explanation is that the Sun, the Earth and the Lagrangian points are 
fixed in the rotating system, but they are not fixed in the Sideral 
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(fixed) system. In the sideral system, all bodies and points are 
rotating with unit angular velocity and it means that their linear 
velocity is equal to their distance from the center of the system. The 
Earth and the Lagrangian points have distances from the center of 
the system in the same order of magnitude (the approximate values 
are: Earth = 0.9999969, L1  = 0.9899909, L2  = 1.0100702, L3  = 
1.0000013, L4  = L5  = 0.9999984), so their linear velocities are 

similar and a small ∆V is enough to cause an approximation and the 
rendezvous desired. 

However, the Sun has a very small distance from the center 
(0.0000030359), and in consequence a very small linear velocity. As 
seen from the Sun, in the fixed coordinate system, to transfer a 
satellite from one of the Lagrangian points (or the Earth) to the Sun 
is equivalent to transfer a satellite from a high (about 1,500,000 km) 
circular orbit with a transverse velocity near 29.8 km/s (the circular 
velocity for this altitude) to the Sun. The best way to do it is to 
apply a ∆V of about 29.8 km/s in the opposite direction of the 
motion to reduce the velocity to a value in the order of magnitude of 
the velocity required by a Hohmann-type transfer (not the same 
value, because this is not a two-body problem, since the Moon is 
still acting in the system). The order of magnitude of this velocity is 
near zero, considering a two body Hohmann type transfer from the 
Lagrangian point to the center of the Earth. This means that a ∆V in 
the order of magnitude of 29.8 km/s is always required for those 
transfers, and there is no hope to reduce it by a large amount.  

Conclusions 

In this paper, the Lamaître regularization is applied to the planar 
restricted three-body problem to solve the Lambert's three-body 
problem (TPBVP) and it gives families of transfer orbits between 

the primaries and all the five Lagrangian points that exist in the Sun-
Earth system.  

Families of transfer orbits with small residual velocities at the 
Lagrangian points were not found in this case, although they do 
exist in the case of transfers to the Moon. In particular, it means that 
the transfer with the absolute minimum ∆V  between the Earth and 
the Moon passing by L1 was not found. 
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