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High-Resolution Simulations of 
Gravity Currents 
An overview is given of high-resolution numerical simulation results for gravity currents in 
the lock exchange configuration. Results are provided for Boussinesq and non-Boussinesq 
flows, and for both horizontal and sloping bottom geometries. Furthermore, currents 
driven by fluid density differences are discussed along with those driven by differential 
particle loading.  
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Introduction 
1Gravity currents form when a heavier fluid propagates into a 

lighter one in a predominantly horizontal direction. They are 
frequently encountered both in the environment and in engineering 
applications (Huppert, 1986), Simpson, 1997)). Gravity currents can 
be driven by density differences of the fluids involved, or by 
differential particle loading. In many situations (a freshwater river 
flowing into a saltwater ocean, atmospheric flows involving warm 
and cold air, and many others), the density differences are no more 
than a few percent, so that the Boussinesq approximation can be 
employed. However, there are circumstances when the density 
differences can be much more substantial (industrial gas leaks, 
tunnel fires, powder snow avalanches, turbidity currents, pyroclastic 
flows), and the full variable density equations have to be solved. 
It is desirable to develop simplified models for the prediction of 
such flows. However, such models are based on a variety of 
assumptions regarding the nature of the flow whose validity needs 
to be established first. In this context, high-resolution numerical 
simulations can be of great value, as they offer access to several 
quantities that are hard to measure experimentally. The spatially and 
temporally resolved dissipation field represents one example in this 
regard. In the following, we will present a brief overview of our 
numerical simulation results for a variety of gravity currents. We 
have focused on the lock-exchange configuration, which is the most 
commonly used geometry for studying gravity currents (see fig. 1). 

Basic Equations 

The simulations employ a rectangular channel of height H and 
length L, cf. figure 1. The channel is filled with two miscible fluids 
initially separated by a membrane. While the left compartment holds 
a fluid of density ρ1, the right reservoir is filled with a fluid of 
smaller density ρ2. This initial configuration causes a discontinuity 
of the hydrostatic pressure across the membrane, which sets up a 
predominantly horizontal flow once the membrane is removed. The 
denser fluid moves rightward along the bottom of the channel, while 
the lighter fluid moves leftward along the top. 
The full incompressible Navier-Stokes equations for variable 
density flows without use of Boussinesq approximation, read 
 

0. =∇ u 1, (2.1) 
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Figure 1. Lock exchange configuration. A membrane i nitially divides the 
rectangular container into two compartments. The le ft chamber is filled 
with fluid of density ρρρρ = ρρρρ1, while the right one contains lighter fluid of 
density ρρρρ = ρρρρ2. Upon release of membrane, a dense front moves 
rightwards along the lower boundary, while the ligh t front propagates 
leftward along the upper boundary. 

 

Here 
Dt

D
 denotes the material derivative of a quantity, u = 

(u,v)T indicates the velocity vector, p the pressure, ρ the density, and 
S the rate of strain tensor, while g = geg represents the vector of 
gravitational acceleration. In the following, we will keep the 
kinematic viscosity ν constant for both fluids. In deriving the above 
continuity equation, it is assumed that the material derivative of the 

density vanishes, i.e., 0=
Dt

Dρ
. This common assumption requires 

small diffusivities of the species concentration. The conservation of 
species is expressed by the convection-diffusion equation for the 
concentration c of the heavier fluid. By assuming a density-
concentration relationship of the form ( )212 ρρρρ −+= c , we 

arrive at the following equation for the density field 
 

 ρρ 2∇= K
Dt

D
, (2.3) 

 
where the molecular diffusivity K is taken to be constant. Note that 
the diffusive term needs to be kept in the above equation in order to 
avoid the development of discontinuities in the computation of the 
density field. This holds true even if diffusive effects are very small, 
as in the case of liquids. In order to nondimensionalize the above set 
of equations, the channel height H is taken as the length scale, while 
the density ρ1 the heavier fluid serves as the characteristic density. 

Velocities are scaled by the buoyancy velocity Hgub ′= , in 

which g’ denotes the reduced gravity (Simpson (1997)), which is 
related to the dimensional gravitational acceleration g by 

( )γggg −=−=′ 1
1

21

ρ
ρρ

, where the density ratio is given by 

1
1

2 <=
ρ
ργ . A characteristic pressure p is given by 1

2ρbu . We thus 

arrive at the following set of governing dimensionless equations 
 

0=⋅∇ u , (2.4) 
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,2ρρ ∇=
Pe

1

Dt

D
 (2.6) 

 
If one were to make use of the Boussinesq assumption, equation 

(2.5) would instead simplify to 
 

u
u

g
2e ∇−∇−=

Re

1
p

Dt

D ρ . (2.7) 

 
Note that we cannot obtain eq (2.7) from eq (2.5) just by 

substituting γ = 1, as the hydrostatic pressure field absorbed into the 
variable p varies between the two cases. 

eg is given by the unit vector (sin θ ,0,- cosθ). The three 
governing dimensionless parameters in equations (2.4) - (2.6) are 
the density ratio γ, the Reynolds number Re, and the Péclet number 

Pe, respectively, which are defined as 
ν
Hu

Re b=  and 
K

Hu
Pe b= . 

They are related by the Schmidt number 
K

Sc
ν= , so that 

Sc RePe  .= . It represents the ratio of kinematic viscosity to 
molecular diffusivity. For most pairs of gases, the Schmidt number 
lies within the narrow range between 0.2 and 5. By means of test 
calculations we established that the influence of Sc variations in this 
range is quite small, so that in the simulations to be discussed below 
we employ Sc = 1 throughout. It is to be kept in mind, however, that 
for liquids such as salt water, Sc ≈ 700. 

For the purpose of numerical simulations, we recast equations 
(2.4) - (2.6) into the vorticity-stream function formulation. In this 
way, the incompressibility condition (2.4) is automatically satisfied 
throughout the flow field. Let ψ be the streamfunction and ω the 
vorticity in the spanwise direction. Then the relations 

y
u

z

u

x

v

∂
∂=

∂
∂−

∂
∂= ψω , , and 

z
v

∂
∂= ψ

 hold, and we obtain 

 

ωψ −=∇ 2 , (2.8) 
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If the dynamic viscosity µ is held constant instead of the ν 

kinematic viscosity (2.9) takes the form 
 

 ( ) Dt
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ρ
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−
−∇=

1

1 2 . (2.10) 

Computational Approach 

The simulations employ equidistant grids in the rectangular 
computational domain. Spectral Galerkin methods are used in 
representing the streamwise dependence of the streamfunction and 
the vorticity fields  
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where 2/1Nl <  and 2π/L. N1 denotes the number of grid points 

in the streamwise direction. Vertical derivatives are approximated 
on the basis of the compact finite difference stencils described by 
Lele (1992). As in the Boussinesq investigation of Härtel et al. 
(2000), derivatives of the density field are computed from compact 
finite differences in both directions. At interior points, sixth order 
spatially accurate stencils are used, with third and fourth order 
accurate ones employed at the boundaries. The flow field is 
advanced in time by means of the third order Runge-Kutta scheme 
described by Härtel et al. (2000). The material derivatives of the 
velocity components appearing in the vorticity equation (2.9) are 
computed by first rewriting them in terms of the local time 
derivative plus the convective terms. The spatial derivatives 
appearing in the convective terms are then evaluated in the usual, 
high order way. The local time derivative is computed by backward 
extrapolation as follows 

 

( ) t
t

nn

n

∇−=








∂
∂ − /1uu
u

. (3.2) 

 
This approximation is consistently utilized during the successive 

Runge-Kutta substeps. Test calculations demonstrated that the low 
order approximation of this term did not influence the results in a 
measurable way. The Poisson equation for the streamfunction (2.8) 
is solved once per time step in Fourier space according to  

 

 ( ) ( ) 1121 ˆˆˆ +++ =−″ m
l

m
l

m
l l ωψαψ  (3.3) 

 
with the prime denoting differentiation with respect to z. 

Boussinesq Gravity Current 

The density difference between two fluids can range from very 
small to very large. In many geophysical situations such as sea 
water and fresh water the density difference is very small (within 
5%). In cases of small density difference, density variations can be 
neglected in the inertia term, but retained in buoyancy term where 
they are multiplied with g. This approximation of the momentum 
equations is referred to as the Boussinesq approximation. It is 
accurate for fluids with densities within a few per cent of each other. 
The formation of a Boussinesq gravity current is shown in fig. 2 for 
Re=4,000. Here, slip boundary conditions are employed both at the 
bottom and top walls. For a comparison between flows with slip and 
no-slip conditions, we refer the reader to Birman et al. (2004). The 
symmetry of the dense and light fronts for Boussinesq gravity 
currents can be clearly seen for all times. It reflects the symmetry of 
the governing equations and boundary conditions, and results in 
identical propagation velocities and heights of both fronts. The 
heights remain close to half the channel height, in agreement with 
experimental observations by other researchers, cf. Simpson (1997). 
The dimensionless propagation velocities of both fronts are near one 
half, which is the value given by Benjamin (1968) for an energy 
conserving current. A vigorous Kelvin-Helmholtz instability can be 
observed along the entire interface of the gravity current, which is 
typical for flows with Re > 1,000. At higher values of Re, more 
small-scale structures are observed, but the essential global 
properties remain nearly unchanged. More details on numerically 
simulated Boussinesq currents in both two and three dimensions are 
provided by Härtel et al. (1999) and Härtel et al (2000). 
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(a) t = 2.0 

 

 
(b) t = 10.0 

 

 
(c) t = 16.0 

Figure 2. Concentration contours from a Boussinesq simulation for Re = 
4,000, at different times, showing the evolution of  a typical Boussinesq 
gravity . 

Non-Boussinesq Gravity Currents 

There can be practical situations of interest where the density 
difference between the two fluids forming the gravity current is 
larger than a few percent. Turbidity currents and hot gas eruptions 
from volcanoes are just few examples. In order to study such flows, 
we cannot use the above Boussinesq approximation. We instead 
need to solve the complete Navier-Strokes equations involving 
variable density. For density ratios of For density ratios of γ = 0.92, 
0.7, and 0.2, fig. 3 shows contour plots of simulations for Re = 4,000 
at time t = 10. Fig. 3(a) still resembles the Boussinesq  gravity 
current, although the symmetry is maintained only approximately. 
This loss of symmetry can be observed most clearly in the vortex 
pairing process.  

 

 
(a) γ = 0.92 

 

 
(b) γ = 0.7 

 

 
(c) γ = 0.2 

Figure 3. Concentration contours from a non-Boussin esq simulation for 
Re = 4,000 at time t = 10 for different density ratios γγγγ, clearly showing the 
changes in the front speeds and the front heights. 

 
Fig. 3(b) clearly shows that already for γ = 0.7 the dense front 

moves significantly faster than the light front, and that it has 
traveled a longer distance than for the γ = 0.92 case. Also the height 
of the dense front is smaller than that of the light front. These 
observations can be seen even more clearly in fig. 3(c). We observe 

that the Kelvin-Helmholtz instability forms only along the dense 
front, while the light front is stable. All these observations are in 
agreement with experimental observations by Ggröbelbauer (1993) 
and Lowe (2004). 

Simplified models of non-Boussinesq gravity currents have been 
developed by patching an energy-conserving light front to a 
dissipative dense front via an expansion wave. The validity of this 
model is confirmed by the dissipation data provided by Birman et 
al.(2004) The results demonstrate that the dissipation in the light 
front remains nearly constant as the density ratio changes from 1 to 
0.2, while the dissipation level in the dense front increases. This is 
observed for all values of Re studied. 

Gravity Currents on Slopes 

Gravity currents in nature and industry frequently flow along 
slopes. Thus it is important to understand the effects of a sloping 
bottom on the global properties of gravity currents. Gravity currents 
along inclines have been modeled in the past using wedge models, 
cf. Ross et al.(2002}. The wedge shape is used to model the long-
term behavior of the gravity current, while it is proposed that in the 
short term the angle of the slope does not matter. Also it has been 
noted that friction along the bottom wall does not play an important 
role in this flow. Thus, in order to better understand the long and 
short-term behavior of gravity currents on a slope, we present highly 
resolved numerical simulation results in fig. (4).  

 

 
 

 
 

 
Figure 4. Flow for γγγγ = 0.998 at different times for Re = 4,000. The angle of 
the bottom is 30º to horizontal. 

 
Fig. 4(a) shows that at t = 3 the gravity currents are just 

beginning to form. There does not appear to be a strong effect of the 
slope angle during this early phase, as the shape of the currents is 
similar to the case of a horizontal flow. We observe slight 
differences in the front propagation velocity, however. Fig. 4(b) 
shows that soon thereafter much more vigorous mixing takes place 
along the interface, as compared to the horizontal case. Accelerating 
fluid layers form behind both fronts, similar to those studied 
experimentally by Thorpe (1968} in inclined channels. In fig. 4(c) 
we observe that these accelerated layers, whose dynamics are 
clearly affected by the angle of the slope, have reached the fronts 
and start to affect their propagation velocities. 

Gravity currents on slopes thus exhibit two different phases: The 
first phase is characterized by early mixing and the formation of the 
accelerated fluid layers behind the fronts, while the second phase is 
dominated by more rapidly advancing gravity current fronts. The 
simulations give the time for the transition between the two phases 

as 9

4

tan
−

= φφt . This is agreement with the results provided by Ross 

et al.(2002) for the time after which the angle becomes important. 
Fig. (5) shows the jump in the front propagation velocity when the 
transition between the two phases occurs. 
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Particle-Laden Gravity Currents 

Particle-driven gravity currents form a special class of gravity 
currents, as their density difference is caused by differential loading 
with suspended particles (fig. 6). Here we focus on dilute 
suspensions with volume fractions well below one percent, so that 
particle-particle interactions can be neglected and coupling between 
particles and fluid motion is dominated by the transfer of 
momentum. 

 

 
Figure 5. The dense front velocity for the gravity current on a slope shown 
in fig. 4. It can be seen that close to t = 12 there is a jump in velocity of the 
front. This suggests the transition from the first to the second phase. 

 

 
Figure 6. Structure of a particle-driven gravity cu rrent visualized by 
isosurfaces of concentration at t = 2 and t = 8. Re sults are obtained from a 
three-dimensional simulation for a Grashof number o f Gr = 5 x 10 6 and a 
dimensionless settling velocity of u s = 0.02 (from Necker et al. (2002b)). In 
all cases the concentration value of 0.25 is shown.  

 
The settling of the particles leads to a continued loss of 

suspended material in the flow. In consequence, at the bottom of the 
tank a sediment layer forms that grows with time. It has been 
observed that the sedimentation process is very rapid during the first 
10-20 dimensionless time units until about 70% of all particles have 
settled out. Thereafter, sedimentation slows down substantially. Fig. 
7 gives the detailed time history of the sedimentation rate (cf. 
Necker et al. (2002)). Until t = 14 the sedimentation rate steadily 
increases. A striking feature of the sedimentation rate is the abrupt 
change that follows the steady increase, leading to a massive decay 
of sedimentation rate with time. This change occurs when about half 
the particles have settled at the bottom, and it coincides with the 

time when the front speed of the particle-driven current starts to 
deviate from the speed of its density-driven counterpart. 

 

 
Figure 7. Sedimentation rate at the bottom wall of the channel as a 
function of time. The thin horizontal line indicate s the initial value of the 
sedimentation rate. 

 
For the sake of direct comparison of computational results with 

experimental data, we have evaluated the integrated sedimentation 
profile at the bottom for selected times from a two-dimensional 
simulation at Gr 108. For this Grashof number, measurements of 
Rooji & Dalziel (1998) are available. The small, heavy particles 
used in the experiments have a non-dimensional settling speed of 
about 0.02, which is also used in the simulation. In fig. 8 the 
computational and experimental sedimentation profiles for three 
different time instants are given in the form of a non-dimensional 
deposit rate Dt(x,t) per unit span. The curves are normalized such 
that the results for the latest time (t → ∞), when all particles have 
already settled out, integrate to unity. Good agreement between the 
experimental data and the simulation results, which are represented 
by dashed and solid lines, respectively, is readily seen. Both 
consistently show the maximum of the final deposition curve to be 
located some distance downstream of the initial interface location, a 
feature that was   already observed in earlier experiments Bonnecaze 
et al. (1993). Differences between experiments and simulations are 
primarily seen in the region around the initial lock. However, in the 
experiments this region is presumably affected not only by 
disturbances induced by the initial stirring of suspension but also by 
the onset of sedimentation before start of experiment. 

Summary 

We have presented an overview of results from highly resolved 
two- and three-dimensional numerical simulations of gravity current 
flows. The simulations are performed for a wide range of density 
ratios, and for varying slope angles. Both flows driven by fluid 
density differences and flows driven by particle loading are 
considered. The simulation results are generally in very good 
agreement with experimental observations with regard to quantities 
such as the front heights, their propagation velocities, and the 
overall deposit profiles. The simulations furthermore provide access 
to quantities that are difficult to obtain from experiments, such as 
spatially resolved dissipation fields. In this way, they allow us to test 
simplified theoretical models proposed in the literature. 
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Figure 8. Non-dimensional particle deposit profiles  as functions of x. 
Results for time t = 7.3 and 10.95, and the final profile for ( t →→→→ ∞∞∞∞) after all 
particles have settled. Solid line: two-dimensional  simulation, dashed line: 
experimental data of Rooji & Dalziel (1998. In both  cases Gr = 108, us = 
0.02$ (from Necker (2002)). 
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