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Introduction N o

Gravity currents form when a heavier fluid propagainto a s
lighter one in a predominantly horizontal directiomhey are
frequently encountered both in the environment ianengineering Figure 1. Lock exchange configuration. A membrane i nitially divides the
applications (Huppert, 1986), Smpson, 1997). Gymurents can | "R Coar Tl e b T le L e e
b,e drlvgn by ,denSIty @fferences of .the.flmds iiveai, -or ,by density p = p. yUpcf; rglléase of mer?wbrane, a densegfront moves
differential particle loading. In many situations ffeshwater river rightwards along the lower boundary, while the ligh  t front propagates
flowing into a saltwater ocean, atmospheric flowsolving warm  leftward along the upper boundary.
and cold air, and many others), the density diffees are no more
than a few percent, so that the Boussinesq appatiim can be D
employed. However, there are circumstances when dimesity Here — denotes the material derivative of a quantity=
differences can be much more substantial (indusgés leaks, . _Dt ) ]
tunnel fires, powder snow avalanches, turbidityenis, pyroclastic (UV)  indicates the velocity vectap,the pressurgy the density, and
flows), and the full variable density equations & be solved. S the rate of strain tensor, white= ge, represents the vector of
It is desirable to develop simplified models foe tprediction of gravitational acceleration. In the following, we liwkeep the
such flows. However, such models are based on #&tyaof kinematic viscosity constant for both fluids. In deriving the above
assumptions regarding the nature of the flow whasgigity needs continuity equation, it is assumed that the maltelégivative of the
to be established first. In this context, high-teon numerical density vanishes. i %:O Thi mmon motion requir
simulations can be of great value, as they offeress to several ensity vanisnes, .e.,Dt - [TIS common assumplion requires
quantities that are hard to measure experimentBig.spatially and - gmq)) diffusivities of the species concentratioheTeonservation of
temporally resolved dissipation field represente emample in this  gpecies is expressed by the convection-diffusiomation for the
regard. In the following, we will present a briefesview of our  concentrationc of the heavier fluid. By assuming a_density-

numerical simulation results for a variety of gtgveurrents. We  .qcentration relationship of the fornp = ,02+C(,01—p2) we
have focused on the lock-exchange configuratiorichvis the most . . . . ’
arrive at the following equation for the densitgidi

commonly used geometry for studying gravity curseisee fig. 1).
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Basic Equations Ff =KO%p, (2.3)

The simulations employ a rectangular channel ofifitéd and
lengthL, cf. figure 1. The channel is filled with two miscidleids ~ Where the molecular diffusivitik is taken to be constant. Note that
initially separated by a membrane. While the lefnpartment holds the diffusive term needs to be kept in the aboweaton in order to
a fluid of densityp;, the right reservoir is filled with a fluid of avoid the development of discontinuities in the patation of the
smaller densityo,. This initial configuration causes a discontinuitydensity field. This holds true even if diffusivéfeits are very small,
of the hydrostatic pressure across the membranighvgets up a 25 in thq case of liquids. In o_rde_r to nondimeraiiae the above set
predominantly horizontal flow once the membraneeimoved. The ©f equations, the channel heighis taken as the length scale, while
denser fluid moves rightward along the bottom ef ¢hannel, while the densityo, the heavier fluid serves as the characteristicitlens
the lighter fluid moves leftward along the top. Velocities are scaled by the buoyancy velocinb;=,/g’H ,in

'(Ij'he .fU|f|| incor_nrp])ressible fNBavier-_Stokes equqtion_s i(;ariable which g’ denotes the reduced gravity (Simpson (1997)),ctvhis
ensity flows without use of Boussinesq approxiomtrea related to the dimensional gravitational acceleratig by

Ou=01, 21) g=g2"P2-g{1-;), where the density ratio is given by
%1
D
pFltJ =pg-Up+ [I(Z/,/S). (22 y= P2 <1. A characteristic pressupeis given byu? p, . We thus
%1

arrive at the following set of governing dimensisd equations
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Du _
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= ype o f208), (2.5)
Dpo_1_,
——=—10%p, 2.6
Dt Pe P (2.6)

If one were to make use of the Boussinesq assumguation
(2.5) would instead simplify to

1
-Op-—0%. 2.7
P~ 2e 2.7

Dt’oeg

Note that we cannot obtain eq (2.7) from eq (2t jby
substitutingy'= 1, as the hydrostatic pressure field absorbexthre
variablep varies between the two cases.

g is given by the unit vector (si# ,0,- co€). The three
governing dimensionless parameters in equatiory (2(2.6) are
the density ratig; the Reynolds numbdte and the Péclet number

UbH UbH .
14

Pe respectively, which are defined &e= and Pe=

They are related by the Schmidt numb&c=%, so that
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where |I|< N1 /2 and 2vL. N; denotes the number of grid points

in the streamwise direction. Vertical derivatives approximated
on the basis of the compact finite difference sterdescribed by
Lele (1992). As in the Boussinesq investigationHifrtel et al
(2000), derivatives of the density field are congolufrom compact
finite differences in both directions. At interipoints, sixth order
spatially accurate stencils are used, with third &ourth order
accurate ones employed at the boundaries. The field is
advanced in time by means of the third order Rufgia scheme
described by Hartett al (2000). The material derivatives of the
velocity components appearing in the vorticity dopra (2.9) are
computed by first rewriting them in terms of thecdb time
derivative plus the convective terms. The spatiarivaitives
appearing in the convective terms are then evalugtehe usual,
high order way. The local time derivative is congzliby backward
extrapolation as follows

a_u n
ot
This approximation is consistently utilized durithg successive

Runge-Kutta substeps. Test calculations demondtithgg the low
order approximation of this term did not influertbe results in a

(3.2)

(u” - u”'l)/I]t .

Pe=Re.Sc. It represents the ratio of kinematic viscosity tomeasurable way. The Poisson equation for the sfuemion (2.8)

molecular diffusivity. For most pairs of gases, 8&hmidt number
lies within the narrow range between 0.2 and 5.nfBaans of test
calculations we established that the influenc8ofariations in this
range is quite small, so that in the simulationbealiscussed below
we employSc= 1 throughout. It is to be kept in mind, howethat
for liquids such as salt wates¢= 700.

For the purpose of numerical simulations, we reegstations
(2.4) - (2.6) into the vorticity-stream functionrifoulation. In this
way, the incompressibility condition (2.4) is auttinally satisfied
throughout the flow field. Lety be the streamfunction ang the

vorticity in the spanwise direction. Then the reas
=ﬂ a_u aw ,andv=— 9y hold, and we obtain
ox 0z ay 0z
Dzw:—ah (28)
Dw _ _ i 200 + 2 Du _ px Dv
Dt = yi o Dt p Dt

+ %e{szu V=200 +4p,, + (U, +v, o, - 2.} (29)

If the dynamic viscosityl is held constant instead of the
kinematic viscosity (2.9) takes the form

Dw 1 P p, Du p, Dv
— =—[*w- X 2.10
Dt pRe il—yip p Dt p Dt ( )

Computational Approach

The simulations employ equidistant grids in thetaegular
computational domain. Spectral Galerkin methods ased in
representing the streamwise dependence of therdtreaetion and
the vorticity fields

i (z.t)sin{lax)
(z,t)sin(l ax)

(3.1)
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is solved once per time step in Fourier space daogto

(lf/.“*l)" -(laPgm =am (3.3)

with the prime denoting differentiation with respazz.

Boussinesq Gravity Current

The density difference between two fluids can rafigem very
small to very large. In many geophysical situatimueh as sea
water and fresh water the density difference is/\a@mall (within
5%). In cases of small density difference, densitsiations can be
neglected in the inertia term, but retained in amy term where
they are multiplied withg. This approximation of the momentum
equations is referred to as the Boussinesq appatixim It is
accurate for fluids with densities within a few pent of each other.
The formation of a Boussinesq gravity current isvah in fig. 2 for
Re=4,000. Here, slip boundary conditions are empldyeth at the
bottom and top walls. For a comparison betweendlaith slip and
no-slip conditions, we refer the reader to Birnedral (2004). The
symmetry of the dense and light fronts for Boussingravity
currents can be clearly seen for all times. ltee# the symmetry of
the governing equations and boundary conditions, @@sults in
identical propagation velocities and heights ofhbdtonts. The
heights remain close to half the channel heighagreement with
experimental observations by other researcherS§iefpson (1997).
The dimensionless propagation velocities of batihts are near one
half, which is the value given by Benjamin (1968) fin energy
conserving current. A vigorous Kelvin-Helmholtz taisility can be
observed along the entire interface of the grawityrent, which is
typical for flows with Re > 1,000. At higher values dRe more
small-scale structures are observed, but the eabkeglobal
properties remain nearly unchanged. More detailsnemerically
simulated Boussinesq currents in both two and tbeensions are
provided by Harteét al (1999) and Hartedt al (2000).
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Figure 2. Concentration contours from a Boussinesq
4,000, at different times, showing the evolution of
gravity .

simulation for Re =
a typical Boussinesq

Non-Boussinesq Gravity Currents

There can be practical situations of interest wttbheedensity
difference between the two fluids forming the grawturrent is
larger than a few percent. Turbidity currents aotl gas eruptions
from volcanoes are just few examples. In orderttidyssuch flows,
we cannot use the above Boussinesq approximatice.instead
need to solve the complete Navier-Strokes equatiomslving
variable density. For density ratios of For densétijos of y= 0.92,
0.7, and 0.2, fig. 3 shows contour plots of simala forRe= 4,000
at timet = 10. Fig. 3(a) still resembles the Boussinescavity
current, although the symmetry is maintained orgpraximately.
This loss of symmetry can be observed most cldarlthe vortex
pairing process.
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Figure 3. Concentration contours from a non-Boussin
Re = 4,000 at time t = 10 for different density ratios
changes in the front speeds and the front heights.

esq simulation for
¥, clearly showing the

Fig. 3(b) clearly shows that already fpe= 0.7 the dense front
moves significantly faster than the light front,dathat it has

that the Kelvin-Helmholtz instability forms only aag the dense
front, while the light front is stable. All theséservations are in
agreement with experimental observations by Gghihedr (1993)
and Lowe (2004).

Simplified models of non-Boussinesq gravity cursemave been
developed by patching an energy-conserving lighuntfrto a
dissipative dense front via an expansion wave. Vidiielity of this
model is confirmed by the dissipation data provithgdBirmanet
al.(2004) The results demonstrate that the dissipatiothe light
front remains nearly constant as the density @tenges from 1 to
0.2, while the dissipation level in the dense frimtreases. This is
observed for all values &estudied.

Gravity Currentson Sopes

Gravity currents in nature and industry frequerittww along
slopes. Thus it is important to understand thecesfef a sloping
bottom on the global properties of gravity curre@savity currents
along inclines have been modeled in the past usedge models,
cf. Rosset al(2002}. The wedge shape is used to model the long-
term behavior of the gravity current, while it isoposed that in the
short term the angle of the slope does not mattien it has been
noted that friction along the bottom wall does platy an important
role in this flow. Thus, in order to better undarst the long and
short-term behavior of gravity currents on a slape present highly
resolved numerical simulation results in fig. (4).
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Figure 4. Flow for y=0.998 at different times for
the bottom is 30° to horizontal.

Re = 4,000. The angle of

Fig. 4(a) shows that at = 3 the gravity currents are just
beginning to form. There does not appear to beaagteffect of the
slope angle during this early phase, as the shapieeccurrents is
similar to the case of a horizontal flow. We obserslight
differences in the front propagation velocity, hewe Fig. 4(b)
shows that soon thereafter much more vigorous misakes place
along the interface, as compared to the horizaasé. Accelerating
fluid layers form behind both fronts, similar too#e studied
experimentally by Thorpe (1968} in inclined charmdh fig. 4(c)
we observe that these accelerated layers, whosandgs are
clearly affected by the angle of the slope, hawhed the fronts
and start to affect their propagation velocities.

Gravity currents on slopes thus exhibit two difféarphases: The
first phase is characterized by early mixing arel fdfrmation of the
accelerated fluid layers behind the fronts, while second phase is
dominated by more rapidly advancing gravity curréonts. The

simulations give the time for the transition betwéke two phases
4

ast, = tanqofg. This is agreement with the results provided bgdRo

traveled a longer distance than for frre 0.92 case. Also the height €t al(2002) for the time after which the angle beconmesortant.

of the dense front is smaller than that of thetliffont. These
observations can be seen even more clearly ir8@. We observe

J. of the Braz. Soc. of Mech. Sci. & Eng.
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Fig. (5) shows the jump in the front propagatiofoeity when the
transition between the two phases occurs.
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Particle-Laden Gravity Currents time when the front speed of the particle-drivemrent starts to

) ) ) ) ) deviate from the speed of its density-driven couypzg.
Particle-driven gravity currents form a specialsslaf gravity

currents, as their density difference is causediffgrential loading 10~
with suspended particles (fig. 6). Here we focus ditute
suspensions with volume fractions well below onec@eat, so that
particle-particle interactions can be neglected @mtpling between
particles and fluid motion is dominated by the s&fan of it
momentum.
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o Figure 7. Sedimentation rate at the bottom wall of the channel as a
’ function of time. The thin horizontal line indicate s the initial value of the
S S T S S S | sedimentation rate.
0 3 6 9 12 15
t
Figure 5. The dense front velocity for the gravity ~ current on a slope shown For the sake of direct comparison of computatioaaults with
in fig. 4. It can be seen that close to  t = 12 there is a jump in velocity of the experimental data, we have evaluated the integmdd'nentation

front. This suggests the transition from the first to the second phase. profile at the bottom for selected times from a 4swmensional

simulation atGr 10%. For this Grashof number, measurements of
Rooji & Dalziel (1998) are available. The small,alg particles
used in the experiments have a non-dimensiondingetpeed of
about 0.02, which is also used in the simulatian.fij. 8 the
computational and experimental sedimentation mefifor three
different time instants are given in the form oh@n-dimensional
deposit rateD,(x,t) per unit span. The curves are normalized such
that the results for the latest timte-{ ), when all particles have
already settled out, integrate to unity. Good aue® between the
experimental data and the simulation results, wiaiehrepresented
by dashed and solid lines, respectively, is readigen. Both
consistently show the maximum of the final depositcurve to be
located some distance downstream of the initi@rfate location, a
feature that was already observed in earlier xgaits Bonnecaze
etal. (1993). Differences between experiments and sitimrls are
primarily seen in the region around the initialdkotlowever, in the
experiments this region is presumably affected ooty by
disturbances induced by the initial stirring of gaission but also by
the onset of sedimentation before start of experime

Figure 6. Structure of a particle-driven gravity cu  rrent visualized by Summary
isosurfaces of concentration att =2 and t =8. Re  sults are obtained from a

three-dimensional simulation for a Grashof number o fGr=5x10°and a ; i
dimensionless settling velocity of u ¢ = 0.02 (from Necker et al. (2002b)). In We have presented an overview of results from bngdad;olved

all cases the concentration value of 0.25 is Shown. two- and three-dimensional numerical simulationgrafvity current
flows. The simulations are performed for a widegeawof density
ratios, and for varying slope angles. Both flowsveln by fluid
density differences and flows driven by particleading are
considered. The simulation results are generallyvény good
agreement with experimental observations with régarquantities
such as the front heights, their propagation véksi and the
overall deposit profiles. The simulations furthermprovide access
to quantities that are difficult to obtain from exjments, such as
spatially resolved dissipation fields. In this wéyey allow us to test
simplified theoretical models proposed in the &tare.

The settling of the particles leads to a contindess of
suspended material in the flow. In consequenciieabottom of the
tank a sediment layer forms that grows with timehds been
observed that the sedimentation process is verg tping the first
10-20 dimensionless time units until about 70%lbparticles have
settled out. Thereafter, sedimentation slows dowbstantially. Fig.
7 gives the detailed time history of the sediméntatrate (cf.
Necker et al. (2002)). Until = 14 the sedimentation rate steadily,
increases. A striking feature of the sedimentatate is the abrupt
change that follows the steady increase, leadirg nwassive decay
of sedimentation rate with time. This change ocevlien about half
the particles have settled at the bottom, and iihaides with the
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Figure 8. Non-dimensional particle deposit profiles as functions of x.
Results for time t = 7.3 and 10.95, and the final profile for ( t - o) after all
particles have settled. Solid line: two-dimensional simulation, dashed line:
experimental data of Rooji & Dalziel (1998. In both cases Gr = 10°%, ug =
0.02% (from Necker (2002)).
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