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Dynamics and Nonlinear Control

This paper presents some recent advances in thandga and control of constrained
multi-body systems. The constraints considered megdsatisfy D’Alembert’s principle
and therefore the results are of general appligahilThey show that in the presence of
constraints, the constraint force acting on the tifabdy system can always be viewed as
made up of the sum of two components whose eXplinitis provided. The first of these
components consists of the constraint force thatlldvchave existed were all the
constraints ideal; the second is caused by the ideal nature of the constraints, and
though it needs specification by the mechaniciao vshmodeling the specific system at
hand, it nonetheless has a specific form. The gérguations of motion obtained herein
provide new insights into the simplicity with whiblature seems to operate. They are
shown to provide new and exact methods for thekimgccontrol of highly nonlinear
mechanical and structural systems without recotwstae usual and approximate methods

of linearization that are commonly in use.
Keywords. Constrained motion, multi-body dynamics, explaifuations of motion, exact
tracking control of nonlinear systems

Introduction

The general problem of obtaining the equations ofion of a
constrained discrete mechanical system is oneeotémtral issues
in multi-body dynamics. While it was formulatedleast as far back
as Lagrange (1811), the determination of the expdiguations of
motion, even within the restricted compass of lagran dynamics,
has been a major hurdle. The Lagrange multipliethotkrelies on
problem-specific approaches to the determinatiothefmultipliers
which are often difficult to obtain for systems kwia large number
of degrees of freedom and many non-integrable cainss.
Formulations offered by Gibbs (1879), Appell (18%0)d Poincare
(1901) require a felicitous choice of problem sfieciquasi-
coordinates and suffer from similar problems in lishga with
systems with large numbers of degrees of freedotnnaany non-
integrable constraints. Gauss (1829) developednargk principle
governing constrained motion for systems that fyab$Alembert’s
principle, and Dirac (1964) has offered a formuwati for
hamiltonian systems with singular lagrangians whleesconstraints
do not explicitly depend on time.

The explicit equations of motion obtained by Udwadia and

Kalaba (1992) provide a new and different perspecibn the
constrained motion of multi-body systems. They ddtrce the
notion of generalized inverses in the descriptibsuzh motion and,
through their use, obtain a simple and generaligkgquation of
motion for constrained multi-body mechanical systemithout the
use of, or any need for, the notion of Lagrangetiplidrs. Their
approach has allowed us, for the first time, toaobthe explicit
equations of motion for multi-body systems with swaints that
may be: (1) nonlinear functions of the velociti€2) explicitly

dependent on time, and, (3) functionally dependentvever, their

equations deadnly with systems where the constraints are ideal and

satisfy D’Alembert's principle, as do all the other
formulations/equations developed so far (e.g., hage (1811),
Gibbs (1879), Appell (1899), Poincare (1901), Ggu829), Dirac
(1964), Chataev (1989), and Synge (1927)). D’Alertberinciple
says that the motion of a constrained mechanicgtkesy occurs in
such a way that at every instant of time the sutal tof the work
done under virtual displacements by the forceotraint is zero.
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In this paper we extend these results along twectons. First,
we extend D’Alembert’s Principle to include congita that may
be, in general, non-ideal so that the forces ofstraint may
therefore do positive, negative, or zero work undértual
displacements at any given instant of time durhmg motion of the
constrained system. We thus expand lagrangian mashao
include non-ideal constraint forces within its casp. Second, the
explicit equations of motion are obtained. Theydlda deeper
insights into the way Nature seems to work. Wité lielp of these
equations we provide a new fundamental, generahciple
governing constrained multi-body dynamics.

Nomenclature

A =m by n matrix

a = n-component acceleration vector of unconstragystem

B= AMY/2

b = m-component vector

B' = Transpose of matrix B

B* = generalized Moore-Penrose inverse of mdrix

C = given n-component vector describing work doneby-
ideal constraints

c=Mc

h = number of holonomic constraints

M = positive definite n by n mass matrix

m = total number of constraints, holonomic and ndahomic

n = number of generalized coordinates

Q =right hand side of unconstrained equation ofiomot

g = n-component vector of generalized coordinates

g; = component of generalized coordinate vector

g = vector of generalized velocity
¢ = vector of generalized acceleration

Q° = constraint force , or control force, n-componesttor

Q° = n-component constraint force vector cause bglide
constraints

QS = n-component constraint force cause by presefners
ideal constraints

t=time

Greek Symbols

A = difference between acceleration of constrainedesystnd
that of unconstrained system
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@; = i-th constraint
u=MY%
Vv = n-component virtual displacement vector

Subscripts

i relative to ideal constraint force
ni relative to nonideal constraint force
0 relative to initial time

Super scripts
T the transpose of a matrix

+ the Moore-Penrose inverse of a matrix
¢ the constraint force, or, the control force

Statement of the Problem of Constrained Motion

Consider first an unconstrained, multi-body systerhose
configuration is described by th@ generalized coordinates

9=[ .02, - ]
componentsg; , of the velocity of the system can be indepengent

By ‘unconstrained’ we mean that the

assigned at any given initial time, say,=t;. Its equation of
motion can be obtained, using newtonian or lag@mgnechanics,
by the relation
M (a,t)d = Q(a.G.t) . at,) =gy, dlty) =d, (1)
Where then by n matrix M is symmetric and positive definite. It
is indeed possible for the matiik to be singular when dealing with
some special substructure models of multi-bodyesgst but we
shall not discuss this here. We refer the readeddwadia and
Phohomsiri (2006) for the general, constrained ggus of motion
when such nonsingular matrices appear in the fatian of the
unconstrained equations of motion of a mechanigatesn. The
matrix M (q,t) and the generalized foreevector 6 by 1 matrix),

Q(q,q,t), are known. In this paper, by ‘known’ we shall mea
known functions of their arguments. The generalizeckleration of
the unconstrained system, which we denote bynthector a, is
then given by
d=M"Q=a(q,q1) (2)
We next suppose that the system is subjected tolonomic
constraints of the form

¢i(qvt):01i :1121' . -h1 (3)
and m-h nonholonomic constraints of the form
$(q,4t)=0,i=h+1 h+2...m (4)

The initial conditions gy = q(t =t,) and g =q(t=t,) are
assumed to satisfy these constraints so $étgty)=0, i
1,2,.. .handg(q,,9,.t,)=0,i=h+1 h+ 2....m. These
constraints encompass all the usual holonomic amthalonomic
constraints (or combinations thereof) that the ihddy system
may be subjected to. We note that the constrairdy aiso be
explicit functions of time, and the nonholonomimstraints may be
nonlinear in the velocity components . Under the assumption of
sufficient smoothness, we can differentiate equati@) twice with

respect to time and equations (4) once with resjpetiine to obtain
the consistent equation set
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Aa,9.t)G = b(a,q,t) ®)
where the constraint matriR, is a knownm by n matrix andb is a
known m-vector. It is important to note that for a givest ef initial
conditions, equation set (5) is equivalent to eguat (3) and (4),
which can be obtained by appropriately integratiregset (5).

The presence of the constraints (5) imposes additimrces of
constraint on the multi-body system that altemiteeleration so that
the explicit equation of motion of the constrairsydtem becomes

M@ =Q(a,4,t) +Q°(q.4.t) (6)

The additional termQ°, on the right hand side arises by virtue

of the imposed constraints prescribed by equa(®hs

We begin by generalizing D’Alembert’'s Principle iaclude
forces of constraint that may do positive, negatime zero work
under virtual displacements.

We assume that for any virtual displacement vecidt), the

total work doneW=Vv" (1)Q°(q,q,t), by the forces of constraint at

each instant of timet, is prescribed (for the given, specific
dynamical system under consideration) through peeification of
a knownn-vector C(q, q,t) such that

W =v' ()C(q,4,t) )
Equation (7) reduces to the usual D’Alembert’s Eipte when
C(t) =0, for then the total work done under virtual diggaments is
prescribed to be zero, and the constraints areghieinto be ideal. In
general, the prescription @f is the task of the mechanician who is
modeling the specific constrained system whosetemuaf motion
is to be found. It may be determined for the spesystem at hand
through experimentation, analogy with other systesntherwise.
We include the situation here when the constran&y be ideal
over certain intervals of time and non-ideal ovémneo intervals.
Also, W at any given instant of time may be negative, thasi or
zero, allowing us to include multi-body systems venenergy may
be extracted from, or fed into, them through thespnce of the
constraints. We shall denote the acceleration efuhconstrained
system subjected to this prescribed foftby c(q,g,t)=M™C. In

what follows, we shall omit the arguments of theéaas quantities,
except when needed for clarity.

Equations of Motion for Constrained Systems

We begin by stating our result for the constraimedlti-body
system described above. For convenience we state itwo
equivalent forms (Udwadia and Kalaba, 2002a an@Bp0

1.The explicit equation of motion that governs theletion of

the constrained system is:

MG=Q+Q +Q5=Q+MY’B*'(b-Aa)+ MY’(I-B'BIM™*C  (8)
or
d=a+M™?B*(b-Aa)+ M 2(I -B"B)M **c 9)
Equation (9) can also be expressed as
A=g-a=M"Y?B'e+M (1 -B*B)M*?¢c (10)

In equations (8)-(10)B = AM %, and B* denotes the Moore-
Penrose inverse of the constraint ma#iXUdwadia and Kalaba.,
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1996); A(t) denotes the deviation of the acceleration of the The derivation of our result is as follows.

constrained systentj , at timet from its unconstrained vaIu@,(t),

at that time; and, the quanti(t) := (b— Aa) represents the extent

The acceleration(j , of the constrained system must satisfy two

requirements. It must be such that :
(1) at each instant of timg,it must satisfy the constraints given

to which the acceleratiom, at the timet, corresponding to the by equation (5), and,

unconstrained motion does not satisfy the congtreguation (5).
Later on, from a controls perspective we will calt) the ‘error
signal.’

2.At each instant of timg the total force of constrainQ®, is

made up of two additive parts. The first pa@; , is the force

of constraint that would have been generated wée t

constraints ideal at the timiethe second pariQ;, , is created
by the non-ideal nature of the constraints at ifme t. These
two contributions to the total constraint force aelicitly
given by
Q° =M"Y?B*(b- Aa) (12)
and
Q. =MY*(1 -B*B)M ?’C (12)

where Q° = QF +Q;, . The subscriptsandni refer to ideal and non-

ideal, respectively. WherC(t) =0, the constraints are all ideal and

thenQ°® =QF.

Equation (10) leads to the following new fundameptanciple
of motion for constrained multi-body mechanicalteyss:

The motion of a discrete dynamical system subjeded
constraints evolves, at each instant in time, ichsa way that the
deviation in its acceleration from what it wouldviaat that instant
if there were no constraints on it, is the sumved ™M-orthogonal
components; the first component is directly projpodl to the
extent, e, to which the accelerations corresponding its
unconstrained motion, at that instant, do not Batlse constraints,
the matrix of proportionality beingM *'?B*; and, the second
component is proportional to the given n-vectorthe matrix of
proportionality beingM ™?(1 —B*B)M*'2.

We define twon-vectors u and w to be M-orthogonal if
u'Mw = 0. Since the Moore-Penrose inverse of a matBx, may
be unfamiliar to some, | provide here some of ipprties, which
will be used later on. Given am by n matrix B, then by m

matrixB* is a uniqgue matrix that satisfies the followinguifo
relations:

(1) BB'B=B; (13a)

(2) B'BB" =B"; (13b)

(3) (BB")" =BB*; and, (13¢)
(4) (B"B)" =B"B. (13d)

As stated in our fundamental principle above, theo t
components of acceleration engendered by the preseh the
constraints are explicitly given by the last twomfiers on the right
hand side of equation (9). Thel-orthogonality of these two
members follows from the
{a-8By™Mm2}m{m*2(B")} = (1 -B"B)'B" = (1 -B'B)B" =0,
where we have used relation 13(c) in the secondliguand
equation 13(b) in the last.
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(2) the workW done under any virtual displacement by the force
of constraint,Q°, must, at each instant of tinbe be as prescribed
by relation (7).

Since we require the acceleration of the constdagystem to
satisfy the consistent set of

equationsAj = A(4+a) =B(M'?4)+ Aa=b, we have, from the

theory of generalized inverses,
MY24=B*(b- Aa)+ (I -B'B)z (14)

wherez is any arbitraryn-vector, and B* is the Moore-Penrose

inverse (of the matrixB = AM - 2) whose properties are described
in equations 13(a)-13(d). From equation (14) we thave

Mg =Ma+MA=Q+MY?B*(b—Aa)+ MYY(| -B'B)z=Q+Q°, (15)
so that

Q° =MY?B*(b-Aa)+MY2(l -B*B)z (16)

To explicitly find Q°, we next determine the second member on
the right in equation (16) in such a way as to emsiat the second
of the above-mentioned requirements is satisfied.

A virtual displacement at time is any displacement that
satisfies the relationAv=0 at that time (Udwadia, et al., 1997).

Since Av=B(MY?v):=By the explicit solution of the
homogeneous set of equatioBg = 0is simply
MYy =p=(1-B'B)y,or,v=MY*(1-B*B)y  (17)

wherey is any arbitraryn-vector. And so from relation (7), we
require that

W=v'Q°=v' [MY?B"(b-Aa)+M"?(I -B*B)z]=v'C, (18)
where, at each instant of tim€, is specified by the mechanician
who is modeling thespecific mechanical system. Using equation
(17) in the last equality in (18) we get

yT(I —B+B)TM —1/2[M 1/zB+(b_Aa)+M1/2(| -B'B)7] =

=y"(1 -B"B)"M V2C, (19)
which, becausg is arbitrary, yields
(1-B*B)z=(1 -B*B)"M *2C=(1 -B*'B)M V2C.  (20)

Relation (20) follows from (19) through the use refations
(13d) and (13b) because

(1-B'B’M™*2M¥2B* =[I -(B'B)"]B" =[I -(B'B)]B" =0, (21)
and,
(1 -B'B)"(I -B*B) = (1 -B*B)(| -B*B) = (I -B*B).  (22)

Using (20) we then get
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MY2(I -B*B)z=M*?(1 -B*B)M Y'2C (23)
which when used in the second member on the nigatjuation (16)
gives
Q° =MY2B*(b-Aa)+MY2(1 -B*B)M '2C, (24)

and the result given by equation (8) now followanfrequation (15).

The explicit equations of motion obtained hereike Ithose
obtained earlier for ideal constraints (Udwadia d&@daba 1992),
are completely innocent of the notion of Lagrangstipliers. Over
the last 200 years, Lagrange multipliers have lseewidely used in
the development of the equations of motion of aamséd multi-
body systems that it is sometimes tempting to sty believe
that they have an instrinsic presence in the dasoni of
constrained motion. This is not true. As shownhiis paper, neither
in the formulation of the physical problem of theotion of
constrained multi-body systems nor in the equatgmsrning their
motion are any Lagrange multipliers involved. Tise of Lagrange
multipliers (a mathematical tool invented by Lagyan(1811))
constitutes justone of the severalintermediary mathematical
devices invented for handling constraints. Andait, the direct use
of this device appears difficult when the constiigre functionally
dependent. Lagrange multipliers do not appear i physical
description of constrained motion, and therefomnod and do not,
ultimately appear in the equations governing suotion.

Conclusions

The simplicity of the general explicit equation afotion
obtained herein relies on the interplay of fourtcarobservations:

(1) No transformation of coordinates, or their elimioat is
undertaken when constraints are present; the cwiedi in which
the unconstrained multi-body system is describedthe same as
those used to describe the constrained systens, dthfirst, appears
to be counter-intuitive and indeed goes again§iay2ar-old, well-
accepted current of practice in dynamics and thieatephysics that
was first initiated by Lagrange. Such transformagio and
eliminations are often useful in handling problesfisnathematical
physics. However, it is the fact that we do not theen that appears
to be ultimately responsible for the simplicity dfie explicit
equation obtained herein, and the fundamental hitsigbout the
nature of constrained motion provided by it.

(2) The constraints are described in their differeatiatorm
by equation (5); this a consequence of the re#@izahat, at any
instant of timet, the ‘state’ of the systeng,q(t),q(t)), is assumed
known, and it is the state immediately followingstlinstant that
must then be the focus of our inquiry. Our attemtioust then
naturally focus on the system’s acceleratign,

(3) For a physical system where the constraint forcewatk
the equations of motioncannot be obtained solely through

knowledge of th&iinematicalnature of the constraints as describeq\/Ie

by equations (3) and (4); one needs to have aniacaidynamical
characterization of the constraints given by thdemrsion of
D’Alembert’s principle (or some equivalent of itas stated in
equation (7). Such a characterization yields a umigquation of
motion, as expected from, and consistent with, timalcobservation.

(4) The Moore-Penrose inverse of a matrix shows amgitr
presence in the equations of motion. It managesotd out the
manner in which the constraints interact with theeg forces

Firdaus E. Udwadia

a problem that has been worked on for many decau#s,weak
success, by control theorists. For, the constfaite Q° can be
interpreted as the control force required to beliegpto the
nonlinear multi-body system which is described buation (1) so
that it ‘exactly’ satisfies the trajectory requiremts imposed by
equation (5) (equivalently, by equations (3) ang & eachinstant
of time. One then obtains the closed-form contasté, given by
equation (24). And this for a general, nonlineattishody system!
In fact, this control force is exactly what Nattveould use” were it
required to satisfy the constraint equations (3) @) (also thought
of now as the trajectory requirements!) along widhation (7).
Furthermore, were we to s€&=0 (the ideal constraint case), we
would obtain the force that Nature would employctntrol the
nonlinear multi-body system described by equatinwith (ideal)
constraints described by equations (3) and (4)waed then have
Mg = Q+Qcontrol =Q+ M1/ZB+(b_ Aa) ) (25)
And so we see that Nature appears to be actudiigvrey much
as a control engineer would! For, the second membehe right in
equation (25) can be thought of as providing ‘feskbcontrol,’
using feedback proportional to the ‘error signalt) .= (b- Aa),
which measures the extent to which the accelerdtianwe know at
time t, namelya(t), does not satisfy our trajectory requirement (5).
However, it is in the choice of the ‘gain matrix,

M*2(q,t)B*(q,4,t), that Nature seems to really excel! She picks
the control gain with incredible ingenuity so aei@ctlysatisfy the
trajectory requirement (5) &ach instant of timdt is the choice of
this matrix, which, in general, is a highly nonkmdunction ofq, g ,
andt, that would most likely baffle our best controéthists! Such
reinterpretations of the equations obtained in gaper within the
framework of control theory show their consideralsieope of
applicability and utility. The details of this agaich to the control
of multi-body systems (accuracy and robustness) wtmuld be too
long a story to present here. The interested readgrfind them in
Udwadia (2003, 2004).

In this paper we have thus extended the lagranfgianulation
of mechanics to include constraints that may belidad/or non-
ideal, and the equations of motion presented is f{aper are
applicable to multi-body mechanical systems thatluide such
constraints. They appear to be the simplest and coosprehensive
equations of motion so far discovered for suchesyst
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