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Structural Optimization for Statics, 
Dynamics and Beyond 
Structural optimization has matured to the point that it can be routinely applied to a wide 
range of real design tasks. The purpose here is threefold. First, the general optimization 
task will be defined. Second, the state of the art in structural optimization will be reviewed. 
Finally, examples will be presented to demonstrate the level of sophistication possible in 
applying this technology. It is concluded that, while much research always remains, 
optimization technology has matured to the point where it can and should be used 
routinely for engineering design. 
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Introduction 

With his landmark paper in 1960, Schmit ushered in over forty 
years of intensive development in structural and general purpose 
optimization research. This has culminated in numerous commercial 
products that are available today to solve design problems of 
remarkable size and complexity. These basic developments, together 
with modern graphical interfaces, makes it possible to use this 
technology with very little formal training in optimization theory.1 

Despite the widespread availability of this technology, it is 
seldom taught as a design tool by universities and remarkably 
underutilized by industry. Yet the motivation to use optimization is 
compelling. For automobiles, a ten percent mass reduction will 
increase fuel economy by about seven percent. Only a one percent 
economy improvement will save nearly three billion dollars per year 
in the U.S. at the pump. Similarly, by reducing the mass of a 
commercial aircraft by about two hundred pounds adds a paying 
passenger for the life of the aircraft. A one pound reduction in the 
mass of a spacecraft will either add a pound of payload or save 
about $20,000 per flight to space. The list of examples could 
continue for pages. Even beyond the cost argument, the savings in 
natural resources through the use of optimization could be immense. 

The purpose here is to briefly review the development of 
structural optimization leading to the current state of the art 
and offer examples to demonstrate the power of optimization 
to enhance the design process 

Nomenclature 

F = force in member 
F(X) = objective function 
gj(X) =j-th inequality constraint 
hk(X) = k-th equality constraint 
K = stiffness matrix 
l = number of equality constraints 
L = length of member 
m = number of inequality constraints 
n = number of design variables 
P = structural load vector 
S = search direction 
U = vector of structural displacements 
X = vector of design variables 
X = single design varible 
δX = change in design variables 

Greek Symbols 
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α = move parameter 
σ = stress 

σ  = allowable stress 
σijk = stress in element i, component j, load case k 
∂  = partial derivative 
∇  = gradient operator 

Subscripts 

i     design variable number 
j     inequality constraint number 
x    derivative with respect to x 

Superscripts 

L        lower bound on design variable 
New  new design 
Old   old design 
U      upper bound on design variable 
-1       inverse 

What is Design Optimization? 

Optimization is intrinsically tied to our desire to excel, whether 
we are an athlete, artist or engineer. We all adjust some parameters, 
perhaps our time, to minimize or maximize one or more results such 
as income, leisure time or job satisfaction. We do this subject to 
limitations or constraints, such as physical ability, time available, 
legal restrictions or moral codes of conduct. Thus, whatever our 
field of endeavor, we constantly strive to solve a constrained 
optimization problem. 

In engineering, we create products. To do this, we normally use 
computer analysis to judge the quality of our designs. We use 
computational fluid dynamics codes to calculate energy 
requirements and flow patterns in a ducting system. We use finite 
element analysis to calculate stresses, deflections, vibration 
frequencies, etc. of a structure. In almost all disciplines, we use 
computational, and sometimes experimental, tools to judge the 
quality of our proposed designs. If not satisfactory, we modify the 
design and perform repeated analyses in an effort to improve the 
product, or at least meet the design requirements. 

This traditional approach of analyze and revise normally 
involves only changing a few variables (often only one) at a time 
and does not account very well for the interaction among the 
variables. 

Now imagine we can change large numbers of design 
parameters simultaneously in order to improve the design while 
satisfying all design requirements, at the same time accounting for 
the interactions among the parameters. This is exactly what 
numerical optimization does. 

Our computer analysis program has a set of inputs that we may 
consider to be contained in a vector X. Based on this input, the 
analysis provides outputs. One or more of these outputs can be 
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called an objective function which we wish to minimize or 
maximize. Other outputs may be required to be within some bounds. 
These we call constraints. Both the objective(s) and constraints are 
functions of the input or design variables contained in X. 

Numerical optimization solves the general problem: Find the 
values of the design variables contained in X that will; 

 
Minimize 

( )XF  (1) 
 
Subject to: 

( ) 0 1,g X j m
j

≤ =
 (2) 

 

1,L U
i i iX X X i n≤ ≤ =  (3) 

 
The function, F(X) is referred to as the objective or merit 

function and is dependent on the values of the design variables, X, 
which themselves include member dimensions or shape variables of 
a structure as examples. The limits on the design variables, given in 
Eq. (3), are referred to as side constraints and are used simply to 
limit the region of search for the optimum. For example, it would 
not make sense to allow the thickness of a structural element to take 
on a negative value. Thus, the lower bounds are set to a reasonable 
minimum gage size. If we wish to maximize F(X), for example, 
maximize fuel economy, we simply minimize the negative of F(X).  

The gj(X) are referred to as constraints, and they provide bounds 
on various response quantities. A common constraint is the limits 
imposed on stresses at various points within a structure. Then if 
σ is the upper bound allowed on stress, the constraint function 
would be written, in normalized form, as 

 

 
1 0ijkσ

σ
− ≤

 (4) 
 

where 
i = element 
j = stress component 
k= load condition 
Additionally, we could include equality constraints of the form 
 

( ) 0 1,kh X k l= =  (5) 
 
Normally, equality constraints can be included in the original 

problem definition as two equal and opposite inequality constraints. 
Now consider how we might solve this general optimization 

problem. One approach would be to pick many combinations of the 
design variables and call our analysis program to evaluate each, 
picking the one with the best objective function which also satisfies 
all constraints. This would be a classical random search approach or 
perhaps the modern version known as genetic search (Hajela, 1990). 

Another approach would be to perturb each design variable and 
evaluate the objective and constraint functions. This would 
determine the sensitivity (gradient) of the design with respect to the 
variables. With this information, we can mathematically 
(numerically) determine how to change the design variables to 
improve the objective while satisfying the constraints. There are a 
multitude of such “gradient based” methods and considerable 
software available today (Vanderplaats, 2004a). 

These methods closely model what we do in design already. 
Normally, we begin with a candidate design and ask “How can we 
change the design to improve it?” Thus, we modify our design as; 

 
New OldX X Xδ= +  (6) 

Optimization does much the same thing, but in two steps. First, 
we ask what direction to move in and then we ask how far to move. 
That is, 

 
New OldX X Sα= +  (7) 

 
where S is the search direction and α is the number of steps we 
move in this direction (partial steps are allowed). 

The difference in optimization algorithms is mainly in how we 
calculate the search direction, S, and how we do the “one-
dimensional search” to determine α. The key point here is that all 
variables are considered simultaneously according to their effect on 
the objective function and all constraints. Also, since this is all 
automated and today’s computers are very fast, we can find an 
optimum design with much less time and effort than just finding an 
acceptable design using traditional methods. 

This problem statement provides a remarkably general design 
approach and a multitude of methods are available today for solving 
this general problem. Much of the theoretical development has been 
in the operations research community and applications there are 
widespread today. In engineering, while development has been 
underway for over forty years, applications have lagged far behind. 
The time has come for that to change. 

Optimization History 

Structural optimization dates to the work of Maxwell  (1869) and 
Mitchell (1904).  The modern, computer based, era of structural 
optimization was ushered in by Schmit’s classical paper in 1960, 
though in his 1981 review of Structural Synthesis development, he 
credits a paper by Klein (1955) for providing some key ideas. 

Here, we will briefly offer a narrative of the development of 
general optimization algorithms followed by development of 
structural optimization. The distinction is that general optimization 
provides the actual optimization algorithm while structural 
optimization offers advanced methods for making the best use of 
these algorithms. Most of these details may be found in 
Vanderplaats (2004a). 

Optimization Algorithms 

During the 1950s and early 1960s, random search methods were 
popular, where the components of the X vector were chosen 
randomly, an analysis was performed and if an improved design was 
found, it was kept. This was repeated until no progress could be 
made or computer resources were exhausted (the usual case). The 
choice of random values could be the actual values of Xi or 
perturbations of these values. Some researchers observed that, after 
some time, they could create a vector from the worst to the best 
design and accelerate the process by moving in this direction.  One 
might observe that this is a (rather poor) gradient search. These 
methods are easy to program but are very inefficient and are limited 
to only a few variables. 

Focus during the 1960s included Sequential Linear 
Programming (Kelly, 1960) (SLP), Sequential Unconstrained 
Minimization Techniques (Fiacco and McCormick, 1968) (SUMT) 
and Feasible Directions methods (Zoutendijk, 1960).  Though some 
non-gradient based methods were also developed during this period, 
these gradient based methods were generally considered to be more 
efficient and reliable. 

The 1970s saw development of the Augmented Lagrange 
Multiplier (Rockefellar, 1973) and Generalized Reduced Gradient 
(Gabriel and Ragsdell, 1977) methods. These methods had the 
advantage that they have a strong theoretical basis in the Kuhn-
Tucker conditions for optimality. The idea is that, by creating an 



Garret N. Vanderplaats 

/ Vol. XXVIII, No. 3, July-September 2006   ABCM 318 

algorithm that will drive the design to a Kuhn-Tucker point, 
improved efficiency and robustness will result. During the late 
1970s, development of response surface methods began 
(Vanderplaats, 1979 and Myers and Montgomery, 1995) and has 
continued since. 

The 1980s were a period of refinement ending with renewed 
interest in random methods in the engineering community and 
Sequential Unconstrained Minimization Techniques by the 
operations research community. The random (and related) methods 
include Genetic Search (Hajela, 1990), Simulated Annealing 
(Nemhauser and Wolsey, 1988) and related methods that attempt to 
mimic natural evolutionary processes. The Sequential 
Unconstrained Minimization Techniques focused on interior point 
methods based on the Kuhn-Tucker conditions (Hagar, et al, 1994).   

Throughout the 1990s, Genetic Search algorithms were the 
focus of considerable research by the engineering community and a 
new method called Particle Swarming was added (Venter and 
Sobieszczanski-Sobieski, 2003).  Meanwhile, the operations 
research community focused on interior point methods and 
continued to refine these. For engineering problems, an exterior 
penalty function method was developed for solution of very large 
scale continuous and discrete variable problems (Vanderplaats, 
2004b). 

As optimization algorithms have improved, the size and 
complexity of the engineering applications has grown. Figure 1 
shows the trend in engineering problem size beginning in 1960.  
While there is considerable scatter in the data to create this figure, it 
is seen that there has been an exponential growth in problem size. 
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Figure 1. Growth in optimization problem size. 

Structural Optimization 

Structural optimization began in earnest with Schmit’s classical 
paper (1960). This ushered in the era of numerical search methods 
which were more general than previous analytically based methods 
such as Shanley’s work (1952). The 1960s saw a great deal of 
research in structural optimization, dealing mainly with member 
sizing of trusses, frames and shell structures. Initially, gradients 
were calculated by finite difference methods. It was not until 1965 
that gradients were calculated analytically and this happened with 
such little fanfare that the original published work by Fox (1965) on 
calculating gradients analytically is relatively unknown and seldom 
referenced. 

Gradients of displacements are calculated from the basic finite 
element analyses equations,  

 

Ku P=  (8) 
 

where K is the master stiffness matrix, P is the vector of applied 
loads and u is the vector of displacements. 

Differentiating with respect to design variable Xi and 
rearranging gives 

 

1

i i i

u P K
K u

X X X
−  ∂ ∂ ∂= − ∂ ∂ ∂ 

 (9) 

 
Because the stiffness matrix has already been decomposed, this 

is a simple and efficient calculation. From this the derivatives of 
stresses are calculated from the stress recovery equations.  
Derivatives of eigenvalues and eigenvectors, as well as various 
other responses are calculated in a similar fashion. 

By the end of the 1960s it was becoming apparent that 
numerical optimization was limited to perhaps fifty variables and 
was computationally too expensive to the a usable design tool.  This 
was particularly emphasized in a paper by Gallatly, Berke and 
Gibson (1971) when they called the 1960s “the period of triumph 
and tragedy” for structural optimization. Thus, the 1970s began the 
era of optimality criteria methods. Optimality criteria offered the 
ability to deal with large numbers of design variables but with a 
limited number of constraints and without the generality of 
numerical optimization methods. Numerical optimization methods 
were given new life in 1974 when Schmit and Farshi (1974) 
published their work on approximation concepts. These methods 
were based on the concept of creating approximations using the 
underlying physics to allow for large moves and this reduced the 
number of detailed finite element analyses from well over 100 to the 
order of ten. For statically determinate trusses or membrane 
structures, these approximations were shown to be exact for stress 
and displacement constraints. Parallel to the development of 
approximation concepts, the adjoint method for gradient 
computations was developed (Arora and Haug, 1979 and 
Vanderplaats, 1980). Finally, in the late 1970s Fleury and Sanders 
(1977) reconciled numerical optimization and optimality criteria 
methods by showing that optimality criteria are closely related to 
duality theory in numerical optimization. 

For a detailed understanding of the development and state of the 
art at the end of the 1970s, Schmit’s AIAA History of Key 
Technologies (1981) paper is an excellent resource. 

The 1980s were a period of refinement and the initial steps of 
creating commercial structural optimization software. Second 
generation approximations were created using force approximations 
(Bofang and Zhanmei, 1981 and Vanderplaats and Selajegheh, 
1989) instead of the earlier stress approximations. Similarly, Releigh 
quotient approximations were created for eigenvalue constraints 
(Canfield, 1990). These new approximations expanded the element 
types to shell and frame elements among others.  Importantly, for 
such elements as frames it was now possible to treat the physical 
dimensions as design variables and section properties as 
intermediate variables so that the designer could now deal with the 
actual variables of interest. 

To understand the basic concept of formal approximations, 
consider the simple rod shown in Fig. 2. The objective is to 
minimize the volume subject to a stress limit. That is, letting the 
design variable, X=A, 
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Figure 2. Simple rod. 

 
Minimize   

XL  (10) 
 
Subject to; 

F

X
σ σ= ≤

 (11) 
 
Note that the objective is linear but the constraint is nonlinear.  

We could linearize both and repeatedly solve the problem using this 
approximation. Such an approach is just sequential linear 
programming and is generally not very reliable or efficient. 

Now consider a change in variables so X = 1/A.  The problem is 
now 

Minimize 
L

X
 (12) 

 
Subject to; 

FXσ σ= ≤  (13) 
 
We’ve now converted the problem to one with a linear objective 

and a nonlinear constraint to one with a nonlinear objective with a 
linear constraint. Such a problem is better conditioned for 
optimization.  Furthermore, we can create a linear approximation to 
the constraint and keep the original objective, since it is easily 
calculated, along with its derivatives.   

That is, 
 

0
X Xσ σ σ δ≈ + ∇ •  (14) 

 
This approach was offered by Schmit and Farshi (1974) in the 

1970s and this allowed us to solve structural optimization problems 
of rods and membranes with an order of magnitude improvement in 
efficiency. 

In the 1980s, Bofang (1981), and Vanderplaats and Selajeghgh 
(1989) proposed approximating the force on the elements instead of 
approximating the stress. 

Thus, 
 

0
AF F A

A

δσ + ∇ •≈
 (15) 

 
This is actually a higher order approximation and is also 

applicable to elements other than rods and membranes.   

Figure 3 shows the organization of a modern structural 
optimization program. The general approach is to first perform an 
analysis and evaluate all constraints. These are then screened to 
eliminate, temporarily, those that are not critical or near critical.  
Then, the sensitivity analysis is performed. The approximate 
problem is then generated and solved. The key points are that the 
approximations are based on physics and are of very high quality 
and that the optimizer never actually calls the finite element 
analysis. The result is that optimization normally requires only 10 or 
so detailed finite element analyses to achieve an optimum, even 
when there are very large numbers of design variables and 
constraints. 
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Figure 3. Modern structural optimization. 

 
In recent years, topology optimization has become popular.  

Here, given a design volume filled with material, the objective is to 
find the stiffest structure using a specified fraction of the material.  
This is a powerful tool for defining an initial structure for later 
refinement using shape and sizing optimization. 

Optimization in a Commercial Environment 

Although some commercial optimization capabilities were 
developed in the early years, the serious commercialization of this 
technology began in the late 1980s and began to proliferate in the 
1990s and today. Commercial software generally falls into two 
distinct categories; general purpose optimization and fully integrated 
finite element based structural optimization. With few exceptions 
there has not been a significant effort to “tightly couple” 
optimization with other disciplines such as computational fluid 
mechanics. 

Due to the nature of optimization algorithms and their 
implementation, the capabilities and features of the various offerings 
can differ greatly so some effort is needed to choose the best 
software for a particular group or company. Most vendors take 
considerable effort to create “user friendly” software so the user 
does not need to be an expert in optimization theory. 

Examples 

Examples are presented here to demonstrate the breadth of 
design tasks that can be routinely solved with modern commercial 
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optimization software. Most problems solved in a purely research 
environment are not sophisticated enough to be useful here and most 
real commercial problems are proprietary and cannot be published. 
Therefore, these examples fall somewhere between academic and 
real commercial products. The linear analysis based structural 
optimization examples are solved by GENESIS.   

Shape Optimization of a Pin 

Figure 4 shows a cutaway of a symmetric structure with a load 
on the steel pin.  The outer structure is ceramic and the intermediate 
portion is an adhesive. The objective is to change the shape of the 
outer structure to minimize the maximum stress with deformation 
limits. This is a nonlinear contact problem solved by coupling the 
ABAQUS analysis software with the VisualDOC general purpose 
optimization software. Nine shape variables were used and the 
maximum stress was reduced by eleven percent. This is typical of 
the improvement optimization provides for an existing design.  The 
nonlinear codes, such as ABAQUS, LS-Dyna, PamCrash, etc. to not 
use the high quality approximations available for linear analysis 
based optimization so this coupling of the analysis with a general 
purpose optimizer is the typical approach. This is a perfectly valid 
optimization approach and the only negative is that it requires many 
more analyses than for the linear case. This is alleviated somewhat 
by parallel processing but is still relatively expensive. Using this 
approach, we can solve nonlinear contact problems such as this, 
crash energy absorption, air bag deployment optimization and airfoil 
optimization, as examples. 

 

 
Figure 4. Shape optimization. 

Car Body Reinforcement 

As noted above, structural optimization is more advanced than 
general purpose optimization because we can calculate gradients of 
the needed responses and because we have very high quality 
approximation techniques to provide efficiency and reliability. 

Figure 5 shows a car body model which we wish to reinforce to 
increase the bending and/or torsion frequency. The approach used 
here was to allow every element in the model to be optimized for 
thickness (with a lower bound of the original design) with the 
constraint that only a specified fraction of the material may be used.  
Here, 34,560 sizing variables were used. While somewhat difficult 
to see in Figure 5 (unless viewed in color), reinforcement was added 
in the areas of the firewall, rocker panels and rear fender areas. 

Table 1 gives the increase in bending or torsion frequency for 
different values of added mass. 

 

 
Figure 5. Car body reinforcement. 

 

Table 1. Frequency increases. 

Increased Frequency (Hz) 
Added 

Mass (Kg) Maximize First 
Torsion Frequency 

Maximize First 
Bending Frequency 

2.64 4.81 6.42 
7.32 7.56 9.89 
15.06 9.66 11.22 

Topology Optimization of a Simple Support 

Figure 6 shows topology optimization of a simple support.  This 
was a 100,000 variable example where the density of each element 
was designed and the strain energy of the structure was minimized.  
The key feature here is that manufacturing constraints were imposed 
to insure that the part could be cast.  

 

Initial Design Final Design  
Figure 6. Support. 

Topology Optimization Without Manufacturing Constraints 

If topology optimization is performed without considering 
manufacturing issues, very attractive structures are often produced 
but these cannot be easily manufactured. Figure 7 is such an 
example where just over one million design variables were used.  
This structure was optimized to minimize strain energy under the 
applied load. 

It is noteworthy that topology optimization seldom produces a 
final part, even though manufacturing constraints are used. This is 
because topology optimization normally does not include stress and 
other constraints.  However, it does identify load paths and provides 
a very good starting point for shape and sizing optimization. 
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Initial Design Final Design
 

Figure 7. Skeletal support. 

Matching Modal Frequencies 

An aerospace application is to design a fin such as that shown in 
Fig. 8 to match desired frequencies. This may occur when a 
vibration test is performed and it is desired to adjust the finite 
element model to match the measured values. Figure 8 shows an 
example of a typical missile fin. Here, the thickness of the solid fin 
was designed to give a first frequency of 5Hz +0.2Hz and a second 
frequency greater than 12Hz. Additionally, stress and displacement 
constraints were imposed and it was required to minimize the mass. 
There were a total of 144 design variables and the mass was reduced 
39% while satisfying the stress and displacement constraints. The 
first frequency was moved from 3.37Hz to 5.18Hz and the second 
frequency was moved from 8.61Hz to 12.04Hz. 

 

Uniform Thickness 
Airfoil

Optimized 
Airfoil

Uniform Thickness 
Airfoil

Optimized 
Airfoil

 
Figure 8. Matching frequencies. 

Various Automotive Design Examples 

Figure 9 shows various applications in the automotive industry. 
These are actual design examples and so details are proprietary. 
However, it is clear that real structures can be efficiently designed 
with optimization. In some cases, special features need to be added 
to the software to achieve reasonable results. For example, the fuel 
tank was stiffened by adding the indentations (beads) to the bottom. 
If the optimization software had been used without consideration of 
the real design conditions, an unreasonable design would have 
resulted.  This is because the stiffest design would be one with much 
different but stiffer indentations but at the cost of greatly reducing 
fuel capacity. The solution was to create “volume” elements inside 
the tank and constraining this volume to be the required capacity. 

 
 

Car Mirror

Fuel TankMuffler

Air Cleaner Filter Car SeatDash Cross-Beam
 

Figure 9. Automotive design examples. 
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Heat Shield Optimization 

Figure 10 shows a heat shield where it is desired to add a bead 
pattern in order to increase the first bending frequency without 
increasing the mass. The initial design has a frequency of 9.4 Hz. By 
automatically designing the bead pattern, the frequency was 
increased to 40.1 Hz. 

 

1st Bending 
Freq = 9.4 Hz.
For Flat Heat shield

Bead Pattern is Automatically
Created for GENESIS 
Optimization

1st Bending 
Freq = 40.1 Hz.
For Optimized Heat shield

 
Figure 10. Heat shield optimization. 

Summary 

A narrative of the development of optimization leading to the 
current use of this technology in industry has been offered.  
Development of this technology has followed two distinct tracks.  
One is optimization algorithms for general applications and the 
other is special techniques for structural optimization. The 
distinction is that structural optimization methods create a high 
quality approximation based on physics (as opposed to simple 
linearization) to improve efficiency and robustness and then uses a 
general purpose optimizer to solve this approximate problem. 

Commercial software is available for both classes of problems.  
This software is highly refined and can be used with very limited 
knowledge of optimization theory. 

Finally, a variety of applications have been presented to 
demonstrate the power available today.  It is noted that some of 
these examples are not actual commercial applications because those 
are usually proprietary. Indeed, to the best of this author’s 
knowledge, the largest structural sizing optimization problem solved 
in industry exceeds 250,000 design variables with topology 
optimization problems exceeding two million variables.  

It is concluded that the state of the art is well refined and is 
readily available in the commercial environment to improve design 
quality, reduce design time and increase corporate profits. Indeed, it 
is argued that no computational technology today is as effective as 
an advanced design tool as is numerical optimization. 
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