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Structural Optimization for Statics,
Dynamics and Beyond

Structural optimization has matured to the poirgtth can be routinely applied to a wide
range of real design tasks. The purpose here isefotd. First, the general optimization
task will be defined. Second, the state of thénastructural optimization will be reviewed.
Finally, examples will be presented to demonsttheelevel of sophistication possible in
applying this technology. It is concluded that, vhinuch research always remains,
optimization technology has matured to the pointmhit can and should be used
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Introduction

With his landmark paper in 1960, Schmit usheredver forty
years of intensive development in structural andegal purpose
optimization research. This has culminated in nomeicommercial
products that are available today to solve desigoblpms of
remarkable size and complexity. These basic dewsboys, together
with modern graphical interfaces, makes it possiisleuse this
technology with very little formal training in optization theory.

Despite the widespread availability of this teclgyl, it is
seldom taught as a design tool by universities esdarkably
underutilized by industry. Yet the motivation toeusptimization is
compelling. For automobiles, a ten percent massiatezh will
increase fuel economy by about seven percent. @rmige percent
economy improvement will save nearly three billdwilars per year
in the U.S. at the pump. Similarly, by reducing timass of a
commercial aircraft by about two hundred poundssaddpaying
passenger for the life of the aircraft. A one pouweduction in the
mass of a spacecraft will either add a pound oflgzal or save
about $20,000 per flight to space. The list of epke®: could
continue for pages. Even beyond the cost argunieatsavings in
natural resources through the use of optimizatmriccbe immense.

The purpose here is to briefly review the developinod
structural optimization leading to the current staf the art
and offer examples to demonstrate the power ofropétion
to enhance the design process

Nomenclature

F = force in member

F(X) = objective function

g;(X) =j-th inequality constraint

h(X) = k-th equality constraint

K = stiffness matrix

| = number of equality constraints

L = length of member

m = number of inequality constraints
n = number of design variables

P = structural load vector

S = search direction

U = vector of structural displacements
X = vector of design variables

X = single design varible

X = change in design variables

Greek Symbols
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a = move parameter
o= stress

o = allowable stress

Oy = stress in element i, component j, load case k
0 = partial derivative

0 = gradient operator

Subscripts

i design variable number

j  inequality constraint number

X derivative with respect to x
Superscripts

L lower bound on design variable
New new design

Old old design

U  upper bound on design variable
-1 inverse

What is Design Optimization?

Optimization is intrinsically tied to our desire éxcel, whether
we are an athlete, artist or engineer. We all adjose parameters,
perhaps our time, to minimize or maximize one oremasults such
as income, leisure time or job satisfaction. Wetlds subject to
limitations or constraints, such as physical apiltime available,
legal restrictions or moral codes of conduct. Thubatever our
field of endeavor, we constantly strive to solvecanstrained
optimization problem.

In engineering, we create products. To do thisnamnally use
computer analysis to judge the quality of our desigWwe use
computational fluid dynamics codes to calculate rgpe
requirements and flow patterns in a ducting systérfa. use finite
element analysis to calculate stresses, deflectioribration
frequencies, etc. of a structure. In almost alcigitnes, we use
computational, and sometimes experimental, toolgutige the
quality of our proposed designs. If not satisfagtave modify the
design and perform repeated analyses in an effoitnprove the
product, or at least meet the design requirements.

This traditional approach of analyze and revise nmathy
involves only changing a few variables (often onle) at a time
and does not account very well for the interactamong the
variables.

Now imagine we can change large numbers of design

parameters simultaneously in order to improve tksigh while
satisfying all design requirements, at the same tawcounting for
the interactions among the parameters. This is tigxashat
numerical optimization does.

Our computer analysis program has a set of infatswe may
consider to be contained in a vectr Based on this input, the
analysis provides outputs. One or more of thes@utsitcan be
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called an objective function which we wish to miiim or
maximize. Other outputs may be required to be wiiime bounds.
These we call constraints. Both the objective(s) eonstraints are
functions of the input or design variables contdimeX.

Numerical optimization solves the general probléfind the
values of the design variables containeX itnat will;

Minimize
F(x) (1)
Subject to: .
gj(X)sO j=1m @
XFsX <XY  i=1n (3)

The function, F(X) is referred to as the objective or merit
function and is dependent on the values of thegdegariablesX,
which themselves include member dimensions or skiapables of
a structure as examples. The limits on the desigiables, given in
Eq. (3), are referred to as side constraints aeduaed simply to
limit the region of search for the optimum. For mxde, it would
not make sense to allow the thickness of a stratglement to take
on a negative value. Thus, the lower bounds aréosatreasonable
minimum gage size. If we wish to maximigX), for example,
maximize fuel economy, we simply minimize the negabf F(X).

Theg;(X) are referred to as constraints, and they probimends
on various response quantities. A common constiaitthe limits
imposed on stresses at various points within actstre. Then if
O is the upper bound allowed on stress, the constfaimction
would be written, in normalized form, as

4

where

i = element

j = stress component

k= load condition

Additionally, we could include equality constraimtsthe form

h(X)=0 k=1, (%)

Normally, equality constraints can be included e briginal
problem definition as two equal and opposite indtyueonstraints.

Now consider how we might solve this general optatibn
problem. One approach would be to pick many contluns of the
design variables and call our analysis program valuate each,
picking the one with the best objective functioniethalso satisfies
all constraints. This would be a classical randearch approach or
perhaps the modern version known as genetic sédajbla, 1990).

Another approach would be to perturb each desigialble and
evaluate the objective and constraint functions.is Tivould
determine the sensitivity (gradient) of the desigth respect to the
variables. With this information, we can mathensltc
(numerically) determine how to change the designalées to
improve the objective while satisfying the consitai There are a
multitude of such “gradient based” methods and icemable
software available today (Vanderplaats, 2004a).

These methods closely model what we do in desigeady.
Normally, we begin with a candidate design and ‘&t can we
change the design to improve it?” Thus, we modify design as;

XNewszId"'JX (6)
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Optimization does much the same thing, but in tteps First,
we ask what direction to move in and then we ask fas to move.
That is,

XNeW:Xo|d+aS (7)
whereS is the search direction and is the number of steps we
move in this direction (partial steps are allowed).

The difference in optimization algorithms is maittyhow we
calculate the search directiol, and how we do the “one-
dimensional search” to determimme The key point here is that all
variables are considered simultaneously accordirteir effect on
the objective function and all constraints. Alsice this is all
automated and today’s computers are very fast, ave find an
optimum design with much less time and effort thast finding an
acceptable design using traditional methods.

This problem statement provides a remarkably gérdasign
approach and a multitude of methods are availaiolayt for solving
this general problem. Much of the theoretical depsient has been
in the operations research community and applicatithere are
widespread today. In engineering, while developmieas been
underway for over forty years, applications havggkd far behind.
The time has come for that to change.

Optimization History

Structural optimization dates to the work of Max&B69) and
Mitchell (1904). The modern, computer based, dratnictural
optimization was ushered in by Schmit's classicaper in 1960,
though in his 1981 review of Structural Synthestssedlopment, he
credits a paper by Klein (1955) for providing sokeg ideas.

Here, we will briefly offer a narrative of the désement of
general optimization algorithms followed by devetmnt of
structural optimization. The distinction is thatngeal optimization
provides the actual optimization algorithm whilerustural
optimization offers advanced methods for making lilest use of
these algorithms. Most of these details may be doun
Vanderplaats (2004a).

Optimization Algorithms

During the 1950s and early 1960s, random searchadstwere
popular, where the components of tie vector were chosen
randomly, an analysis was performed and if an iwvgaadesign was
found, it was kept. This was repeated until no pesg could be
made or computer resources were exhausted (the cese). The
choice of random values could be the actual valaksX; or
perturbations of these values. Some researchess\vausthat, after
some time, they could create a vector from the tvwrshe best
design and accelerate the process by moving indirgstion. One
might observe that this is a (rather poor) gradieszdrch. These
methods are easy to program but are very inefficed are limited
to only a few variables.

Focus during the 1960s included Sequential Linear
Programming (Kelly, 1960) (SLP), Sequential Uncomised
Minimization Techniques (Fiacco and McCormick, 1p§8UMT)
and Feasible Directions methods (Zoutendijk, 196D0ough some
non-gradient based methods were also developedgtinis period,
these gradient based methods were generally coadide be more
efficient and reliable.

The 1970s saw development of the Augmented Lagrange
Multiplier (Rockefellar, 1973) and Generalized Reeld Gradient
(Gabriel and Ragsdell, 1977) methods. These metlnads the
advantage that they have a strong theoretical bastke Kuhn-
Tucker conditions for optimality. The idea is thhy creating an
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algorithm that will drive the design to a Kuhn-Teckpoint,
improved efficiency and robustness will result. iDgrthe late
1970s, development of
(Vanderplaats, 1979 and Myers and Montgomery, 198%) has
continued since.

The 1980s were a period of refinement ending wihewed
interest in random methods in the engineering conitypuand
Sequential Unconstrained Minimization Techniques lblye
operations research community. The random (andecBlanethods
include Genetic Search (Hajela, 1990), Simulatedneafing
(Nemhauser and Wolsey, 1988) and related methedsattempt to
mimic  natural evolutionary  processes. The
Unconstrained Minimization Techniques focused drerior point
methods based on the Kuhn-Tucker conditions (Hagaal, 1994).

Throughout the 1990s, Genetic Search algorithmsevibe
focus of considerable research by the engineengnaunity and a
new method called Particle Swarming was added @femind
Sobieszczanski-Sobieski, 2003). Meanwhile, the ratpns
research community focused on interior point meshoahd
continued to refine these. For engineering probjeams exterior
penalty function method was developed for solutrvery large
scale continuous and discrete variable problemsnd¥gplaats,
2004b).

As optimization algorithms have improved, the siaad
complexity of the engineering applications has growigure 1
shows the trend in engineering problem size beg@mnn 1960.
While there is considerable scatter in the daterdate this figure, it
is seen that there has been an exponential gromgtoblem size.
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Figure 1. Growth in optimization problem size.

v

Structural Optimization

Structural optimization began in earnest with Sdlsntlassical
paper (1960). This ushered in the era of numesgearch methods
which were more general than previous analyticeliged methods
such as Shanley’s work (1952). The 1960s saw at gteal of
research in structural optimization, dealing maimlith member
sizing of trusses, frames and shell structurediallyi, gradients
were calculated by finite difference methods. lswet until 1965
that gradients were calculated analytically and thppened with
such little fanfare that the original published Wby Fox (1965) on
calculating gradients analytically is relativelykmown and seldom
referenced.
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Gradients of displacements are calculated frombtsc finite
element analyses equations,

response surface methods nbega

8)

whereK is the master stiffness matriR, is the vector of applied
loads andu is the vector of displacements.

Differentiating with respect to design variabl¥ and
rearranging gives

Ku=P

o
X,

P 9K u} ©)

[axax

Because the stiffness matrix has already been demsed, this
is a simple and efficient calculation. From thie ttlerivatives of
stresses are calculated from the stress recovenyatiegs.
Derivatives of eigenvalues and eigenvectors, ad a®lvarious
other responses are calculated in a similar fashion

By the end of the 1960s it was becoming appareat th
numerical optimization was limited to perhaps fiftgriables and
was computationally too expensive to the a usaédigd tool. This
was particularly emphasized in a paper by GallaBgrke and
Gibson (1971) when they called the 1960s “the pledb triumph
and tragedy” for structural optimization. Thus, t®70s began the
era of optimality criteria methods. Optimality erita offered the
ability to deal with large numbers of design valgsbbut with a
limited number of constraints and without the gafigr of
numerical optimization methods. Numerical optimiaatmethods
were given new life in 1974 when Schmit and Farkt®74)
published their work on approximation concepts. Sehenethods
were based on the concept of creating approximatigsing the
underlying physics to allow for large moves andsthéduced the
number of detailed finite element analyses from weér 100 to the
order of ten. For statically determinate trusses noembrane
structures, these approximations were shown toxbetdor stress
and displacement constraints. Parallel to the dgweént of
approximation concepts, the adjoint method for ignatd
computations was developed (Arora and Haug, 1979 an
Vanderplaats, 1980). Finally, in the late 1970suBjleand Sanders
(1977) reconciled numerical optimization and optitypacriteria
methods by showing that optimality criteria areselly related to
duality theory in numerical optimization.

For a detailed understanding of the developmentstaité of the
art at the end of the 1970s, Schmit's AIAA Histoof Key
Technologies (1981) paper is an excellent resource.

The 1980s were a period of refinement and theaingieps of
creating commercial structural optimization softeiarSecond
generation approximations were created using fapggoximations
(Bofang and Zhanmei, 1981 and Vanderplaats andjegéleh,
1989)instead of the earlier stress approximations. @iyil Releigh
quotient approximations were created for eigenvatoastraints
(Canfield, 1990). These new approximations exparitedelement
types to shell and frame elements among othergortantly, for
such elements as frames it was now possible t¢ theaphysical
dimensions as design variables and section prepertas
intermediate variables so that the designer coaold deal with the
actual variables of interest.

To understand the basic concept of formal approtans,
consider the simple rod shown in Fig. 2. The oljects to
minimize the volume subject to a stress limit. Thgtletting the
design variableX=A,
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Figure 2. Simple rod.

Minimize
XL (10)
Subject to;
F__
o=—<0T
X (11)

Note that the objective is linear but the constr&@nnonlinear.
We could linearize both and repeatedly solve tloblem using this
approximation. Such an approach is just sequenliabar
programming and is generally not very reliableféicient.
Now consider a change in variablesXg 1/A. The problem is
now
Minimize
L
N (12)

Subject to;
o=FX<@o (13)

We've now converted the problem to one with a limagjective
and a nonlinear constraint to one with a nonlir@zgective with a
linear constraint. Such a problem is better coadéd for
optimization. Furthermore, we can create a lirsggaroximation to
the constraint and keep the original objectivecsiit is easily
calculated, along with its derivatives.

That is,

o=0°+00, * oX (14)

This approach was offered by Schmit and Farshi 4197 the
1970s and this allowed us to solve structural ogtition problems
of rods and membranes with an order of magnituggarement in
efficiency.

In the 1980s, Bofang (1981), and Vanderplaats asidj&yhgh
(1989) proposed approximating the force on the etéminstead of
approximating the stress.

Thus,

o= F°+0F,« 5A
A (15)

This is actually a higher order approximation arsd also
applicable to elements other than rods and membrane
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Figure 3 shows the organization of a modern strattu
optimization program. The general approach is st fperform an
analysis and evaluate all constraints. These aga Htreened to
eliminate, temporarily, those that are not critical near critical.
Then, the sensitivity analysis is performed. Theprapimate
problem is then generated and solved. The key pairg that the
approximations are based on physics and are of gty quality
and that the optimizer never actually calls theitdinelement
analysis. The result is that optimization normadiguires only 10 or
so detailed finite element analyses to achieve ptimom, even
when there are very large numbers of design vasakdnd
constraints.

FEM
ANALYSIS
OUTER LOOP
CONSTRAINT
CONTROL / SCREENING
PROGRAM
A
\ SENSITIVITY
~| ANALYSIS
Y
APPROXIMATE
PROBLEM - APPROXIMATE
GENERATOR ANALYSIS
i
INNER LOOP ‘}
OPTIMIZER

Figure 3. Modern structural optimization.

In recent years, topology optimization has becomeufar.
Here, given a design volume filled with materile tobjective is to
find the stiffest structure using a specified fiaetof the material.
This is a powerful tool for defining an initial stture for later
refinement using shape and sizing optimization.

Optimization in a Commercial Environment

Although some commercial optimization capabilitiegere
developed in the early years, the serious comnigaii@on of this
technology began in the late 1980s and began tifguete in the
1990s and today. Commercial software generallys faito two
distinct categories; general purpose optimizatioh fally integrated
finite element based structural optimization. Widw exceptions
there has not been a significant effort to “tightgouple”
optimization with other disciplines such as compatal fluid
mechanics.

Due to the nature of optimization algorithms andeirth
implementation, the capabilities and features efirious offerings
can differ greatly so some effort is needed to skothe best
software for a particular group or company. Moshd@s take
considerable effort to create “user friendly” saite so the user
does not need to be an expert in optimization theor

Examples

Examples are presented here to demonstrate thelthred
design tasks that can be routinely solved with mod®mmercial
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optimization software. Most problems solved in agbu research
environment are not sophisticated enough to bailkefe and most
real commercial problems are proprietary and cabeopublished.
Therefore, these examples fall somewhere betweadeatc and
real commercial products. The linear analysis bastdctural

optimization examples are solved by GENESIS.

Shape Optimization of a Pin

Figure 4 shows a cutaway of a symmetric structutke e load
on the steel pin. The outer structure is ceramitthe intermediate
portion is an adhesive. The objective is to chathgeshape of the
outer structure to minimize the maximum stress wiéefiormation
limits. This is a nonlinear contact problem sohmd coupling the
ABAQUS analysis software with the VisualDOC gengpatpose
optimization software. Nine shape variables wereduand the
maximum stress was reduced by eleven percent. i§higical of
the improvement optimization provides for an exigtdesign. The
nonlinear codes, such as ABAQUS, LS-Dyna, PamCrtshto not
use the high quality approximations available fioedr analysis
based optimization so this coupling of the analygith a general
purpose optimizer is the typical approach. This igerfectly valid
optimization approach and the only negative is thetquires many
more analyses than for the linear case. This &vialled somewhat
by parallel processing but is still relatively ergve. Using this
approach, we can solve nonlinear contact problemesh ®s this,
crash energy absorption, air bag deployment opéitiaa and airfoil
optimization, as examples.

\

Figure 4. Shape optimization.

Car Body Reinfor cement

As noted above, structural optimization is moreeambed than
general purpose optimization because we can cédcgladients of
the needed responses and because we have veryghaty
approximation techniques to provide efficiency aglchbility.

Figure 5 shows a car body model which we wish iofoece to
increase the bending and/or torsion frequency. dy@oach used
here was to allow every element in the model taoptmized for
thickness (with a lower bound of the original degigvith the
constraint that only a specified fraction of thetengal may be used.
Here, 34,560 sizing variables were used. While sama¢ difficult
to see in Figure 5 (unless viewed in color), reioément was added
in the areas of the firewall, rocker panels and ferader areas.

Table 1 gives the increase in bending or torsiaqudency for
different values of added mass.
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Figure 5. Car body reinforcement.

Table 1. Frequency increases.

Increased Frequenciif)
Mg‘gge(g) Ma_ximize First Ma>_(imize First
Torsion Frequency Bending Frequency
2.64 4.81 6.42
7.32 7.56 9.89
15.06 9.66 11.22

Topology Optimization of a Simple Support

Figure 6 shows topology optimization of a simplemart. This
was a 100,000 variable example where the densigach element
was designed and the strain energy of the strugtageminimized.
The key feature here is that manufacturing cormsaivere imposed
to insure that the part could be cast.

¢ 2

Initial Design

Final Design

Figure 6. Support.

Topology Optimization Without Manufacturing Constraints

If topology optimization is performed without codsring
manufacturing issues, very attractive structuresaften produced
but these cannot be easily manufactured. Figures Buich an
example where just over one million design variabhere used.
This structure was optimized to minimize strain rggeunder the
applied load.

It is noteworthy that topology optimization seldgroduces a
final part, even though manufacturing constraints wsed. This is
because topology optimization normally does noluite stress and
other constraints. However, it does identify I@edhs and provides
a very good starting point for shape and sizingnaigation.
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Uniform Thickness
Airfoil

Optimized
Airfoil
Initial Design Final Design
Figure 7. Skeletal support.

Figure 8. Matching frequencies.
Matching Modal Freguencies

An aerospace application is to design a fin suchatsshown in Various Automotive Design Examples
Fig. 8 to match desired frequencies. This may ooshen a
vibration test is performed and it is desired tquadthe finite . ) .
element model to match the measured values. Figushows an 1 Nese are actual design examples and so detailprapeietary.
example of a typical missile fin. Here, the thicksef the solid fin HOWever, it is clear that real structures can Beiefitly designed
was designed to give a first frequency 6fz5+0.2Hz and a second with optimization. In some cases, special featuesd to be added
frequency greater than &2. Additionally, stress and displacement!© the software to achieve reasonable resultsekample, the fuel
constraints were imposed and it was required tdmize the mass. ANk was stiffened by adding the indentations (bjpéaithe bottom.
There were a total of 144 design variables andrthss was reduced T the optimization software had been used withrarisideration of
39% while satisfying the stress and displacemenstzaints. The 1€ real design conditions, an unreasonable designid have

first frequency was moved from 387 to 5.184z and the second resulted. This is because the stiffest design @vbel one with much
frequency was moved from 8182 to 12.04z. different but stiffer indentations but at the cosétgreatly reducing

fuel capacity. The solution was to create “voluneéments inside
the tank and constraining this volume to be theiired capacity.

Figure 9 shows various applications in the autoveotndustry.

Muffler Fuel Tank

Dash Cross-Beam Air Cleaner Filter Car Seat

Figure 9. Automotive design examples.
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Heat Shield Optimization

Figure 10 shows a heat shield where it is desiveadd a bead
pattern in order to increase the first bending dercy without
increasing the mass. The initial design has a requ of 9.4 Hz. By
automatically designing the bead pattern, the feagy was
increased to 40.1 Hz.

S,

Figure 10. Heat shield optimization.

Summary

A narrative of the development of optimization lieafto the
current use of this technology in industry has besfered.
Development of this technology has followed twotidist tracks.
One is optimization algorithms for general appimas and the
other is special techniques for structural optiticca The
distinction is that structural optimization methodseate a high
quality approximation based on physics (as oppasedimple
linearization) to improve efficiency and robustnessl then uses a
general purpose optimizer to solve this approxirpaddlem.

Commercial software is available for both classieproblems.
This software is highly refined and can be usedwiry limited
knowledge of optimization theory.

Finally, a variety of applications have been préseénto
demonstrate the power available today. It is ndtet some of
these examples are not actual commercial applitathecause those
are usually proprietary. Indeed, to the best ofs tliuthor's
knowledge, the largest structural sizing optimizatproblem solved
in industry exceeds 250,000 design variables wibpology
optimization problems exceeding two million variedl

It is concluded that the state of the art is wefirred and is
readily available in the commercial environmeninprove design
quality, reduce design time and increase corpguatts. Indeed, it
is argued that no computational technology todagsi®ffective as
an advanced design tool as is numerical optiminatio
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