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The objective of this paper is to study the prob&gnorbital maneuvers for an artificial
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Introduction

Problems related to orbital transfers are of carsidle
importance (Gobetz and Doll, 1969; Edelbaum, 196Bhsidering
non-coplanar orbits, it's particularly importantrtonimize the fuel
expenditure necessary for a specific plane chasigee this kind of
maneuver is the main fuel consumer.

The solution of the spacecraft bi-impulsive tran&fetween two
elliptical and non-coplanar given orbits problenithaminimum fuel
consumption under a Keplerian dynamics was founduerical
algorithm was developed for fast practical use fataim the
minimum velocity increment needed to perform thimdk of
maneuver. It was considered that the unique focoesidered by
the system dynamics are the spacecraft propulsiorces

satellite moving in a Keplerian Force Field. Anadgl equations are derived to solve this
problem. Several cases are studied to validateatherithm developed. The results show
that the theory developed here are suitable fof sgaulations and mission analysis.
Keywords: Astrodynamics, celestial mechanics, orbital mames, satellites, optimization

{ = angle between the transfer and the initial erbit

Subscripts

A = initial orbit

B = final orbit

T = transfer orbit

k = normal component

r = radial component

6 = transversal component
1 = first impulse

2 = second impulse

Problem Formulation

As the initial and the final orbits are given, fioebital elements

(instantaneous) and the Earth's gravitational cttma (assumed as a of each one are known. They are the semi-minor, &dsentricity,

point mass).

The problem is to obtain a Keplerian transfer obgtween the
given initial and final non-coplanar orbits. Thisneuver should be
performed in such way that the addition of the twagnitudes of
the impulses applied be a minimum.

This method allows the choice of the orbital regiavhere the
impulses can be applied. So, the contribution @& thaper is to
develop, implement and test a new set of equationsolve the
problem of the minimum fuel bi-impulsive maneuvehese it's
possible to include constraints considerationshsas impulses
positions restrictions, e.g., maneuvers been peddr only in
visible regions from a given groundstation.

Nomenclature

e = eccentricity

H = angular momentum

i = inclination

r = magnitude of the position vector

r = position vector

S = unit vector normal to the orbital plane
t = unit vector normal to the transfer plane
V = velocity

X, Y, Z = reference system unit vectors

@ =true anomaly

A = angle between the transfer and the final orbits
4 = gravitational constant (398600l6#/s* for Earth)
o =transfer angle

« = perigee argument

Q =longitude of the ascending node
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inclination, perigee argument and longitude of dseending node.
The first task is to obtain the two unit vectorsmal to each of the
orbits. This can be done by arbitrarily choosing tvalues for the
true anomaly (called points 1 and 2) and obtaitiregunit vectors
S, andSg from the following equations:
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To define the transfer orbital plane it's necesgargpecify the
start and the end transfer position vectors. Thiddt be done by
assuming the start and the end true anomaliesmipsrtant to note
that these true anomalies refer to their respectibbéal planes and,
so, they are angles on different orbital planesesghvalues can be
varied on each complete orbi’ (@ 36C) by chosen steps to obtain
the couple of true anomalies that minimize the fo@hsumption
establishing the orbital places to apply the imesisit could be
chosen one or more subintervals on the regfbton 60 of each
orbit to represent the possible visibility manesveonstraints.

In other words, first the problem of minimum fuehnsfer
between two fixed points (one at the initial and tither on the final
orbit) will be formulated and solved and then thage points will
be circulated by the orbits involved to obtain th@nimum
consumption transfer.

With the initial and final position vectors definatis possible to
obtain the transfer angle between these vectors:

r,

Al

cos) = (2)
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The unit vector normal to the transfer plane carcéleulated So, the first impulse can be determined as a fanatif three
by: unknown: transfer orbit angular momentum, ecceityriand the
true anomaly of the first impulse. The equation is:
_ rl X rz (3)
|r1 x r2| a7 = (VrTl _Vrl)2 + (Vm ~Va B:OS@))Z + (Va1 Ei‘;ir‘(Z))z 9)
It's important to note that if in this step the teesr, andr, are The same approach can be developed to the sec@udsin So,

collinear, there is a singularity. For this reaseectors very close to this impulse can also be determined as a functidgheosame three
this condition are not satisfactory for the methitebveloped here. unknown variables. The final equation is:
This restriction imposes constraints to the methioat, is not able to

solve special geometry problems (Hohmann trandfeelliptical, NE = (Vr2 —V,Tz)2 +(ng [tos(A) —Vm)2 +(ng E'l;in(/l))2 (10)
etc.). But, it should be take into account thas #tlass of problems
presents immediate solutions and doesn't need &plved by the The problem now can be reduced to the minimizatbrihe
proposed method. total impulse:

The next step is to calculate the angle betweeimttial and the
transfer orbits and the angle between the transfel the final AV(HT,eT,@l)=|AV1|+|AV2| (11)
orbits:

cos(¢) = S, subject to two constraints, that express the fsat the two vectors

r, andr, have the same values, independent if they arelleédcon
cos(A) = Sy [ (4)  the transfer orbit or on the initial and final on@hese constraints
can be written as:
With the two vectorsr; andr,, it's possible to calculate the

transfer orbit inclination, longitude of the ascemdnode and the 1_u U
angle that represents the addition of the perigganaent and the r_l —H—f[1+qcos@)] _H_Tz[“efcos@fl)] 12)
true anomaly. The following equations are used:
= 1_u H
cosf;) =tz == e [L+e,cos@)] = F[“ e cos@, +0)] (13)
cos(@2,) =M X (5) f2 2 T

These constraints equations are manipulated toapsformed
cos@: + @) = LM into equations for the eccentricity and angular reotam as a
|r1| E|]M| function of the true anomaly of the first impul3éie equations are:

zxt ,
M= 2= (6) _ Q-1 _H; 1+q[¢os@1)]
[|th|] e (@) cos@,) - Qtos@, + o) Q R I—Meﬂtos@) (14)

The other transfer orbit elements could only beeined when cos@)
the fuel minimization problem is solved. 1__Cos@)

As the model used here consider bi-impulsive tenssfthe H. (@) = cos@, +0) (15)
velocity variation must be split in two parts: orefers to the first T Ql- cos@,) Q2
impulse applied on the initial orbit and the otloere refers to the cos(@g, +0)
second impulse applied on the transfer orbit toemehthe final one.
The radial, transversal and normal velocity compiset the
initial orbits projected on the transfer plane are: Ql= w Q2= w (16)
1 2
Var = Hieis"’](@) Now the velocity variation is a function only ofettrue anomaly
! of the first impulse. Several methods can be engaay find the
V =£el[l+ cos(fg)] [tosg) @) minimum value of the function of a single variabie this work, it
T H, was used a function minimization routine (Pressl, 1992) that
u found the value of the true anomaly of the firstpuise which
Vir :—el[l*'COS(’H)]E‘Fin(Z) makes the velocity variation a minimum. With thislue, it's
H, possible to calculate the others transfer orbitmelgs, such as,

semi-minor axis, eccentricity and perigee argum8notthe transfer

The velocity components after the first impulsetbe transfer it and the two impulses magnitude, direction dmahtion are

orbit are: determined.
_H

vV, = e sin(@,) Results

T

u A transfer between two elliptical non-coplanar bwith a

Vo = H—[1+ € cos@,)] (8)  slight variation in all orbital elements is presshtas an example of

T the method described. The initial orbit was: serman axis =
Virn =0 12030.&m; eccentricity = 0.02000; inclination = 0.008@3perigee

argument = 3.1764€; longitude of the ascending node =
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0.00000d. The final orbit was: semi-minor axis = 11997 performed are in agreement with the results obtine a method
eccentricity = 0.01600; inclination = 0.00682perigee argument = derived from the work of Altman (1963), implementatd tested by
3.05171d; longitude of the ascending node = 0.15%668The Paulo (1996) at INPE.
minimum fuel consumption transfer orbit was foumdbe: semi-
minor axis = 12038Km eccentricity = 0.01945; inclination
= 0.00865d; perigee argument = 3.16620 longitude of the
ascending node = 0.01215 true anomaly of the first impulse The authors wish to express their appreciationtlier support
= 4,03754d; true anomaly of the second impulse = 5,9184%he provided by CNPq (National Council for Scientific nda
first impulse velocity variation was 0.002&6/sand the second one Technological Development) - Brazil and FAPESP (fation to
was 0.0199m/s The total velocity variation was 0.02228/s Support Research in Sdo Paulo State).

If one considers restrictions on the applicatiompufses points
there could be an increase on the fuel consumpfid'e same References
orbital transfer of the previous example with tkisd of constraint
has a different result. Considering that the tmuenaaly of the first Gobetz, F.W.; Doll, J.R., "A survey of impulsiveajictories,"AIAA
impulse at the initial orbit can vary only betwe@rand 1.5d, and Journal Vol. 7, No. 5, 1969, pp. 801-834. . .
the true anomaly of the second impulse on the fimalt between Vol_Esdillg‘_"“l”ln'@g‘; p%(_)vgz&%r_'y impulsesAstronautics and Aeronautics
2.0 and 3,8, the results for the velocity variation were: ffirs * " prass 'WH., Teukolsky, S.A., Vetterling, W.T., fiftery, B.P, "Two
impulse velocity variation was 0.014kd/sand the second one was point Boundary Value ProblenNumerical Recipes in FORTRAN (the art of
0.00874m/s The total velocity variation was 0.02288/s It  scientific computing)2nd ed., Cambridge University Press, 1992, pp- 74
represents a slight increase in the fuel experaitwhich can be 778.

; ; ; ; ; Prado, A.F.B.A.; Broucke, R.A., "The Minimum DeNalLambert's
larger in different situations. More results canfbend in Schulz Problem,"Controle 6 Automacad/ol. 7. No. 2, 1996, pp. 84-90.
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