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Vehicle Modeling by Subsystems 
Computer simulations have become very popular in the automotive industry. In order to 
achieve a good conformity with field test, sophisticated vehicle models are needed. A real 
vehicle incorporates many complex dynamic systems, such as the drive train, the steering 
system and the wheel/axle suspension. On closer inspection some force elements such as 
shock absorbers and hydro-mounts turn out to be dynamic systems too. Modern vehicle 
models consist of different subsystems. Then, each subsystem may be modeled differently 
and can be tested independently. If some subsystems are available as a set of nested 
models of different complexity it will be even possible to generate overall vehicle models 
which are well tailored to particular applications. But, the numerical solution of coupled 
subsystems is not straight forward. This paper shows that the overall vehicle model can be 
solved very effectively by suitable interfaces and an implicit integration algorithm. The 
presented concept is realized in the product ve-DYNA, applied worldwide by automotive 
companies and suppliers.   
Keywords: Vehicle dynamics, vehicle model, axle modeling, drive train, multibody systems 
 
 
 

Modeling Concept 

For dynamic simulation the vehicles are usually modeled by 
multi body systems (MBS), van der Jagt (2000). Typically, the 
overall vehicle model is separated into different subsystems, Rauh 
(2003). Fig. 1 shows the components of a passenger car model 
which can be used to investigate handling and ride properties. The 
vehicle model consists of the vehicle framework and subsystems for 
the steering system and the drive train. 1 

The vehicle framework represents the kernel of the model. It at 
least includes the module chassis and modules for the wheel/axle 
suspension systems. The vehicle framework is supplemented by 
modules for the load, an elastically suspended engine, and 
passenger/seat models. A simple load module just takes the mass 
and inertia properties of the load into account. To describe the 
sloshing effects of liquid loads dynamic load models are needed, 
Rill and Rauh (1992). The subsystems elastically suspended engine, 
passenger/seat, and in heavy truck models a suspended driver’s 
cabin can all be handled by the presented generic free body model. 
For standard vehicle dynamics analysis the chassis can be modeled 
by one rigid body. For applications where the chassis flexibility has 
to be taken into account a suitable flexible frame model is presented. 
Most wheel/axle suspension systems can be described by typical 
multi body system elements such as rigid bodies, links, joints and 
force elements, Rill (1994). Using a modified implicit Euler 
algorithm for solving the dynamic equations, axle suspensions with 
compliancies and dry friction in the damper element can be handled 
without any problems, Rill (2004). Due to their robustness leaf 
springs are still a popular choice for solid axles. They combine 
guidance and suspension properties which causes many problems in 
modeling, Fickers and Richter (1994). A leaf spring model is 
presented in this paper which overcomes these problems.  

The steering system at least consists of the steering wheel, a 
flexible steering shaft, and the steering box which may also be 
power-assisted. Neureder (2002) has developed a very sophisticated 
model of the steering system which includes compliancies, dry 
friction, and clearance.  
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Figure 1. Vehicle model structure. 

 
Tire forces and torques have a dominant influence on vehicle 

dynamics. The semi-empirical tire model TMeasy has mainly been 
developed to meet both the requirements of user-friendliness and 
sufficient model accuracy, Hirschberg et. al. (2002). Complex tire 
models such as the FTire Model provided by Gipser (1998) can be 
used for special applications. The module tire also includes the 
wheel rotation which acts as input for the drive train model. The 
presented drive train model is generic. It takes lockable differentials 
into account, and it combines front wheel, rear wheel and all wheel 
drive. The drive train is supplemented by a module describing the 
engine torque. It may be modeled quite simply by a first order 
differential equation or by the enhanced engine torque module en-
DYNA developed by TESIS.  

Road irregularities and variations in the coefficient of friction 
present significant impacts on the vehicle. A road model generating 
a two-dimensional reproducible random profile was provided by 
Rill (1990).  

This modeling concept is realized with a MATLAB/Simulink® 
interface in the product ve-DYNA which also includes suitable 
models for the driver, TESIS. 
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Module Flexible Frame 

Multi Body Approach to First Eigenmodes 

The chassis eigenmodes of most passenger cars start at f >20Hz. 
Hence, for standard vehicle dynamic analysis the chassis can be 
modeled as one rigid body. The lower chassis stiffness of trucks and 
pickups results in eigenmodes starting at 10f Hz≈ , Fig. 2.  

 

 
Figure 2. Chassis eigenmode of a pickup at  f=11.2 Hz. 

 
The first eigenmodes consist of torsion and bending of the 

chassis. These modes can be approximated by a multi body chassis 
model where the chassis is divided into three parts, Fig. 3.  

 

 
Figure 3. Flexible frame model. 

Free Body Motions 

The position and orientation of the reference frame Cx , Cy , Cz  

which is fixed to the center body with respect to the inertial frame 

0x , 0y , 0z  is given by the rotation matrix  
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and the position vector  
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where the comma separated subscript 0  indicates that the 
coordinates of the vector from 0  to C  are expressed in the inertial 
frame. The generalized coordinates roll, pitch, and yaw angle 0Cα , 

0Cβ , 0Cγ  as well as the coordinates 0Cx , 0Cy , 0Cz  of the vector 

0 0Cr ,  describe the free body motion of the vehicle.  

Modal Coordinates 

The motions of the front and rear body relative to the center 
body are small compared to the free body motions of the center part. 
Hence, the linearized rotation matrices  
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and the position vectors  
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are used to describe the orientation and position of the front and rear 
body relative to the center part. The vectors K

CF Cr ,  and K
CR Cr ,  denote 

the initial position of the front and rear body.  
The generalized coordinates  
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describe the motions of the front and rear body relative to the center 
body. These motions are approximated by Mn  eigenmodes 1e , 2e , 

... , 
Mne  now  
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where 1m , 2m , ..., 

Mnm  are modal coordinates, and FE  and RE  

represent 6 Mn×  matrices containing the eigenmodes.  

Generalized Coordinates 

The flexible chassis is modeled by 3 rigid bodies here. The 
orientation and the position of the bodies are described by free body 
motions and modal coordinates  

 

[ ]TnMCC mmmxy         Z 210C0C0C0C0 …γβα=  (7) 
 

where the 6  free body motions and the Mn  modal coordinates are 

collected in the vector Cy . The dimension of Cy  depends on the 

number Mn  of modal coordinates, 6y Mn n= + .  

Equations of Motion 

To generate the equations of motion Jordain’s Principle with 
generalized speeds is used. For a multi body system consisting of 
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m  rigid bodies it results in a set of two first order differential 
equations  

 

K y z

M z q

= ,
= .

ɺ

ɺ
 (8) 

 
The kinematic matrix K  follows from the definition of the 

generalized speeds. The elements of the mass matrix M  are given 
by  
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where km  is the mass and kΘ  the inertia tensor of body k . Finally, 

the components of the generalized forces and torques are defined by  
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where AkF , AkT  denote the forces and torques applied to body k  

and 0
R
ka , 0

R
kα  are remaining parts of the accelerations which do not 

depend on the derivatives of the generalized speeds.  

Applied Forces and Torques 

The forces and torques applied to the bodies can be written as 
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and  
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where the superscripts ext  and cmp  denote external and 
compliance forces and torques.  

Applying Jordain’s Principle, one part within the equations of 
motion describes the whole chassis motion. The compliance forces 
and torques are internal forces for the whole chassis and, therefore, 
do not show up in the corresponding parts of the generalized force 
vector.  

If we assume that the compliance forces and torques are 
proportional to the motions of the front and rear body then, we will 
get  
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where CFc  and CRc  mark 6 6×  stiffness matrices. The modal 

coordinate approximation Eq. 6 results in  
 

1 1

2 2and
cmp cmp

CF CR
CF F CR Rcmp cmp

CF CR

nF nF

m m

m mF F
c E c E

T T

m m

   
   
   

      
      
      
      
         

   
   
   

= = .
⋮ ⋮

 (14) 

Within Jordain’s Principle the compliance forces and torques are 
reduced to generalized forces which are calculated by  
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are M Mn n×  stiffness matrices. which are defined by the modal 

stiffnesses 1Fc , 2Fc , ... 
MFnc  and 1Rc , 2Rc , ... 

MRnc . Thus, to 

describe the motions of a flexible chassis only some eigenmodes 
and modal stiffnesses have to be provided.  

Results 

Depending on the vehicle layout, a flexible frame has a 
significant influence on the driving behavior, Fig 4. The rear axle of 
the considered bus is guided by four links. Here, the arrangement of 
the links generates a steering effect which depends on the roll angle 
of the rear part of the chassis and, therefore, also on the torsional 
stiffness of the chassis.  

 

 
Figure 4. Step input on bus with rigid and flexible Frame. 
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Module Leaf Spring 

Modeling Aspects 

Poor leaf spring models approximate guidance and suspension 
properties of the leaf spring by rigid links and separate force 
elements, Matschinsky (1998). The deformation of the leaf springs 
must be taken into account for realistic ride and handling 
simulations.  

Within ADAMS leaf springs can be modeled with sophisticated 
beam-element models, ADAMS/Chassis 12.0. But, according to 
Fickers (1994) it is not easy to take the spring pretension into 
account. To model the effects of a beam, ADAMS/Solver uses a 
linear 6 -dimensional action-reaction force (3 translational and 3 
rotational) between two markers. In order to provide adequate 
representation for the nonlinear cross section, usually 20 elements 
are used to model one leaf spring. A subsystem consisting of a solid 
axle and two beam-element leaf spring models would have 

6 2 (20 6) 246f = + ∗ ∗ =  degrees of freedom. In addition, the beam-
element leaf spring model results in extremely stiff differential 
equations. These and the large number of degrees of freedom slow 
down the computing time significantly.  

For real time applications the leaf springs must be modeled by a 
simple, but still accurate model. Fig. 5 shows a model of a solid axle 
with leaf spring suspension, which is typical for light truck rear axle 
suspension systems. There are no additional links. Hence, only the 
forces and torques generated by leaf spring deflections guide and 
suspend the axle. 

 

Y

C

X

Z

P

Q

S

R

ϕ3

ψ3

ϕ4

ψ4

ϕ1

ψ1

ϕ2

ψ2

front 
leaf eye
bushing

sh
ac

kl
e

xL

zL
yL

B

xB

zByB

x, y, z
α, β, γY1

C1

X1

Z2

Y2

Z1

X2

A
CA

xA

zAyA

C2

 
Figure 5. Axle model with leaf spring suspension. 

 
The position of the axle center A  and the orientation of an axle 

fixed reference frame Ax , Ay , Az  are described relative to a chassis 

fixed frame Bx , By , Bz  by the displacements ξ , η , ζ  and the 

rotation angles α , β , γ  which are collected in the 6 1×  axle 

position vector  
 

[ ]T

Ay ξ η ζ α β γ= , , , , , .  (17) 

Similar to Fickers (1994) each leaf spring is modeled by five 
rigid bodies which are connected to each other by spherical joints, 
Fig. 5.  

Each leaf spring is connected to the frame via the front leaf eye 
X . Furthermore each leaf spring is attached to the shackle at Y , 

and again to the frame at Z . In C  the center part of each leaf 
spring is rigidly connected to the axle. The front eye bushings are 
modeled by spring/damper elements in x -, y -, and z -direction. 
The shackles are modeled by radial and a lateral spring/damper 
elements. Within each leaf spring the angles 1ϕ , 1ψ , and 2ϕ , 2ψ  

describe the motions of part P - Q  and part R - S  relative to the 

center part. The outer parts Q - X  and P - Y  perform their 

rotations, 3ϕ , 3ψ , and 4ϕ , 4ψ , relative to part P - Q  and part R -

S . As each leaf spring element is considered as a rigid rod, the roll 
motions can be neglected. The angles are collected in 4 1×  position 

vectors  
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where 1Fy , 2Fy  and 1Ry , 2Ry  describe the momentary shape of the 

front and the rear part of the left (1) and the right (2) leaf spring.  
A fully dynamic description of a solid axle with two five link 

leaf spring models would result in 6 2 8 22f = + ∗ =  degrees of 
freedom. Compared to the beam-element model this is a really 
significant reduction.  

But a dynamic description of the five link leaf spring model still 
includes some high frequent modes which will cause problems in 
the numerical solution of the equations of motion. As mass and 
inertia properties of the leaf spring model parts are small compared 
to the solid axle, a quasi static solution of the internal leaf spring 
deflection should be accurate enough within the overall vehicle 
model.  

A quasi static solution provides the position vectors of the leaf 
spring parts as functions of the axle position vector, 

( )1 1F F Ay y y= , ( )1 1R R Ay y y= , ( )2 2F F Ay y y= , ( )2 2R R Ay y y= . Hence, 

the subsystem solid axle with two leaf springs has only 6f =  
degrees of freedom. 

Initial Shape and Pretension 

At first it is assumed that the leaf spring is located in the xz -
plane of the leaf spring fixed frame Lx , Ly , Lz  and its shape in the 

design position can be approximated by a circle which is fixed by 
the points X , C  and Y . By dividing the arc X - Y  into 5 parts of 
equal length the position of the links P , R , S , Q  and the initial 

values of the angles 01ϕ , 01ψ , 02ϕ , 02ψ , 03ϕ , 03ψ , 04ϕ , 04ψ  can be 

calculated very easily.  
In design position each leaf spring is only preloaded by a 

vertical load which results in zero pretension forces in the Ly -

direction, 0 0y
BF = , 0 0y

SF =  and zero pretension torques around the 

lz -axis, 0 0z
PT = , 0 0z

QT = , 0 0z
RT = , 0 0z

ST = . In addition the torques 

around the lx -axis vanish, 0 0x
PT = , 0 0x

QT = , 0 0x
RT = , 0 0x

ST = .  

To transfer the vertical preload 0F  to the front eye bushing and 

the shackle, the joints P , Q , R , S  must provide torques around 
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the Ly -axis, Fig. 6. The pretension forces in the front eye bushing 

0
x
BF , 0

z
BF  and in the shackle 0SF , can easily be calculated from the 

equilibrium conditions of the five link leaf spring model,  
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Figure 6. Pretension forces and torques. 

 
where YZu  refers to the unit vector in the direction of the shackle, 

and x
XYr , z

XYr  are the x  and z  components of the vector from 

pointing from X  to Y . The pretension torques in the leaf spring 
joints around the Ly -axis, 0

y
PT , 0

y
QT , 0

y
RT , 0

y
ST  follow from  
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 (21) 

 
where ijr , i P Q R S= , , , , j X Y= ,  are vectors pointing from i  to 

j .  

Compliance 

The leaf spring compliance is defined in the design position by 

the vertical and the lateral stiffness, Vc  and Lc . In Fig. 7a the leaf 

spring is approximated by a beam which is supported on both ends 
and is loaded in the center by the force F . 

 

 
Figure 7. Leaf spring stiffness. 

The deflection w  and the force F  are related to each other via 
the stiffness c   

 
F c w= .  (22) 

 
If we transfer the beam model to the five link leaf spring model 

and look at the front half, Fig. 4, one will get  
 

   ( )1 1 3w a aϕ ϕ ϕ= + + ,  (23) 

 
where a  defines the length of one link, and small deflections in the 

Lx , Lz  plane were assumed. The torques around the Ly -axis in the 

joints P  and Q  are proportional to the deflection angles 1ϕ  and 3ϕ   
 

1 31 3andy y
P QT c T cϕ ϕϕ ϕ= = .  (24) 

 
The equilibrium condition results in  
 

2 and
2 2

y y
P Q

F F
T a T a= = : .  (25) 

 
The leaf spring bending mode due to a single force can be 

approximated very well by a circular arc. Hence, the relative angle 
between connected links is equal, ϕ1=ϕ3=ϕ and Eq. 23 can be 

simplified to w=3aϕ  or  or ϕ =
a

w

3
. From Eqs. 24 and 25 follows  

 

1 3
2 and

3 2 3 2

w F w F
c a c a

a aϕ ϕ= = .  (26) 

 
Using Eq. 22, one finally obtains  
 

  
1 3

2 23
3 and

2V Vc a c c a cϕ ϕ= = ,  (27) 

 
where the beam stiffness c  was replaced by the vertical leaf spring 
stiffness Vc . Assuming symmetry, the stiffnesses in the rear joints 

are given by 
2 1

c cϕ ϕ=  and 
4 3

c cϕ ϕ= . The stiffnesses around the 

vertical axis 
1

cψ , 
2

cψ , 
3

cψ  and 
4

cψ  can be calculated in a similar 

way. The torsional stiffness of the leaf spring is neglected in this 
approach.  

Actual Shape 

The energy of a flexible system achieves a minimum value, 
MinE → , in an equilibrium position. The energy of the five link 

leaf spring model is given by  
 

1 1 3 3

2 2 4 4

2 2 2 2
1 1 3 3

2 2 2 2 2 2
2 2 4 4

1 1 1 1 1

2 2 2 2 2
1 1 1 1 1 1

,
2 2 2 2 2 2

T
X B X
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E w c w c c c c

c c c c c w c w

ϕ ψ ϕ ψ

ϕ ψ ϕ ψ

ϕ ψ ϕ ψ

ϕ ψ ϕ ψ

= + + + + +

+ + + + + +
(28) 

 
where Xw  is the 3 1×  displacement vector and Bc  is the 3 3×  

stiffness matrix of the front eye bushing, SRw , SLw  are the radial 

and lateral shackle displacements, and SRc , SLc  denote the 

corresponding stiffnesses.  
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According to Eqs. 18 and 19, the actual shape of the leaf spring 

is determined by the position vectors [ ]1 1 1 3 3

T
y ϕ ψ ϕ ψ= , , ,  and 

[ ]2 2 2 4 4

T
y ϕ ψ ϕ ψ= , , , . If the leaf spring energy becomes a 

minimum, the following equations will hold  
 

1 1 4 4

0 0 0 0
E E E E

ϕ ψ ϕ ψ
∂ ∂ ∂ ∂= , = , = , = .
∂ ∂ ∂ ∂

⋯  (29) 

 
As the shackle displacements SRw , SLw  do not depend on 1y  

and the front bushing displacement vector Xw  does not depend on 

2y  the conditions in Eq. 29 form two independent sets of nonlinear 

equations 1 1( ) 0Af y y, =  and 2 2( ) 0Af y y, = , where Ay  denotes the 

dependency of the actual position and orientation of the solid axle. 
These equations are solved iteratively by the Newton-Algorithm. 
Starting with initial guesses 01y , 0

2y  one gets an improvement by 

solving the linear equations  
 

11
1 1 1 1

1

12
2 2 2 2

2

( )

0 1 2
( )

k k
A

k k
A

f
y y f y y

y
k

f
y y f y y

y

+ 
 
 

+ 
 
 

∂ − = −
∂

= , , ,...
∂ − = −
∂

 (30) 

 

Here, the Jacobians 1
1

f
y

∂
∂  2

2

f
y

∂
∂  can be calculated analytically.  

Leaf Spring Reaction Forces 

The actual forces in the front leaf eye bushing are given by  
 

0 XB B B X BF F c w d u= + + ,ɺ  (31) 
 

where 0BF  denotes the pretension force and Bc , Bd  are 3 3×  

matrices, characterizing the stiffness and damping properties of the 
front leaf eye bushing. The displacement vector Xw  in the front leaf 

eye bushing depend on the generalized coordinates 1y  and Ay  

which describe the actual shape of the front leaf spring part and the 
actual position and orientation of the solid axle. By solving Eq. 30, 

1y  is given as a function of Ay . Hence, xw  only depends on Ay  

and its derivative can be determined by  
 

X
X A

A

w
yu

y

∂= ,
∂

ɺɺ  (32) 

 
where Ayɺ  describes the velocity state of the solid axle.  

The radial and lateral components of the shackle forces can be 
calculated from  

 

0 0 and = + + = + + ,ɺ ɺ
T T

SR SLSR SR S SR SR SR SL SL S SL SL SLF u F c w d F u F c w dw w (33) 
 

where 0SF  represents the pretension force, SRu , SLu  are unit vectors 

in the radial and lateral shackle direction, and SRc , SLc , SRd , SLd  

are constants characterizing the stiffness and damping properties of 
the shackle. The shackle displacements SRw  and SLw  depend on the 

generalized coordinates 2Ry  and Ay  which describe the actual 

shape of the rear leaf spring part and the actual position and 

orientation of the solid axle. Similarly to Eq. 32 the displacement 
velocities are given by  

 

andSR SL
SR SLA A

A A

u u
y yu u

y y

∂ ∂= = .
∂ ∂

ɺ ɺɺ ɺ  (34) 

 
Finally, the shackle force reads as  
 

  S SR SR SL SLF F u F u= + .  (35) 

Forces Applied to the Axle 

The leaf springs act like generalized force elements in this 
approach, Fig. 8. Guidance and suspension of the solid axle is done 
by the resulting force  

 

1 2 1 2B B S SF F F F F= + + +  (36) 
 

and the resulting torque  
 

1 1 2 2 1 1 2 2AB B AB B AS S AS ST r F r F r F r F= × + × + × + × ,  (37) 
 

where 1 1( )AB AB Ar r y= , ... 2( )AS Ar y  describe the momentary position 

of the front eye bushings and the shackles relative to the axle center.  
 

 
Figure 8. Forces applied to the axle. 

 
As the forces in the front eye bushings 1BF , 2BF  and the 

shackle forces 1SF , 2SF  depend on the axle state Ay , Ayɺ  only, the 

resulting force F  and the resulting torque T  are also functions of 
the axle state only. Since, hereby each leaf spring acts as a 
generalized force element, it can easily be integrated into the vehicle 
framework. By suppressing high frequent leaf spring eigenmodes, it 
is perfectly adopted to real-time application.  

Bending Modes 

The quasi-static approach reproduces all significant bending 
modes of the leaf spring, Fig.9. A leaf spring is stiffer in the lateral 
direction than in the vertical direction. Hence, a displacement in the 
front eye bushing is noticeable only on lateral leaf spring 
deflections.  
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Figure 9. Bending modes. 

Model Performance 

The five link leaf spring model was integrated into a ve-DYNA 
Ford Transit vehicle model.  

 

 
 

 
Figure 10. Comparison to measurements. 

 
Using this model at the rear axle instead of a poor kinematic 

approach means only 85% more computer run time. Hence, real 
time applications are still possible. The simulation results are in 

good conformity to measurements, Fig. 10. The nonlinearity in the 
spring characteristics is caused by an additional bump stop and by 
the change of the shackle position during jounce and rebound. 
Obviously, the five link model is accurate enough.  

Free Body Module 

Position and Orientation 

To describe the momentary state of the body E  the frame Ex  

Ey , Ez  located in the center of gravity is used. In addition, sensor 

points S  monitor position, velocity, and acceleration at specific 
body points, Fig. 11.  

 

 
Figure 11. Elastically suspended body. 

 
The frame B  is fixed to the vehicle. The suspension of body E  

on the vehicle, frame B  may consist of force elements and/or 
rubber mounts. The road-fixed frame 0  is considered as an inertial 
frame. The position of frame B  with respect to the road-fixed 
inertial frame 0  is given by the position vector  

 

0 0

B

B B

B

x

r y

z

 
 
 
 

,  
 
 
 

= .  (38) 

 
The orientation of the frame axes is described by a rotation 

matrix. Three elementary rotations are put together. The sequence  
 

0

yaw pitch roll
B BBBA A A Aβ αγ=

 (39) 

 
results in  

 
[ ]BBBA γβ coscos0 =  























++

++
=

BBBBB

BBBBBBBB

BBBB

BBBBBB

BBBBB

B
αα α

A

βαβαβ
γβαγβαγβ

γγ
γβαγβα

γγαγαγβ

coscos                         cossin                    sin-

cossincos          cossinsin   coscos

cossin -                      coscos                          

cossincos          cossinsin                       

sinsin   sinsin   sincos-   coscos BBB

0
 (40) 
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Hence, position and orientation of the vehicle-fixed reference 
frame are described by 6 generalized coordinates B B Bx y z, ,  and 

B B Bα β γ, , .  

The position and orientation of the elastically suspended body 
with respect to the reference frame B  is defined by  

 

E

BE B E

E

x

r y

z

 
 
 
 

,  
 
 
 

= .  (41) 

 
and  

 

1 0 0 cos 0 sin

0 cos sin 0 1 0

0 sin cos sin 0 cos

cos sin 0

sin cos 0

0 0 1

E E

BE E E

E E EE

E E

E E

A

β β
α α
α α β β

γ γ
γ γ

   
   
   
   
   
   
   

  

= − × ×
−

− 
 × − . 
  

 (42) 

Generalized Speeds 

The velocity of the reference frame B  with respect to the 
inertial frame 0  is given by  

 

  0 00 0

B

BB B

B

x
v yr

z

,,

 
 = =  
  

ɺ

ɺɺ

ɺ

 (43) 

 
The velocity denoted in the inertial frame can be transformed to 

the reference frame  
 

    0 00 0
T

BB B Bv A r ,, = .ɺ  (44) 

 
By this, the orthogonality of the rotation matrix  
 

    1
0 0 0

T
B B BA A A−= =  (45) 

 
was already taken into consideration.  

The angular velocity of the reference frame B  with respect to 
the inertial frame 0  may be expressed directly in reference frame 
B   

 

0

1 0 sin

0 cos sin cos

0 sin cos cos

BB

B B B B B B

B B B B

β α
ω α α β β

α α β γ

 
 
 
 

,  
 
 
 

−  
 = . 
 −  

ɺ

ɺ

ɺ

 (46) 

 
The 6  components of 0B Bv ,  and 0B Bω ,  will be chosen as 

generalized speeds now. First order kinematical differential 
equations connect this speeds with the derivatives of the  

 

0

0 0

0

B Bx

B ByB

B Bz

vx
A vy

vz

 
 
 
 
 
 
 
 

 
  = 
  

ɺ

ɺ

ɺ

 (47) 

 
and  

 

0

0

0

1 0 sin

0 cos sin cos

0 sin cos cos

BB Bx

B B B ByB

B B B BzB

β ωα
α α β ωβ
α α β ωγ

  
  
  
  
  
  
  

   

−  
  = , 
 −  

ɺ

ɺ

ɺ

 (48) 

 
where the solution of Eq. 48 is given by  

 

  
0 0

0 0

0

( cos sin ) cos

sin cos

cos

Bz B By B BB

Bz B By BB

B Bx BB

ω α ω α βγ
ω α ω αβ

ω αγα

= + / ,
= − + ,
= + .

ɺ

ɺ

ɺɺ

 (49) 

 
The momentary state of the reference frame B  is fully 

characterized by 6  generalized coordinates B B B B B Bx y z α β γ, , , , ,  

and 6  generalized speeds 0 0 0 0 0 0Bx By Bz Bx By Bzv v v ω ω ω, , , , , .  

The velocity and the angular velocity of the elastically 
suspended body with respect to the inertial frame 0 is given by  

 

0 0 0

0 0

BE BE B B B B B BE B

E B B B BE B

v v r rω
ω ω ω

,, , , ,

, , ,

= + × + ,
= + ,

ɺ
 (50) 

 
where the derivative of the position vector and the angular velocity 
of the elastically suspended body follow from the Eqs. 41 and 42. 
They read as  

 

   
E

BE B E

E

x

yr

z

,

 
 =  
  

ɺ

ɺɺ

ɺ

 (51) 

and  
 

1 0 sin

0 cos sin cos

0 sin cos cos

EE

BE B E E E E

E E E E

β α
ω α α β β

α α β γ

 
 
 
 

,  
 
 
 

 
 = − . 
  

ɺ

ɺ

ɺ

 (52) 

 
By using the components of the velocity  

 

0 00 0 y zx

T

E EE B Ev v v v
 
 
 
  

, =  (53) 

 
and the angular velocity  

 

0 00 0 y zx

T

E EE B Eω ω ω ω 
 
 
  

, =  (54) 

 
as generalized speeds, Eq. 50 can be written as a set of kinematical 
differential equations  

 

0 0 0
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 (55) 

 
and  
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 (56) 

 
Where as the 6 generalized coordinates E E E E E Ex y z α β γ, , , , ,  

describe the position and orientation of frame E  relative to frame 
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B , the 6 generalized speeds 0 0 0 0 0 0Ex Ey Ez Ex Ey Ezv v v ω ω ω, , , , ,  are the 

components of the absolute velocity and angular velocity of body 
E .  

Accelerations 

The accelerations of body E  with respect to the inertia frame 0 
can be expressed in reference frame B . They read as  

 

00 0 0

00 0 0

E BE B B B E B

E BE B B B E B

a vv ω
α ω ωω

,, , ,

,, , ,

= + × ,
= + × ,
ɺ

ɺ
 (57) 

 
where  

 

0 0 0 0x y z

T

E B E E Ev v v v,  =  ɺ ɺ ɺ ɺ  (58) 

 
and  

 

0 0 0 0x y z

T

E B E E Eω ω ω ω,  =  ɺ ɺ ɺ ɺ  (59) 

 
follow from the Eqs. 53 and 54.  

Force Elements 

If a force element is attached to the chassis at point i  and to the 
body at point j , the momentary position of force element ij  will 
be defined by  

 
  ij B BE B Ej B Bi K

Bj B

r r r r

r
, , , ,

,

= + − ,
�����

 (60) 

 
where  

 

Ej B BE Ej Kr A r, ,= ,  (61) 

 

Bi Kr , , Ej Kr ,  are given by data, and BE Br ,  follows from Eq. 41. The 

actual length can be calculated from  
 

a T
ij ij B ij Bu r r, ,= ,  (62) 

 
and the unit vector  

 

ij B
ij B a

ij

r
e

u
,

, =  (63) 

 

describes the momentary direction of the force element. If 0
iju  

denotes the initial length of the force element, the displacement of 
the force element will be formed by  

 
0 a

ij ij iju u u= − .  (64) 

 
The displacement velocity follows from  
 

 T
ij ij B ij B

d
v e r

dt
 
 , , 

= .  (65) 

 
Using Eq. 60, Eq. 61, and 0Bi Kr , =ɺ  one gets  
 

T
BE Bij ij B BE B ej Bv e rr ω 

 ,, , , 
= + × ,ɺ  (66) 

 
where BE Br ,ɺ  and BE Bω ,  are given by the Eqs. 51 and 52. The forces 

ij BF , , ji BF ,  and the torques ij BT , , ji BT ,  applied to body and chassis 

are determined by  
 

ij B ij ij ij B ji B ij BF f u v e F F 
 , , , , 

= , , = − ,  (67) 

 
and  

 

ij B Ej B ij B ji B Bi K ji BT r F T r F, , , , , ,= × , = × ,  (68) 

 
where f  describes an arbitrary spring/damper characteristic.  

Equations of Motion 

Applying liner and angular momentum to the elastically 
suspended body, one obtains  

 

0 0 0E BE E B E B B B E Bm F m g vv ω 
 , , , , , 

= − + ×ɺ  (69) 

 
and  

 

0 0 0 0 0E BE B E B E B E B E B E B B B E BT ω ω ω ωω  
 ,, , , , , , , , 

Θ = − × Θ − Θ × ,ɺ  (70) 

 
where Em , E B,Θ  denote mass and inertia tensor of the free body, 

E BF , , E BT ,  are the resulting forces and torques applied to the free 

body, and Bg,  is the vector of gravity expressed in the body fixed 

reference frame. These equations are coupled with the chassis 
equations of motion only by the applied forces and torques. Due to 
the particular choice of generalized speeds, no mass or inertia 
coupling terms appear.  

By using this modeling technique, Seibert and Rill (1998) 
showed that the comfort of a passenger car is significantly 
influenced by the engine suspension system. The free body model 
can also be used to model an elastically suspended driver’s cab, Rill 
(1993).  

Subsystem Drive Train 

Generic Model Structure 

The subsystem drive train, Fig. 12, interacts on one hand with 
the engine and on the other hand with the wheels. Hence, the 
angular velocities of the wheels 1ω , …, 4ω  and the engine or the 

gear output angular velocity 0ω  respectively are input quantities.  

For this reason, the calculation of the engine torque and the 
dynamics of the wheel rotation are performed in other subsystems. 
Via the tire forces and torques, the drive train is coupled with the 
steering system and the vehicle frame work.  
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Figure 12. Drive train model. 

 
The drive train model includes three lockable differentials. The 

angular velocities of the drive shafts 1Sω : front left, 2Sω : front 

right, SFω : front, SRω : rear, 3Sω : rear left, 4Sω : rear right are used 

as generalized coordinates.  
The torque distribution of the front and rear differential is 1:1. If 

Fr  and Rr  are the ratios of the front and rear differential, one will 

get  
 

1 2

1 1

2 2HF S S
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ω ω ω

ω ω

= + ,

= ;
 (71) 

 

 3 4
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2 2HR S S
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ω ω

= + ,

= .
 (72) 

 
The torque distribution of the center differential is formed by  
 

1
F

R

t

t

µ
µ

= ,
−

 (73) 

 
where Ft , Rt  denote the torques transmitted to the front and rear 

drive shaft, and µ  is a dimensionless drive train parameter. A value 

of 1µ =  means front wheel drive, 0 1µ< <  stands for all wheel 

drive, and 0µ =  is rear wheel drive. If the ratio of the center 

differential is given by Cr  then 
 

  
(1 )HC SF SR

C HCIC r

ω µω µ ω
ω ω

= + −
=

 (74) 

 
holds.  

Equation of Motion 

The equation of motion for the drive train is derived from 
Jordain’s Principle, which reads as  

 

( ) 0ii i it δ ωωΘ − = ,∑ ɺ  (75) 

 
where iΘ  is the inertia of body i , iωɺ  denotes the time derivative of 

the angular velocity, it  is the torque applied to each body, and iδ ω  

describe the variation of the angular velocity. Applying Eq. 75 for 
the different parts of the drive train model results in  
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Using the Eqs. 71, 74, and 72 one gets:  
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(79) 

 
Collecting all terms with 1Sδ ω , 2Sδ ω , SFδ ω , SRδ ω , 3Sδ ω , 

4Sδ ω  and using the abbreviations 1ν µ= − ,  2
HF HF F IFr∗Θ = Θ + Θ ,  

2
HC HC C ICr∗Θ = Θ + Θ , and 2

HR HR R IRr∗Θ = Θ + Θ  finally leads to three 

blocks of differential equations  
 

1 21 1
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 (80) 
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ɺ ɺ

ɺ ɺ

 (82) 

 
which describe the dynamics of the drive train. Due to its simple 
structure, an extension to a 6x6 or 8x8 drive train will be straight 
forward.  

Drive Shaft Torques 

The torques in the drive shafts are given by  
 

1 1 1 1 1 1

2 2 2 2 2 2

0 0 0 0 0

3 3 3 3 3 3

4 4 4

where

where

where

where

where

where

where
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ϕ ϕ ω ω
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ϕ ϕ ω ω
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ϕ ϕ ω ω
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= , : = − ;
= , : = − ;
= , : = − ;
= , : = − ;
= , : = − ;
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= , :

△ △

△ △

△ △

△ △

△ △

△ △

△ 4 4 4S Sϕ ω ω= − ;△

 (83) 

 
and 0Sc , 1Sc , 2Sc , 3Sc , 4Sc , SFc , SRc  denote the stiffnesses of the 

drive shafts. The first order differential equations can be arranged in 
matrix form  

 

0Kϕ ω= + Ω ,ɺ△  (84) 
 

where  
 

 1 2 3 4

T

S S SF SR S Sω ω ω ω ω ω ω 
  

= , , , , ,  (85) 

 
represents the vector of the angular velocities,  

 

1 2 0 3 4

T

S S SF S SR S Sϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ 
  

= , , , , , ,△ △ △ △ △ △ △ △   (86) 

 
contains the torsional angles in the drive shafts,  

 

0 1 2 0 3 40 0
Tω ω ω ω ω 

  
Ω = , , , − , , ,  (87) 

 
is the excitation vector, and  
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0 1 0 0 0 0

1 1 1 0 0 0
2 2
0 0 0 0
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2 2
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0 0 0 0 0 1
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r r

K r r

r r
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 

− 
 
 =
 
 −
 
 − 
 − 

 (88) 

 
forms a 7x6 distribution matrix.  
 

Locking Torques 

The differential locking torques are created by an enhanced dry 
friction model consisting of a static and a dynamic part  

 
S D

LF LF LF
S D

LC LC LC
S D

LR LR LR

t t t

t t t

t t t

= + ,
= + ,
= + .

 (89) 

 
The dynamic parts are modeled by a torque proportional to the 

differential output angular velocities  
 

( )
( )
( )

2 1

4 3

D
LF LF S S
D
LC LC SR SF
D
LR LR S S

t d

t d

t d

ω ω
ω ω
ω ω

= − ,
= − , ,
= −

 (90) 

 
where LFd , LCd , LRd  are damping parameters which have to be 

chosen appropriately. In steady state operating conditions, the static 
parts S

LFt , S
LCt , S

LRt  will provide torques, even if the differential 

output angular velocities are equal. From the Eqs. 80, 81, and 82, 
one gets  

 

( )

( )

( )

2 1

0

4 3

1

2
1

(2 1)
2

1

2

D
LF S S

D
LF SR SF C S

D
LR S S

t t t

t t t r t

t t t

µ

= − ,

= − + − ,

= − .

 (91) 

 
By this locking torque model, the effect of dry friction inside the 
differentials can also be taken into account.  

Numerical Solution 

The equations of motion 80, 81, and 82 can be combined in a 
matrix differential equation  

 
( )M qω ϕ ω= , ,ɺ △  (92) 

 
where ω , ϕ△  are given by the Eqs. 85, 86, and the mass matrix M  
is built by three 2x2 submatrices  
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 

= ,  (93) 

 
where the elements of FM , CM , and RM  follow from the Eqs. 80, 

81, and 82. The vector of the generalized torques is written as  
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 (94) 
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Because the model also includes the high frequent drive shaft 
vibrations the differential equations for the drive train are stiff. 
Hence, implicit integration algorithm should be used for the 
numerical solution. Vehicle dynamic equations can be solved very 
effectively by a modified implicit Euler algorithm, Rill (2004).  

The implicit Euler-formalism for Eq. 92 and Eq. 84 results in  
 

1 1 1k k k kM M h qω ω ϕ ω+ + + 
 
 

= + , ,△  (95) 

 

  1 1
0

k k kh Kϕ ϕ ω+ + 
 
 

= + + Ω ,△ △  (96) 

 
where h  is the integration step size, and the superscripts k  and 

1k +  indicate the states at t  and t h+ . Applying the Taylor-

expansion to q  at kk hϕ ϕ+ ɺ△ △  and kω , one gets  
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∂
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 (97) 

 
By using the Eqs. 84 and 96 the second term on the right side 

can be written as  
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 (98) 

 
Now, the implicit algorithm in Eq. 95 can be approximated by  
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which finally results in  
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where the partial derivatives q ϕ∂ /∂△  and q ω∂ /∂  can be calculated 
quite easily.  

Partial Derivatives 

Only the dynamic locking torques DLFt , D
LCt  and D

LRt  depend on 

the angular velocities. Hence, one obtains  
 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

LF LF

LF LF

LC LC

LC LC

LR LR

LR LR

d d

d d

d dq

d d

d d

d d

ω

− 
 − 
 −∂ = . 

−∂  
 −
 

−  

 (101) 

 

The change of q  with respect to ϕ△  leads to a 6x7 matrix  
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The term which is finally needed in Eq. 100 is symmetric and 

reads as  
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where the abbreviations  
 

2 2
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2 2 2 2
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2 2
3 3 4 4
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 (104) 

 

were used.  

System Performance 

Locking the differential improves the traction of a vehicle. In 
Fig. 13 the simulation results of a vehicle with rear wheel drive 
starting on a µ -split surface are shown. 

 

 

Figure 13. Vehicle starting on µµµµ- split. 
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At first all differentials are unlocked. The left rear wheel which 
is running on a low µ -plate immediately starts spinning. At 

2 5t s= .  the rear differential is locked. Now, the locking torque, 

which is generated by the drive train model forces both wheels to 
run with the same angular velocity.  

Conclusion 

Vehicle modeling by subsystems make a large variety of 
applications possible. The combination of simple subsystems and 
modules results in a vehicle model with a minimum number of data 
and a very good run time performance. Such “light models“ can be 
used to develop enhanced control strategies for electronic safety 
devices. Depending on the focus of interest, more and more 
subsystems and modules may be replaced by enhanced ones. Then, 
sophisticated design studies or a comfort analysis are possible. If the 
modified implicit Euler algorithm is also applied to the critical 
subsystems drive train and steering system the numerical solution of 
the overall vehicle model still will not be time consuming.  
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