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Modified Lyapunov Equations for LTI
Descriptor Systems

For linear time-invariant (LTI) state space systems it is well-known that its asymptotic
stability can be related to solution properties of the Lyapunov matrix equation according
to so-called inertia theorems. The question now arises how analogous results can be
obtained for LTI descriptor systems (singular systems, differential-algebraic equations).
The stability behaviour of a LTI descriptor system is characterized by the eigenvalues of
the related matrix pencil. Additionally, by a quadratic Lyapunov function the stability
problem can be discussed by solution properties of a generalized Lyapunov matrix
equation including a singular coefficient matrix. To overcome this difficult problem of
singularity, the Lyapunov matrix equation will be modified such that a regular Lyapunov
matrix equation appears and asymptotic stability is preserved. This aim can be reached by
shifting the system matrices in a well defined manner. For that the a priori knowledge of
an upper bound of the eigenvaluesis assumed. It will be discussed how to get such bound.
The paper ends with an inertia theorem where the solution properties of a regular
modified Lyapunov matrix equation are uniquely related to the asymptotic stability of the
LTI descriptor system.
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where thex, - and thex, - subsystems are called the slow and the

Introduction fast subsystem, correspondingly, cf. (Dai, 1989).

For linear time-invariant state space systexfs) = Ax(t) it is

well known that its asymptotic stability can beatdissed by inertia
theorems for the Lyapunov matrix equatidq P+AP =-Q, cf.
(Muller, 1977). The question now arises how analsg@sults can
be obtained for descriptor systems. In the last tecades the
modelling of dynamical systems by descriptor systggingular
systems, differential-algebraic equations) becanoeemrand more
familiar leading to.

Ex(t) = Ax(t), rkE =1<n =dimx (1)
for linear time-invariant systems wherg is an n-dimensional
generalized state vector (descriptor vector) @i a quadratic
singular matrix. It is assumed that the related rimapencil
(AE-A) is regular, i.e.dethAE-A) # 0Then system (1) can be
decomposed in a “slow” and in a “fast” subsysteimere exist two
regular matricesR, Ssuch that

el |

where N is a nilpotent matrix of degree k which is callée index
of the descriptor system (1). Then the
decomposition is represented by

)

X1(t) = Ay (1), NX5(t) = X,(t)

dim(x;) =n;, n,+n, =n,
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M echanical Descriptor Systems

Lagrange’s equations of the first and second kiads well
established in analytical mechanics. They desctitee dynamic
behaviour of discrete systems, particularly of ihodly systems.
The difference between the two kinds consists @ rttanipulation
of the kinematic constraints. If a kinematic dgstion of the system
has been given in generalized coordinates whictt@msistent with
the constraints, the Lagrange’s equations of teersgkind can be
derived, leading to a set of differential equationy/. However, if a
redundant set of coordinates is used to describenkatically the
system containing still some constraints explicithen Lagrange’s
equations of the first kind follow. For LTI multidg systems these
equations result in

M@(t) + Dg(t) + Ka(t) = F'A, + G\, “4)
Fq(t) = 0, holonomic constraints, (5)
Gq(t) + Hq(t) = 0, nonholonomic constraints. (6)

Here, g represents the g-dimensional displacenestor, M, D,
K stand for the mass matrix, the dissipative aneggopic matrix,
and the displacement and circulatory matrix, c@oeslingly. The
f- and g-dimensional vectorsA\; and A, characterize the
Lagrange’s multipliers (constraint forces) dueHte tonstraints (5)
and (6).

The first order representation of section 1.1 idaivled by
defining the descriptor vector

I

)

and the matrices
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g 0o I, 0 0
-K -D F' G

E=| M A= (®)
0 F 0 0 O
H G 0 O

The equations (4-6) are represented equivalentlyEQy (1)
using the expressions (7,8).

It should be mentioned that some properties oftistem (4-6)
can be characterized by certain system conditi@)sThe matrix
pencil (AE—A)is assumed to be reguldetlE-A)#0. For that

it is necessary that

rank

©)

F
=f+
d-rs

holds.

(2) The classification of independent holonomic adiholonomic
constraints requires the necessary and sufficient
Conditions

E
rank‘G‘ =f+g, rank (10)

A,
y=fra

(3) The existence of a unique static

g=0, 4, =0, A, =0 is guaranteed by

K -F -G’
ranklF 0 0 |=q+f+g (1)
H O 0

or equivalently by Eq. (10) and

T+
F
rank[lq - G ]K(Iq -

where (.)+ means the Moore-Penrose inverse of exfgt

T +

F
G

F
H

:]=q-(f+g) @

The remarks (1), (2), (3) represent a series ofiiremqents in
ascending order. If Eqg. (11) is satisfied, thenaheations (10) and
(9) are satisfied also.

Mechanical descriptor systems (4-6) are a specitlmportant
application of the general descriptor systems {1) o
which the asymptotic stability will be considereddetail.

Asymptotic Stability

The stability behaviour of Eq. (1) is defined by thigenvalues
of the matrix pencil(AE-A)which coincide with the eigenvalues

of Eqg. (13), i.e. how inertia theorems can be depedl for linear
time-invariant descriptor systems.

Because the matrix E is singular, the matrix Qmatnbe chosen
as a regular matrix. The singularity of E results d difficult
problem for the solution of Eq. (13). Until now,lgrspecial inertia
theorems are known. The results of Ishihara andaT@002) are
restricted to systems of index k = 1 (which excBidgeechanical
descriptor systems with holonomic constraints beihigdex k = 3),
where (Ishihara and Terra, 2002) gives some coorecbf (Lewis,
1986). The results of Muller (1993), Owens and Ojkbeic (1985),
Stykel (2002 a, 2002 b) require the calculatiothef transformation
matrices R , S of Eq. (2). But then Al of the skbsystem is also
known and the stability behaviour can be discussed; directly.

Recently in (Wang et al, 2002) a new aspect for stadility
discussion of system (1) has been introduced.elfféist subsystem,
cf. Eqg. (3), is replaced by an asymptotically staslibsystem with
finite eigenvalues, then the stability properti€system (1) remain
unchanged. This replacement can be achieved bygiitak into a
suitable regular matri€ . Unfortunately, this procedure for
determining E again requires the matrices R, S which is
disadvantageous as mentioned above. But neversheles shall
follow this idea.

Modified System
The aim is to modify the system (1) into a systeithwhe

equilibriumyarix pencil (/lé - A)such that

- E is regular leading to a "regular" Lyapunov magtuation
(19),
- asymptotic stability is preserved,
- the transformation matrices R, S are not require
Assuming a linear modification

E=E-aA, A=A+/E (14)
the infinite eigenvalues of system (1) correspand t
Aiw=—%<0 for >0, i =1,...n, (15)

of the modified system. The finite eigenvaluesyatem (1), i.e. the
eigenvalues ofA,, relate to eigenvaluesij of the matrix pencil

(E-A) by

A= ,—/311 ad;+1#0, j=1..n

o

=2 (16)

J

The half pIaneRej > @ mapped by Eq. (16) into the-plane in
the interior of the circle with the centrdy =2(2~4) a and the
1,1
G

radius r = + ) a assuminga > 0 according to Eq. (15). For

of the system matrixA, of the slow subsystem. By the quadratic

Lyapunov functionu=%xTPExthe stability problem can be also

discussed by solution properties of the generalizegpunov matrix
equation
ATPE+ETPA=-Q. (13)

Now the problem arises how the asymptotic stabdityl), i.e.
Re(Ai <0) for all eigenvalues ofA;, relates to solution properties
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0<,8<% the circle crosses the imaginary axis in the point

*jJB/a , cf. Fig. 1.

Obviously the stability behaviours of the origisgstem (1) and
the modified system represented by the matricel d@4not agree.
Only in the limit case of — 0 , — 0 ,B /o — o an agreement is
obtained.

For practical applications
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a = % small, ,3<biz 17)
are chosen where b is an upper bound of the eigezw/a
Wi|sbi=1...ns. (18)

Combining Eq. (16) and Eg. (18), the asymptotiditity of the
modified system leads to the asymptotic stabilifytlee original
system (1) where the finite eigenvalugs j=1...n;, are located

in a crescent-shaped region in the openiefilane. An illustration
of this case is represented in Fig. 2.

/}’

Figure 2. Stability region of system (1).
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Modified Lyapunov Matrix Equation

Summarizing the results of section 3 the stabbighaviour of
(1) can be discussed by an inertia theorem of tradiffred
Lyapunov matrix equation
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ATPE+ETPA =-0. (19)
Theorem: If E, A are defined by Eq. (14) with, p according to
Eq. (17,18), then the descriptor system (1) is gsgtically stable if
and only if for at least one symmetric, positivefimigee matrix
Q:éT >0(and then for all(}:fgT >0) there is a symmetric,

positive definite solution matri®=P' >0 of Eq. (19).
The proof follows immediately from the standard pyaov

matrix equation for the system matrikE L or equivalently for
E7A.

Remarks on the Eigenvalue Bound (18)

General Remarks

From state space discussions a theoretical eigeabaund b is
known according to the slow subsystem (3):
b=[A,] (20)
where each matrix norm can be applied. Howeves, libuind again
has the disadvantage that the transformationmatfce S (2) have
to be known. The problem arises to find a boundthaut knowing
R,S.
This problem has been discussed by Miiller (200zBmy. Still
there is no general result with respect to the imetrE, A, but for

the special case of semi-explicit systems with arnif index nice
results have been found.

Semi-Explicit Systemswith Uniform Index

Very often the descriptor system (1) is representedemi-
explicit form

Xq(t) = A11X1 (1) + A1oXo (1) (21)

0=Az1xg(t) + A X (1) (22)
(Remark: Here the notatiory, x5 is different to that of Eq. (3); in

the following it will be referred to the new notati
of Eq. (21, 22) only.)

The index of a LTI descriptor system, which was tioered
with Eq. (2), indicates how often the algebraic &@ns (22) have
to be differentiated to obtain ordinary differehtiequations for
X5 (X,(t) =..)additionally. For one number less, k — 1 , the

algebraic equations are solvable with respeoctjo

Each singular algebraic equation of the vector takje
equation (22) may lead to an individual index. Themost
individual index represents the system index kthinfollowing it is
assumed for simplicity of notation that the indivéd indices agree
such that a uniform index is assumed. In the fdlgwthe three
cases of uniform indices k=1, k =2, k = 3 evasidered.

Uniform Index 1
If system (21, 22) has index k = 1 thén,is regular and

X5 (1) = —AZ3A 214 (t) (23)

is valid. Then Eq. (21) runs as
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L ey — -1
X1 (1) = (All —AA A 21)><1(t)

representing a state space system. This resultediately to the

upper bound

|/lj | <b= “An - A AZA 21”

Uniform Index 2

Here A,,and regularity ofA,;A1,is assumed. Differentiating
o ApiXy(t) = Aa(Arsxa(t) + AppXx (1)) and

Eq. (22)
therefore

leads

Xo(1) = =(A21A12) " A21A X (1)
is obtained. Inserting Eq. (26) into Eq. (21) resid
*1(1) =[A11=A12(A 21A12) A pAL1Xq (1)
From here the upper bound
|/11' | sb= “All ‘A12(A21A12)_1A21A11”

is obtained.
Uniform Index 3

Ay =0, AyA1,=0, AjA A regular. Then
X2(1) ==(A21A11A12) A BATX (1)
holds resulting in the differential equation
X1(1) =[A11 = Aga(A21A11A12) T A HAZ X (1)
The bound becomes

= “1p A2
|/]j | sb= “All ~A12(A21A11A12) A21A11“

(24)

(29)

(26)

(27)

(28)

(29)

(30)

(1Y)

In this special cases eigenvalue bounds are alailBoit with

increasing index the calculation becomes more aoe Expensive.

Example: Mechanical descriptor system with holonomic

congtraints

Assuming a regular mass matrix M and independeidnlomic
constraints,rankF= f , then it is easily shown that the mechanical
descriptor system has uniform index k = 3:

A =0, ApAsr =0, AyAjA, =FMTFT (34)

According to Eq. (29) the constraint forces areedained by

At = (M) Mk FM'lD[gEg] (35)

System (30) runs as
0 |
x() =] = 9 [xy(t 36
1) [_K _D] 1(1) (36)
with
K=PM™K, D=PMD, P=1,-M7*F (FM~IFT)IF (37)

The upper eigenvalue bound (31) is given by

o |
b=l — 4 38
|5 5 )
the case of symmetric matrices trices

o=ma{o],.,[K],) )

which follows by a discussion of the Rayleigh gants according
to a second order representation of Eq. (36). Tihdex s
characterizes the spectral norm.

Conclusions
It has been shown that for a matrix perblE—A)a modified

matrix pencil (/IE—A) can be assigned such that the asymptotic
stability of the new matrix pencil includes the lapyotic stability of
the original pencil. The advantage of this modifma consists in
the regularity of the matrix "E and thus in theulagty of the
modified Lyapunov matrix equation (19). The asymiptstability

For example the mechanical descriptor system (4)h wican be guaranteed by the inertia theorem of sedtion
holonomic constraints (5) is considered. Then a i-sxplicit

representation (21, 22) is given by

x{ =la" a'l xpa=Ag
0 |
A= o
t |:—M'1K —M'lD}
Agp = -? 7 A2i=[F 0, Ap=0
MLF
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(32

(33)
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This result does not require any knowledge on the
transformation matrices R , S for the Weierstrassakcker
representation (2) of the system, but it uses geupound (18) of
the eigenvalues. This problem has been discussesedtion 5
showing some first results but still simpler sadas are desired.
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