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Modified Lyapunov Equations for LTI 
Descriptor Systems 
For linear time-invariant (LTI) state space systems it is well-known that its asymptotic 
stability can be related to solution properties of the Lyapunov matrix equation according 
to so-called inertia theorems. The question now arises how analogous results can be 
obtained for LTI descriptor systems (singular systems, differential-algebraic equations). 
The stability behaviour of a LTI descriptor system is characterized by the eigenvalues of 
the related matrix pencil. Additionally, by a quadratic Lyapunov function the stability 
problem can be discussed by solution properties of a generalized Lyapunov matrix 
equation including a singular coefficient matrix. To overcome this difficult problem of 
singularity, the Lyapunov matrix equation will be modified such that a regular Lyapunov 
matrix equation appears and asymptotic stability is preserved. This aim can be reached by 
shifting the system matrices in a well defined manner. For that the a priori knowledge of 
an upper bound of the eigenvalues is assumed. It will be discussed how to get such bound. 
The paper ends with an inertia theorem where the solution properties of a regular 
modified Lyapunov matrix equation are uniquely related to the asymptotic stability of the 
LTI descriptor system. 
Keywords: Descriptor systems, asymptotic stability, Lyapunov matrix equations, inertia 
theorem 
 
 
 

Introduction 

For linear time-invariant state space systems )t(Ax)t(x =ɺ  it is 
well known that its asymptotic stability can be discussed by inertia 

theorems for the Lyapunov matrix equation QAPPAT −=+ , cf. 
(Müller, 1977). The question now arises how analogous results can 
be obtained for descriptor systems. In the last two decades the 
modelling of dynamical systems by descriptor systems (singular 
systems, differential-algebraic equations) became more and more 
familiar leading to.1 
 

 xdimn1rkE),t(Ax)t(xE =<==ɺ  (1) 

 
for linear time-invariant systems where x  is an n-dimensional 
generalized state vector (descriptor vector) and E is a quadratic 
singular matrix. It is assumed that the related matrix pencil 

)AE( −λ  is regular, i.e. 0)AEdet( ≠−λ . Then system (1) can be 
decomposed in a “slow” and in a “fast” subsystem: there exist two 
regular matrices ,R Ssuch that 
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where N is a nilpotent matrix of degree k which is called the index 
of the descriptor system (1). Then the 
decomposition is represented by 
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where the 1x - and the 2x - subsystems are called the slow and the 

fast subsystem, correspondingly, cf. (Dai, 1989). 

Mechanical Descriptor Systems 

Lagrange’s equations of the first and second kinds are well 
established in analytical mechanics. They describe the dynamic 
behaviour of discrete systems, particularly of multibody systems. 
The difference between the two kinds consists in the manipulation 
of the kinematic constraints. If a kinematic description of the system 
has been given in generalized coordinates which are consistent with 
the constraints, the Lagrange’s equations of the second kind can be 
derived, leading to a set of differential equations only. However, if a 
redundant set of coordinates is used to describe kinematically the 
system containing still some constraints explicitly, then Lagrange’s 
equations of the first kind follow. For LTI multibody systems these 
equations result in 
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T GF)t(Kq)t(qD)t(qM λ+λ=++ ɺɺɺ  (4) 

 
,0)t(Fq =  holonomic constraints, (5) 

 
,0)t(Hq)t(qG =+ɺ  nonholonomic constraints. (6) 

 
Here, q represents the q-dimensional displacement vector, M, D, 

K stand for the mass matrix, the dissipative and gyroscopic matrix, 
and the displacement and circulatory matrix, correspondingly. The 
f- and g-dimensional vectors 1λ  and 2λ  characterize the 

Lagrange’s multipliers (constraint forces) due to the constraints (5) 
and (6).  

The first order representation of section 1.1 is obtained by 
defining the descriptor vector 
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and the matrices 
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The equations (4-6) are represented equivalently by Eq. (1) 

using the expressions (7,8). 
It should be mentioned that some properties of the system (4-6) 

can be characterized by certain system conditions. (1) The matrix 
pencil (((( ))))AE −−−−λ is assumed to be regular: 0)AEdet( ≠≠≠≠−−−−λ . For that 
it is necessary that 
 

gfrank +=
G

F
 (9) 

 
holds. 
 
(2) The classification of independent holonomic and nonholonomic 
constraints requires the necessary and sufficient 
Conditions 
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 (3) The existence of a unique static equilibrium 

0,0,0q 21 ============ λλ  is guaranteed by 
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or equivalently by Eq. (10) and 
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where (.)+ means the Moore-Penrose inverse of a matrix (.). 
 

The remarks (1), (2), (3) represent a series of requirements in 
ascending order. If Eq. (11) is satisfied, then the equations (10) and 
(9) are satisfied also. 

Mechanical descriptor systems (4-6) are a special but important 
application of the general descriptor systems (1) of 
which the asymptotic stability will be considered in detail. 

Asymptotic Stability 

The stability behaviour of Eq. (1) is defined by the eigenvalues 
of the matrix pencil (((( ))))AE −−−−λ which coincide with the eigenvalues 

of the system matrix 1A of the slow subsystem. By the quadratic 

Lyapunov function PExxT
2
1====υ the stability problem can be also 

discussed by solution properties of the generalized Lyapunov matrix 
equation 
 

QPAEPEA TT −−−−====++++ . (13) 
 

Now the problem arises how the asymptotic stability of (1), i.e. 
(((( ))))0Re i <<<<λ  for all eigenvalues of 1A , relates to solution properties 

of Eq. (13), i.e. how inertia theorems can be developed for linear 
time-invariant descriptor systems. 

Because the matrix E is singular, the matrix Q can not be chosen 
as a regular matrix. The singularity of E results in a difficult 
problem for the solution of Eq. (13). Until now, only special inertia 
theorems are known. The results of Ishihara and Terra (2002) are 
restricted to systems of index k = 1 (which excludes mechanical 
descriptor systems with holonomic constraints being of index k = 3), 
where (Ishihara and Terra, 2002) gives some corrections of (Lewis, 
1986). The results of Müller (1993), Owens and Debeljkovic (1985), 
Stykel (2002 a, 2002 b) require the calculation of the transformation 
matrices R , S of Eq. (2). But then A1 of the slow subsystem is also 
known and the stability behaviour can be discussed by 1A  directly. 

Recently in (Wang et al, 2002) a new aspect for the stability 
discussion of system (1) has been introduced. If the fast subsystem, 
cf. Eq. (3), is replaced by an asymptotically stable subsystem with 
finite eigenvalues, then the stability properties of system (1) remain 
unchanged. This replacement can be achieved by changing E into a 

suitable regular matrixE
⌢

. Unfortunately, this procedure for 

determining E
⌢

 again requires the matrices R, S which is 
disadvantageous as mentioned above. But nevertheless, we shall 
follow this idea. 

Modified System 

The aim is to modify the system (1) into a system with the 

matrix pencil (((( ))))ÂÊ −−−−λ such that 

- Ê  is regular leading to a "regular" Lyapunov matrix equation 
(19), 

- asymptotic stability is preserved, 
- the transformation matrices R , S are not required. 

Assuming a linear modification 
 

EAÂ,AEÊ βα ++++====−−−−====  (14) 

 
the infinite eigenvalues of system (1) correspond to 
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i n,...,1i,0for0ˆ ====>>>><<<<−−−−====∞∞∞∞ αλ α  (15) 

 
of the modified system. The finite eigenvalues of system (1), i.e. the 

eigenvalues of 1A , relate to eigenvalues jλ̂ of the matrix pencil 

( )AE ˆˆ −λ  by 
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The half plane 0ˆRe >>>>λ is mapped by Eq. (16) into the 
λ
 -plane in 

the interior of the circle with the centre )( 1
2
1

0 βλ α −−−−====  α  and the 

radius )(r 1
2
1 βα ++++==== α  assuming α  > 0 according to Eq. (15). For 

αβ 10 <<<<<<<<  the circle crosses the imaginary axis in the points 

αβj±±±± , cf. Fig. 1. 

Obviously the stability behaviours of the original system (1) and 
the modified system represented by the matrices (14) do not agree. 
Only in the limit case of α  →  0 , β  →  0 , β  /α  →  ∞  an agreement is 
obtained.  

For practical applications 
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 2βα ==== small, 2b
1<<<<β  (17) 

 
are chosen where b is an upper bound of the eigenvalues 
 

1j n,...,1j,b ====≤≤≤≤λ . (18) 

 
Combining Eq. (16) and Eq. (18), the asymptotic stability of the 
modified system leads to the asymptotic stability of the original 
system (1) where the finite eigenvalues 1j n,...,1j, ====λ , are located 

in a crescent-shaped region in the open left 
λ
 -plane. An illustration 

of this case is represented in Fig. 2.  
 

 
Figure 1. Illustration of mapping (16). 

 

 
Figure 2. Stability region of system (1). 

Modified Lyapunov Matrix Equation 

Summarizing the results of section 3 the stability behaviour of 
(1) can be discussed by an inertia theorem of the modified 
Lyapunov matrix equation 

 

Q̂ÂP̂ÊÊP̂Â TT −−−−====++++ .  (19) 
 

Theorem: If E
⌢

, Â  are defined by Eq. (14) with α , β  according to 
Eq. (17,18), then the descriptor system (1) is asymptotically stable if 
and only if for at least one symmetric, positive definite matrix 

0Q̂Q̂ T >>>>==== (and then for all 0Q̂Q̂ T >>>>==== ) there is a symmetric, 

positive definite solution matrix 0P̂P̂ T >>>>==== of Eq. (19). 
The proof follows immediately from the standard Lyapunov 

matrix equation for the system matrix 1ÊÂ −−−− or equivalently for 

ÂÊ 1−−−− . 

Remarks on the Eigenvalue Bound (18) 

General Remarks 

From state space discussions a theoretical eigenvalue bound b is 
known according to the slow subsystem (3): 

 

1Ab ====  (20) 

 
where each matrix norm can be applied. However, this bound again 
has the disadvantage that the transformationmatrices R , S (2) have 
to be known. The problem arises to find a bound b without knowing 
R , S . 

This problem has been discussed by Müller (2004) recently. Still 
there is no general result with respect to the matrices E, A, but for 
the special case of semi-explicit systems with uniform index nice 
results have been found. 

Semi-Explicit Systems with Uniform Index 

Very often the descriptor system (1) is represented in semi-
explicit form 

 
)t(xA)t(xA)t(x 2121111 ++++====ɺ  (21) 

 
   )t(xA)t(xA0 222121 ++++====  (22) 

 
(Remark: Here the notation 21 x,x is different to that of Eq. (3); in 

the following it will be referred to the new notation 
of Eq. (21, 22) only.) 

 
The index of a LTI descriptor system, which was mentioned 

with Eq. (2), indicates how often the algebraic equations (22) have 
to be differentiated to obtain ordinary differential equations for 

(((( ))))...)t(xx 22 ====ɺ additionally. For one number less, k − 1 , the 

algebraic equations are solvable with respect to 2x . 

Each singular algebraic equation of the vector algebraic 
equation (22) may lead to an individual index. The utmost 
individual index represents the system index k . In the following it is 
assumed for simplicity of notation that the individual indices agree 
such that a uniform index is assumed. In the following the three 
cases of uniform indices k = 1 , k = 2 , k = 3 are considered. 

Uniform Index 1 

If system (21, 22) has index k = 1 then 22A is regular and 
 

)t(xAA)t(x 121
1

222
−−−−−−−−====  (23) 

 
is valid. Then Eq. (21) runs as 
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(((( )))) )t(xAAAA)t(x 121
1

2212111
−−−−−−−−====ɺ  (24) 

 
representing a state space system. This results immediately to the 
upper bound 

 

  21
1

221211j AAAAb −−−−−−−−====≤≤≤≤λ  (25) 

 

Uniform Index 2 

Here 22A and regularity of 1221AA is assumed. Differentiating 

Eq. (22) leads to ))t(xA)t(xA(A)t(xA 21211122121 ++++====ɺ and 

therefore 
 

)t(xAA)AA()t(x 11121
1

12212
−−−−−−−−====  (26) 

 
is obtained. Inserting Eq. (26) into Eq. (21) results in 

 

)t(x]AA)AA(AA[)t(x 11121
1

122112111
−−−−−−−−====ɺ  (27) 

 
From here the upper bound 
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is obtained. 

Uniform Index 3 

In this case the assumptions on system (21, 22) are 

121121122122 AAA,0AA,0A ======== regular. Then 
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holds resulting in the differential equation 
 

)t(x]AA)AAA(AA[)t(x 1
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The bound becomes 
 

   2
1121

1
1211211211j AA)AAA(AAb −−−−−−−−====≤≤≤≤λ  (31) 

 
In this special cases eigenvalue bounds are available. But with 

increasing index the calculation becomes more and more expensive. 

Example: Mechanical descriptor system with holonomic 
constraints 

For example the mechanical descriptor system (4) with 
holonomic constraints (5) is considered. Then a semi-explicit 
representation (21, 22) is given by 
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Assuming a regular mass matrix M and independent holonomic 
constraints, frank ====F , then it is easily shown that the mechanical 
descriptor system has uniform index k = 3: 

 
T1

121121122122 FFMAAA,0AA,0A −−−−============  (34) 

 
According to Eq. (29) the constraint forces are determined by 
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System (30) runs as 
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q
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The upper eigenvalue bound (31) is given by 

 

DK

I0
b q

−−−−−−−−
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In the case of symmetric matrices trices 

TTT KK,DD,MM ============ this bound may be replaced by the 

bound 
 

 (((( ))))
88

K,Dmaxb ====  (39) 

 
which follows by a discussion of the Rayleigh quotients according 
to a second order representation of Eq. (36). The index s 
characterizes the spectral norm. 

Conclusions 

It has been shown that for a matrix pencil (((( ))))AE −−−−λ a modified 

matrix pencil (((( ))))ÂÊ −−−−λ  can be assigned such that the asymptotic 
stability of the new matrix pencil includes the asymptotic stability of 
the original pencil. The advantage of this modification consists in 
the regularity of the matrix ˆE and thus in the regularity of the 
modified Lyapunov matrix equation (19). The asymptotic stability 
can be guaranteed by the inertia theorem of section 4. 

This result does not require any knowledge on the 
transformation matrices R , S for the Weierstrass-Kronecker 
representation (2) of the system, but it uses an upper bound (18) of 
the eigenvalues. This problem has been discussed in section 5 
showing some first results but still simpler solutions are desired. 
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