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The aim of this paper is to evaluate forces and torques in flexible joints of a flexible multi-
body system (FMS). To represent such a FMS a 2D non-linear model based on finite

element method is built. Its numerical form solution based on a stable integration scheme
and on the non-linear Newton-Raphson method is described. As the evaluation procedure
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first requires that some model physical properties are obtained as identified parameters,
two procedures are used: direct and indirect identification. They are respectively based on
dynamic equilibrium verification and on comparison between simulated and measured

kinematics of the proposed modedl. The development of the two procedures and a
performance comparison between themis carried out.
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Introduction

Many studies have shown that some kinematics amérdic
factors play an important role in osteoarthritishgd joint (Dujardin
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implies in a measure system able to capture thelewhody
kinematics. Anadapted identification and anindirect identification
procedure dealing with only a part of the kinematics dat® ar
proposed in order to answer this need.

These three different procedures are describetdrfdliowing

et al, 1997), (Mejjadet al, 1998). A better comprehension of thissections. A comparison, between direct and indinedt be made

disease evolution, it's related causes as well ashetter
understanding of worn phenomenon of femur impl&theeded.
Thus the evaluation of the dynamic efforts arisingthe contact
between the head of the femur and the hip in a abtfmman
activity are necessary. Nevertheless the use @risansors would
be extremely hard to implement, not to mentionttbablesome for
the user.

Then, the remained option is to evaluate thosatsftiy means
of a mathematical model. Models classically usediamechanical
studies are based on the rigid body motion hyp@h&bese last are
neither reliable nor ranged in terms of uncertamiin the case of
dynamic flexible systems. Nevertheless, with suigid rbehavior,
mechanical parameters can be evaluated directygfr an inverse
dynamic strategy. The method consists in introdyaneasured
kinematics in the equilibrium dynamic equations amshsidering
external load and other parameters as unknowns. dri be quite
easily done because few kinematics parametersemessary. The
whole kinematics behavior of a rigid solid can lesatibed by only
six parameters: 3 displacements and 3 rotatiorsstlar approach,

later through a numerical study involving a norein model based
on the concept of open-chain mechanisms with flexiieams and
imperfect joints in 2D space. The adapted direoccedure will be
analyzed separately. Those procedures shall be tabkvaluate
some physical parameters of that model and hagerinmon a main
development axis which consists in the two follogvateps:

- Write the differential algebraic equations DAEtb& dynamic
flexible system by Eqg. (1) employing some supposetbwn
parameterpg, and using Finite Element approach (Terms in Eq. (1)
will be explained in the next section).

{MQ(t)+ MQ(t)+fint + BT)"_fext -g =0 (1)
@) = 0
- Solve them by using a temporal resolution schémae will

allow to gather the data set or reference kinemasiet of the
problem. This reference kinematics set is compaxfegositions,
velocities and accelerations of nodal variablebaAplaced over the

called direct identification procedure, may be followed in the case variables in following sections will represent refiece set.

of flexible models. However, the method needs #ibakinematics
data during a human gait are obtained, what isafletige. One has
to notice that in the case of flexible bodies attnmus field
describes the whole kinematics. That means thatge Inumber of
parameters are necessary to identify each bodyiguoafion that
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Nomenclature

g = kinematics degrees of freedom
M = complete mass matrix

f = generalized force vector

&= constraint equations

A = Lagrange coefficient

p = parameter set
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R = rotation operator
r = residue vector of dynamic equilibrium
ro = residue vector of constraint equations

Greek Symbols
a = damping coefficient
¢ = partial derivative
A= increment
Subscripts & Superscript

int = internal terms
ext = external terms

T = transpose
i = relative to e ement
t = studied time

At = time increment
n = iteration number

Remarks about the Development of DAE

To evaluate all terms of the dynamic and constmdptations of
DAE, we need many structural data as geometric ruaderial
information of the problem. We also need the inedlvexternal
forces. All those data can be regarded as a pagarsetp. The
development of DAE is made for the two basic elesemployed
in the problem: the co-rotational beam and theatational linear
and torsional spring. We also need to develop tlstiffness
elemental matrix as preparatory step to the salwdfdAE.

It has been chosen to write the equilibrium equetiasing as
kinematics degrees of freedom the positions of sodehese
positions are collected in a single vectprThe inertiaM ¢ and

gyroscopicM(q forces in Eq. (1) are evaluated from kinetic egerg

of a constant section beam. The complete massxatrielated to
inertia forces, can be obtained by assembling efefement mass
matrix M, which can be found in (Dhatt and Batoz, 199Cthigir

corresponded degrees of freedom. The elementary masix M

corresponding to spring element is set to null watfue to
hypothesis of its absence of mass. The mass temgeraative
M , related to gyroscopic forces, is obtained frorsimilar way
with its elemental matrixl\'/li given by Eg. (2)R is the rotation
operator describing the orientation of the elenveittt respect to an

inertial frame.

M; =R{M;R; +R{MR; 2

The evaluation of internal force$;,, of beams and linear

springs is made through a co-rotational elemenniidation using
Kirchhoff theory described in (Crisfield, 1991). &taim of this
formulation is to subtract the rigid displacemertanslation and
rotation, from the total displacement of an elemdifis operation
allows us to keep only elastic displacements armbtopare them to
the undeformed element. After that, one can astigm filtered
deformation to the developed internal forces andjues. The
evaluation of internal forces;,, concerning the torsional spring

element is straightforward because they are noewuirdluence of
the rigid displacements of the element.

The termBT 2 represents the reaction forces, i.e. the developed

efforts to satisfy the constraint equations of #erond part of
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Thus, B represents the gradient @& vector related ta. The
vector A quantifies the influence of each constraint in fystem
forces. It is obtained during the temporal resolutas additional
variables.

The two last terms of Eq. (1) are the externalderfg,; and the

field force g. Each nodal external force applied in the dynamic
system must be placed in its corresponding dedgréeeriom in the

global vector f, . The vectorg is built from the assembly of

elemental field forces also in its degree of freed@his elemental
field force is defined as being the derivative bk telemental
potential energy with respect to adopted co-orémaj. The

elemental field forces corresponding to co-rotalotinear and

torsional spring are set to null vector due tortladisence of mass,
as stated before.

Temporal Resolution Scheme of DAE

Finding the solution of Eq. (1) in time+ At implies to find a
variable set (de,qu,qu,le) that verifies its two
equations simultaneously. Near of the solution, thectors

r(qt+At'qt+At'qt+At')“t+At) and r(D(qt+At)' defined in Eq. (3)
must tend td.

r=Ma+Mq+f, +Bh~fo - g

3)
lep = (I)(Q)

However, the presence of constraint equations i RAn cause
severe instabilities in DAE responses. The impaganf high
frequencies in those responses is reduced in d¢odewvoid those
instabilities. This is done by the evaluation o¢ tlesidual vectors
through Eq. (4) and Eq. (5). That means that betvwee very close
times,t andt + At , the acceleration is supposed constant.

r =M aleea
+(L+ “)(M cratGeat + i @eear) ¥ Bleahoen = gt+At) 4)
_a(MtQt +int (Qt)"' BtTkt _gt)_fext(ta)

rd)(qt+At 'qt): (1+a)q’(qt+At)‘a(I)(Qt) ®)

t, :(l+a)(t+At)—at is a time betweert and t+At. This

procedure, named Hilber-Hughes-Taylor (HHT) (Jatord Bayo,
1994), imposes less loss of total energy during miienerical
resolution procedure than a stabilized Newmark pwthThe

strategy starts from a known equilibrium s(e|tt op ,qt,kt) at the
time t. A perturbation is then imposed to this varialiieorder to

have a prediction of the equilibrium state at titne At by using
Eq. (6).

A =0y + At4, +(1/2_ﬂ)11t2(jt

At =0y +(1_V)At‘jt

..0 e

Ueat =t

0 —
)"t+At - )"t

(6)

Eq. (1). The vecto represents all system constraint equationsyith y =1/2-¢ and f :(]_—a)z /4. The stability parameterg

These last are written as functions of our preeefiglobal nodal
variablegq.
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and 3 are related to a numeric dumping parameter It can be
demonstrate that fora in [-1/3,0] the HHT scheme is

ABCM



Dedicated Procedures for Temporal Identification in a ...

unconditionally stable and second-order accuraténénabsence of
constraint (Geradin and Cardona, 2000)=0 meaning that no
numeric damping is added to the solution to avoidnerical

instabilities, corresponding to classical Newmacdkesne. In the

other hand,a =-1/3 means a great numeric dumping and brings

to the system solution a high loss of energy.

Non Linear Solution

The DAE we deal with is a non-linear system of ¢iguas and
imposes to solve an adapted procedure. The tamgatiix of the
system has to be evaluated because the classigabiN&aphson
(NR) method has been chosen. It is given by thierdiftial of the
residual vector with respect tpas shown in Eq. (7).

™

t+At

Kt :ai(M +M =g+ —foq +BT)“)
q

The term concerning the internal forces is the amlg having to
be evaluated and can be found in (Crisfield, 199hg differential
with respect tay of the two first terms of Eq. (7) are very costly t
evaluate just for convergence (Geradin and Card26@0). The
remaining terms are constant with respeaq,t&quation (1) has to
be linearized in Eg. (8) form in order to apply tblassical NR
method.

M™AG +M " 4G + K2 Aq +B" A
(8)

=-r q&ztt'qpmtrqpmt 1)"{1+At
B"4q = _rd)(qtr]+At)

r(p,)\.t)
z(p, ) I:r(p p)} a1
MG +M

_ a+fim+BT7»—fe>¢-g
()]

with M (p,d,), M(p,qt,at) and f;,,(p,G,) being functions of
parametersp and of measured dat@; and g,. The constraint
equation(l)(p,qt) is function of parametegsand of unknown data

g; . The set of parameter(p*,x:) that is solution gives a residue

null or at least minimize it with experimental dafg@hen, the
proposed solution can be regarded as an optimizgifocedure

declared by means of Eq. (12) searching for a pemnset(p* , kt)
minimizing residues of Eq. (11).

(p* ,LI): Argmin(J = sz) (12)

(pv;"l)
At any studied time, this z residual vector, which is non linear

dependent fronp andA,, has to be equalized to zero. This can be
done by a classical less squares method and eofilst Newton-

Raphson strategy. Starting from a giv(fnlo,k? ) parameters are

interactively modified through Eqg. (13) until comgence is
reached.
n+l n +
P 1=|P _z7, (13)
AL A Op

The exponenh being the iteration number. With the chosen

temporal integration scheme, Eq. (8) can be reswrith matrix form
of Eq. (9). This equation corresponds to a lingatesn.

T .
St BT [4q]__[r with g = M_ M
B 0 | 4 o pAt2 - pat

Variables are updated during the NR process by se#n
Eq. (10).

O

Qs = Al + 49/ pat®
Grin = Gtes + 749/ Bt
Gl = G +49

ntl _an
Misr = hpage t AR

(10)

The process stops when the convergence of theuedsidctors,
Eq. (4) and Eq (5) evaluated by the HHT schemehéxked.

Direct Temporal Identification

The direct strategy is based on the dynamic eqjiutib equation
Eq. (1). If a complete set of variable kinematicesponse

(qt,qt,qt) and a set of paramete(p,}\.t) of a dynamic system
are available, the residual equilibriuz{p,xt) of those parameter
can be evaluated at timby Eq. (11).
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In that expression,(az/()p)+ is called (Moore-Penrose)

pseudo-inverse matrix of residual gradient matdz/op . It is

numerically evaluated by a central finite differemprocedure.

This strategy is numerically efficient becausesitbased on an
interactive procedure. Especially, no temporal ltggm is needed.
Nevertheless, it shows a high sensibility to introetl measures and
especially to accelerations.

The main difficulty stays in the need of having swead data
for all degrees of freedom introduced in the modfethis can be
hardly done for displacement variables, it is alimogpossible for
rotation variables, much less in the context ofriechanic study in
which humans have to be instrumented. In order woidathis
difficulty an indirect procedure using only avaibkinematics
variables have been proposed.

Adapted Direct Temporal | dentification

This proposed procedure consists in using only aline
displacement variables and their first and second terivatives as
measured data of the dynamic problem. The remaiagdbles, i.e.
the rotation variables, their first and second tidezivatives, the
Lagrange parameters as well as other physic andnefeic
structural parameters such as stiffness are tresdte parameters
to be identified.

For some flexible multibody systems, if just antamdt is taken,
the previous procedure can not be straightforwanlied because
there will be too much unknowns compared to the lmen: of
available dynamic equilibrium equations. To overeonthis
obstacle, another equation set may be added bingvthie dynamic
equilibrium at another time instant nearttdn the present paper,
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only the timet+4t has been used. The task becomes easier if

continuous variables through a temporal polynorafgroximation
replace discrete ones. Then, rotations have thenfimlg expression
presented in Eq. 14.

8 = i)+ e+ gl + i)’

The termsc; (I) being constants and the termorresponding to

(14)

the node number of the dynamic structure. The fursti second

derivative ofd are then obtained by deriving those expressiotis wi Z(p,kt)

respect td. The total number of unknown parameters descritlieg
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ﬁt _qt
Z(p')"t): G — 4 (17)
T; — 4,

The kinematics variables se(q‘o,q?,q?) is obtained by
simulating the movement with an initial given sdtparameters
(po,kto) until the comparison timeis reached. The residue vector

is then evaluated. The set of paramett&n&x{‘) is
updated until convergence through the optimizapoocedure. As

rotation in a node around the tiris here fixed to four (equal to the ¢ system is highly non-linear, it also imposesnamerical

employed number of coefficients).

Nevertheless, these approximations have the majectdto be
very sensible to noise phenomena. This last has inifuence on
evaluated acceleration, so on evaluated actinge$oand so on the
identified parameters. Some parameters have thieyarity to be
constant related to time. In order to take thispprty into account,
the residue vector is evaluated with several distine instants.
This procedure filters noise sensibilities andwatica mechanically
acceptable parameters identification.

In short, the proposed strategy differs from thegatibed in the
previous section in the following aspects:

« instead of choosing only a instanto minimize the residue of

Eqg. (11), a set of instantg [..., t;] is chosen,

« for each instant;, another instant+4t is taken into account

for analysis,

« third order interpolation functions are createddpresent the

degrees of freedom to be identified at instgrasdt;+ At,

« coefficients of the interpolation function as wels the

Lagrange parameters and the physic and geometamgsers
are now the unknowns to be identified,

« solve Eq. 12 with the set of parameters b<(p C; (i), x:)

To accomplish this last task, the same procedutkeasne used
in previous section is applied.

Indirect Temporal I dentification

The proposed procedure consists in reducing thferdifce
between experimental kinematics data and evaluedgdbles that
are obtained through the solution of DAE Eg. (13.iAthe previous
section, the proposed solution can also be regardedan
optimization procedure but declared by means of(Es).

J :4‘(% _at)T(CIt _qt)+¢(qt _at)T(qI -q )

(15)
.. = \T (.. vy
+‘/’(qt _Qt) (qt _qt)
The Greek variables are weight factors representing
influence of each term. With the parameter (s&b.;) the dynamics

efforts in the joints and the reaction forces carobtained through
Eq. (1) by correspondent components$;gfandB'A.

The main advantage of this procedure is that thiglue vector
does not have to be composed of all kinematics blataonly of a
part of them. With such a choice, velocity, acagien as well as
rotational data may be not employed in the comparigectorz of
theEq. (16).

Z(p17"t) =q, (t)_ch

Even though, two tests were made using the whalenkatics
data as presented in Eq. (17).

(16)
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evaluation of the gradient matrix necessary for tpéimization
procedure and described in the previous sectiois. falat implies to
run the whole simulation from initial time untilnie t for each
disturbance introduced in each unknown parametar.ldhg time
simulation, this procedure becomes calculating &x@ensive.

Numerical Evaluation

Before to face the proposed biomechanical problame tests
are made on a simpler model where the formulatioeasier and
results are more conclusive. This proposed modaingke is shown
in Fig. 1. Despite its geometric simplicity, it céming all sort of
difficulties expected in a biomechanical modet ttbmposed of two
flexible bars linked by a torsional and linear sgrelement. One of
the bars is attached to a fixed point through agpglement, similar
to the previous but having different stiffness. T8pring element
stiffness will be the parametgugo identify.

k]im’.a[ spring

Torsion spring

k]inear spring

Torsion spring

3

i
I=[%Y,0,%,,¥;, 0, Blie?

@ = element number

Figure 1. Two flexible bars linked by spring elements.

The following data were given to this problem: baroung
modulus E=2.1x1Pa, section area A=25x*@, inertia section
I=52.1x10?m* bar's volume densitp=7800 kg/mi, bar's initial
length L=0.9m, non extended spring length ~0.1 m,
Kiorsionam0.5 Nm/rad, [nealelt 1)=700 N/m, |k cal€lt 3)=400 N/m.
The exact set of parameters to identify is then
p* = [700 0.5 400 0.5]
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The only solicitations are the gravity forces. Tihi&al situation and [0.41.151.6s1.952.35] are taken in a more or less distributed
consists in letting this whole multibody systerlifeg freely from a  form between §and 3.
same initial angle of bars and springs with respeet vertical line
equal torv6. The DAE are integrated fois3ising the HHT scheme Reqitsand Conclusions

presented before. All nodal kinematics responE@@qt,qt] are The indirect identification procedure was performeith the

registered as our simulated set. We generate oasuned set by two residues presented in Eq. (16) and Eq. (17dn(16) only the
using only the sefj; . Derivative at and q_'t are obtained by finite nodal position variables were usedﬁlﬁt) and q(t), as an example

central difference method frorg; . we test the procedure withq' =[% va Xs y5]T and
We decided to apply the three temporal identifwatmethods . . o . )

starting from a vicinity of our parameter solution. q'=[% Vs % ¥s]' . This has been done in order to evaluate
We test thedirect and theindirect identification procedures at the capabilities of the procedure when dealing wathreduced

times t,=0,69s and $=2,83s. These times were close and far,residue vector.

respectively, from the starting state. They wersoatefined The simulated and the measured sets are used atimeBcas

according to a criterion of bad numerical evaluaticeaning that at measured data to perform the identification. Sdv&mating sets of

times chosen difference between simulated and mesasponses parameters between (8 and 1.2p* are chosen for the

is the greatest. optimization procedure. Identification evaluatiomsre summarized
For the adapted procedure, because it is analygeatately, the in Tab. 1.

first time instant set is taken in the first thiodl time simulation

[0.551.08]. Then, two sets of five instants [8.6.951.4s 2.1s 2.75]

Table 1. Tests results.

Identif Reference Data t;=0.69s t, =2.83
Simulated set Convergenceptd Convergence tp*
. Simulated set except speed
Direct that comes from measured set Convergence tp; Convergence tp;
Bad convergence even starting fromn Bad convergence even starting from
Measured set ; ;
solution parameter set solution parameter set
. . Convergence tp* when starting Convergence tp* when starting from
Simulated set with (17) from (0.93 to 1.10p* (0.90 to 1.02p*
Positions and accelerations from . .
. . . Convergence tp* when starting Convergence tp* when starting from
simulated set with (17). Velocities from (0.93 to 1.10p* (0.90 to 1.02p*
; from measured set
Indirect
Measured set with (17) Bad convergence even starting fromm Bad convergence even starting from
parameter solution set parameter solution set
. . Convergence tp* when starting Convergence tp, when starting from
Simulated set with (16) from (0.90 to 1.18p* (0.98 to 1.02p*
With the solution sets being,=[663 0.49 379 0.49] and For the node 5 of the Fig.1, the sensibility ofaleated

p,=[757 0.50 465 0.53] In table 1, a "Bad convergence" means thakinematics to the parameter sets are shown in2ifig. 3 and
the identified set of parameters has no mechasigalification; a Fig. 4. In Figure 2, nodal displacements in thee @ directions and
negative Young modulus as example. the nodal rotation according to z are presentedtter3 sets of
The results show that the direct identificationqadure is very parameters. Figure 3 and figure 4 present the sesmelts for
sensible to modified acceleration values but lessvélocities. velocities and accelerations. One can notice on ZFithe low
Nevertheless, a small modification of velocitiesiedo the finite sensibility of the displacement to the parametéigure 3 shows the
difference scheme for derivation, causes an emothe identified higher sensibility of velocity. At last, Fig. 4 ske the high
parameter sep, instead op*. dependency of acceleration to the parameters.
The indirect procedure proposes a very interestilbgrnative
with allowing to not use accelerations. Neverthgléise starting set
of parameters for the optimization procedure habdovery close
from the expected response.
The simulation time also plays an important rolehie results
obtained. We could verify that the more the simatatime is big
the more the starting point has to be near of tbiatisn to
convergence. This can be explained by the grederdifces,
especially in trajectory accelerations, generated different
parameter sets. Moreover, the time processingasgly linked to
time simulation for the indirect procedure.
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Figure 5 shows the sensibility of forcesximndy directions and
of the torque to parameters in the first elementingp It is
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Figure 5. Forces sensibilities.

For the adapted direct identification proceduregleations are
summarized in Tab.2. The linear stiffness alwaysverges
towards the solution values, even for the reducestant set.
Further, their convergence are also verified fquadtire points far

from the solution values (30*). This means that those parameters

strongly affect the studied dynamic system behaviorthe other
hand, the variation in torsional stiffness does s&¢m to play an
important role in the system equations, especiallyen short
instants sets are used, i.e. few equations are ogeglin the
optimization procedure.

Table 2. Parameter solution for different instant sets.

Identifieg
[700 —0.47 400 5.10]
[700 0.42 400 0.58]
[700 0.51 400 0.58]

Instant set
[0.551.05]
[0.6s0.951.452.15 2.7
[0451.151.651.92.3]

The nodal relative rotation8é, = (6 -8 )/8 and the relative
Lagrange parametergj, = (/15 —/Tg)//Tg obtained after the
optimization procedure, are shown in Tab. 3 fortthied instant set
[0.4s 1.1s 1.6s 1.9s 2.3s]. The Lagrange paramifeconcerns the
torsion reaction at node 1 (Fig. 1).

Table 3. Relative errors (x103) of rotations and Lagrange parameter.

ti 092 093 C94 065 C}\e
0.4s| 0.05] 0.1 0.1] 0.04 1.68
1.1s| 0.06] 0.07 0.05 0.0 5.68
16s| 0.01] 0.06 0.04 0.0p 1.88
19s| 0.01] 0.03 0.03 0.0 342
23s| 0.1 | 0.19) 0.17 0.0f 4.05
One can see that some parameters, and especialy

coefficients of the employed interpolation funcBpnare well
determined meaning they also have considerablehveiglynamic
equations what is not true for the rotation timeiwdgives. The
results have revealed this can be a good and simplener of
identifying kinematics, dynamic, physic and geoticefrarameters
in multibody flexible dynamic systems when the tiota data are
not provided.

We tend to forget the direct identification procesithat is not

interesting to notice here that even if force resgs are dependent adapted to data characteristics. In the other hdred strategy of

from the parameter sets, the levels of force magdei are not.
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using the reduced simulated set in indirect procethas revealed a
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good alternative to follow due to its similarity tvithe available
data of the original biomechanical problem. Howevenore
powerful search methods are required to overcomeititertainties
of the departure searching point when the answerotsknown.
Future tests, using many reference times and intexd! noise in
position reference data, will be performed to werifow those
changes can affect the response quality and thartdep point
range of parameter set. At last, the adapted directedure presents
good identification capabilities but have to bedstigated for more
instant sets. Its robustness has to be verifiedh wieasurement
noises.

We still have to take into account the fact thamgeral
integration schemes impose modification of the ldgjium
equation to solve. It is well known that these sobe present
numerical dissipation due to the damping coefficiatroduced to
filter high frequencies causing the instabilitie®ut even
conservative schemes present defects as phase €oogive a
mechanical meaning of the parameters evaluatesidthivback has
to be included in the identification procedure wistmulated data
are compared to measured ones. Nevertheless, wegraa
confident in the recent development in the simatatof MBS
(Schiehlen, 2005)(lbrahimbegovic & al., 2003) and will focus
our future investigations on the identification pess.
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