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Dedicated Procedures for Temporal 
Identification in a Flexible Multi-body 
System 
The aim of this paper is to evaluate forces and torques in flexible joints of a flexible multi-
body system (FMS). To represent such a FMS a 2D non-linear model based on finite 
element method is built. Its numerical form solution based on a stable integration scheme 
and on the non-linear Newton-Raphson method is described. As the evaluation procedure 
first requires that some model physical properties are obtained as identified parameters, 
two procedures are used: direct and indirect identification. They are respectively based on 
dynamic equilibrium verification and on comparison between simulated and measured 
kinematics of the proposed model. The development of the two procedures and a 
performance comparison between them is carried out. 
Keywords: Temporal identification, flexible multi-body system, dynamic simulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 

Many studies have shown that some kinematics and dynamic 
factors play an important role in osteoarthritis of hip joint (Dujardin 
et al, 1997), (Mejjad et al, 1998). A better comprehension of this 
disease evolution, it's related causes as well as a better 
understanding of worn phenomenon of femur implant, is needed. 
Thus the evaluation of the dynamic efforts arising in the contact 
between the head of the femur and the hip in a normal human 
activity are necessary. Nevertheless the use of inner sensors would 
be extremely hard to implement, not to mention the troublesome for 
the user.1 

Then, the remained option is to evaluate those efforts by means 
of a mathematical model. Models classically used in biomechanical 
studies are based on the rigid body motion hypothesis. These last are 
neither reliable nor ranged in terms of uncertainties in the case of 
dynamic flexible systems. Nevertheless, with such rigid behavior, 
mechanical parameters can be evaluated directly through an inverse 
dynamic strategy. The method consists in introducing measured 
kinematics in the equilibrium dynamic equations and considering 
external load and other parameters as unknowns. This can be quite 
easily done because few kinematics parameters are necessary. The 
whole kinematics behavior of a rigid solid can be described by only 
six parameters: 3 displacements and 3 rotations. A similar approach, 
called direct identification procedure, may be followed in the case 
of flexible models. However, the method needs that all kinematics 
data during a human gait are obtained, what is a challenge. One has 
to notice that in the case of flexible bodies a continuous field 
describes the whole kinematics. That means that a large number of 
parameters are necessary to identify each body configuration that 
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implies in a measure system able to capture the whole body 
kinematics. An adapted identification and an indirect identification 
procedure dealing with only a part of the kinematics data are 
proposed in order to answer this need. 

These three different procedures are described in the following 
sections. A comparison, between direct and indirect, will be made 
later through a numerical study involving a non-linear model based 
on the concept of open-chain mechanisms with flexible beams and 
imperfect joints in 2D space. The adapted direct procedure will be 
analyzed separately. Those procedures shall be able to evaluate 
some physical parameters of that model and have in common a main 
development axis which consists in the two following steps: 

- Write the differential algebraic equations DAE of the dynamic 
flexible system by Eq. (1) employing some supposed known 
parameters psol and using Finite Element approach (Terms in Eq. (1) 
will be explained in the next section). 
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- Solve them by using a temporal resolution scheme that will 

allow to gather the data set or reference kinematics set of the 
problem. This reference kinematics set is composed of positions, 
velocities and accelerations of nodal variables. A bar placed over the 
variables in following sections will represent reference set. 

Nomenclature 

q = kinematics degrees of freedom 
M = complete mass matrix 
f = generalized force vector 
ΦΦΦΦ= constraint equations 
λλλλ = Lagrange coefficient 
p = parameter set 
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R = rotation operator 
r = residue vector of dynamic equilibrium 
rΦΦΦΦ = residue vector of constraint equations 

Greek Symbols 

α = damping coefficient 
c = partial derivative 
∆ = increment 

Subscripts & Superscript 

int = internal terms 
ext = external terms 
T = transpose 
i = relative to element 
t = studied time 
∆t = time increment 
n = iteration number 

Remarks about the Development of DAE 

To evaluate all terms of the dynamic and constraint equations of 
DAE, we need many structural data as geometric and material 
information of the problem. We also need the involved external 
forces. All those data can be regarded as a parameter set p. The 
development of DAE is made for the two basic elements employed 
in the problem: the co-rotational beam and the co-rotational linear 
and torsional spring. We also need to develop their stiffness 
elemental matrix as preparatory step to the solution of DAE. 

It has been chosen to write the equilibrium equations using as 
kinematics degrees of freedom the positions of nodes. These 
positions are collected in a single vector q. The inertia qM ɺɺ  and 

gyroscopic ɺ ɺMq  forces in Eq. (1) are evaluated from kinetic energy 
of a constant section beam. The complete mass matrix M, related to 
inertia forces, can be obtained by assembling of the element mass 
matrix iM , which can be found in (Dhatt and Batoz, 1990) in their 

corresponded degrees of freedom. The elementary mass matrix iM  

corresponding to spring element is set to null matrix due to 
hypothesis of its absence of mass. The mass temporal derivative 
ɺM , related to gyroscopic forces, is obtained from a similar way 

with its elemental matrix iMɺ  given by Eq. (2). R is the rotation 

operator describing the orientation of the element with respect to an 
inertial frame. 
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T
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T
ii RMRRMRM ɺɺɺ +=  (2) 

 

The evaluation of internal forces intf  of beams and linear 

springs is made through a co-rotational element formulation using 
Kirchhoff theory described in (Crisfield, 1991). The aim of this 
formulation is to subtract the rigid displacements, translation and 
rotation, from the total displacement of an element. This operation 
allows us to keep only elastic displacements and to compare them to 
the undeformed element. After that, one can assign this filtered 
deformation to the developed internal forces and torques. The 
evaluation of internal forces intf  concerning the torsional spring 

element is straightforward because they are not under influence of 
the rigid displacements of the element. 

The term λBT  represents the reaction forces, i.e. the developed 
efforts to satisfy the constraint equations of the second part of 
Eq. (1). The vector ΦΦΦΦ represents all system constraint equations. 
These last are written as functions of our predefined global nodal 
variables q. 

Thus, B represents the gradient of ΦΦΦΦ vector related to q. The 
vector λ λ λ λ quantifies the influence of each constraint in the system 
forces. It is obtained during the temporal resolution as additional 
variables. 

The two last terms of Eq. (1) are the external forces extf  and the 

field force g. Each nodal external force applied in the dynamic 
system must be placed in its corresponding degree of freedom in the 
global vector extf . The vector g is built from the assembly of 

elemental field forces also in its degree of freedom. This elemental 
field force is defined as being the derivative of the elemental 
potential energy with respect to adopted co-ordinates q. The 
elemental field forces corresponding to co-rotational linear and 
torsional spring are set to null vector due to their absence of mass, 
as stated before. 

Temporal Resolution Scheme of DAE 

Finding the solution of Eq. (1) in time tt ∆+  implies to find a 

variable set ( )tttttttt ∆+∆+∆+∆+
λ

qqq ,,, ɺɺɺ  that verifies its two 

equations simultaneously. Near of the solution, the vectors 
( )tttttttt ∆+∆+∆+∆+

λ
qqqr ,,, ɺɺɺ  and ( )tt ∆+qrΦ , defined in Eq. (3) 

must tend to 0. 
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However, the presence of constraint equations in DAE can cause 

severe instabilities in DAE responses. The importance of high 
frequencies in those responses is reduced in order to avoid those 
instabilities. This is done by the evaluation of the residual vectors 
through Eq. (4) and Eq. (5). That means that between two very close 
times, t and tt ∆+ , the acceleration is supposed constant. 
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( ) ( ) ( ) ( )tttttt αα q
Φ

q
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( )( ) α t
�

ttαt α −++= 1  is a time between t and tt ∆+ . This 

procedure, named Hilber-Hughes-Taylor (HHT) (Jalon and Bayo, 
1994), imposes less loss of total energy during the numerical 
resolution procedure than a stabilized Newmark method. The 
strategy starts from a known equilibrium set ( )tttt

λ
qqq ,,, ɺɺɺ  at the 

time t. A perturbation is then imposed to this variable in order to 
have a prediction of the equilibrium state at time tt ∆+  by using 
Eq. (6). 
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with αγ −= 2/1  and ( ) 4/21 αβ
−= . The stability parameters γ 

and β are related to a numeric dumping parameter α . It can be 
demonstrate that for α  in [-1/3,0] the HHT scheme is 
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unconditionally stable and second-order accurate in the absence of 
constraint (Geradin and Cardona, 2000). 0=α  meaning that no 
numeric damping is added to the solution to avoid numerical 
instabilities, corresponding to classical Newmark scheme. In the 
other hand, 31/α −=  means a great numeric dumping and brings 
to the system solution a high loss of energy. 

Non Linear Solution 

The DAE we deal with is a non-linear system of equations and 
imposes to solve an adapted procedure. The tangent matrix of the 
system has to be evaluated because the classical Newton-Raphson 
(NR) method has been chosen. It is given by the differential of the 
residual vector with respect to q as shown in Eq. (7). 
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T

extT ++−+−+
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The term concerning the internal forces is the only one having to 

be evaluated and can be found in (Crisfield, 1991). The differential 
with respect to q of the two first terms of Eq. (7) are very costly to 
evaluate just for convergence (Geradin and Cardona, 2000). The 
remaining terms are constant with respect to q, Equation (1) has to 
be linearized in Eq. (8) form in order to apply the classical NR 
method. 
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The exponent n being the iteration number. With the chosen 

temporal integration scheme, Eq. (8) can be rewritten in matrix form 
of Eq. (9). This equation corresponds to a linear system. 
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Variables are updated during the NR process by means of 

Eq. (10).  
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The process stops when the convergence of the residual vectors, 

Eq. (4) and Eq (5) evaluated by the HHT scheme, is checked. 

Direct Temporal Identification 

The direct strategy is based on the dynamic equilibrium equation 
Eq. (1). If a complete set of variable kinematics response 
( )ttt qqq ,, ɺɺɺ  and a set of parameters ( )t

λ
p,  of a dynamic system 

are available, the residual equilibrium ( )t
λ

pz ,  of those parameter 

can be evaluated at time t by Eq. (11). 
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with ( )tqpM , , ( )tt qqpM ɺɺ ,,  and ( )tqpf ,int  being functions of 

parameters p and of measured data tq  and tqɺ . The constraint 

equation ( )tqp
Φ

,  is function of parameters p and of unknown data 

tq . The set of parameters ( )** , t
λ

p  that is solution gives a residue 

null or at least minimize it with experimental data. Then, the 
proposed solution can be regarded as an optimization procedure 

declared by means of Eq. (12) searching for a parameter set ( )** , t
λ

p  

minimizing residues of Eq. (11). 
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At any studied time t, this z residual vector, which is non linear 

dependent from p and λλλλt, has to be equalized to zero. This can be 
done by a classical less squares method and a first order Newton-

Raphson strategy. Starting from a given ( )00, t
λ

p , parameters are 

interactively modified through Eq. (13) until convergence is 
reached. 
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In that expression, ( )+∂∂ pz /  is called (Moore-Penrose) 

pseudo-inverse matrix of residual gradient matrix pz ∂∂ / . It is 

numerically evaluated by a central finite difference procedure. 
This strategy is numerically efficient because it is based on an 

interactive procedure. Especially, no temporal resolution is needed. 
Nevertheless, it shows a high sensibility to introduced measures and 
especially to accelerations. 

The main difficulty stays in the need of having measured data 
for all degrees of freedom introduced in the model. If this can be 
hardly done for displacement variables, it is almost impossible for 
rotation variables, much less in the context of bio-mechanic study in 
which humans have to be instrumented. In order to avoid this 
difficulty an indirect procedure using only available kinematics 
variables have been proposed. 

Adapted Direct Temporal Identification 

This proposed procedure consists in using only linear 
displacement variables and their first and second time derivatives as 
measured data of the dynamic problem. The remained variables, i.e. 
the rotation variables, their first and second time derivatives, the 
Lagrange parameters as well as other physic and geometric 
structural parameters such as stiffness are treated as the parameters 
to be identified. 

For some flexible multibody systems, if just an instant t is taken, 
the previous procedure can not be straightforward applied because 
there will be too much unknowns compared to the numbers of 
available dynamic equilibrium equations. To overcome this 
obstacle, another equation set may be added by writing the dynamic 
equilibrium at another time instant near to t. In the present paper, 
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only the time t+∆t has been used. The task becomes easier if 
continuous variables through a temporal polynomial approximation 
replace discrete ones. Then, rotations have the following expression 
presented in Eq. 14. 

 

( ) ( ) ( ) ( ) 3
4

2
321 ticticticici +++=θ  (14) 

 

The terms ( )ic j  being constants and the term i corresponding to 

the node number of the dynamic structure. The first and second 
derivative of θi are then obtained by deriving those expressions with 
respect to t. The total number of unknown parameters describing the 
rotation in a node around the time t is here fixed to four (equal to the 
employed number of coefficients). 

Nevertheless, these approximations have the major defect to be 
very sensible to noise phenomena. This last has high influence on 
evaluated acceleration, so on evaluated acting forces and so on the 
identified parameters. Some parameters have the particularity to be 
constant related to time. In order to take this property into account, 
the residue vector is evaluated with several distant time instants. 
This procedure filters noise sensibilities and allows a mechanically 
acceptable parameters identification. 

In short, the proposed strategy differs from that described in the 
previous section in the following aspects: 

• instead of choosing only a instant ti to minimize the residue of 
Eq. (11), a set of instants [t1, …, tn] is chosen, 

• for each instant ti, another instant ti+∆t is taken into account 
for analysis, 

• third order interpolation functions are created to represent the 
degrees of freedom to be identified at instants ti and ti+∆t, 

• coefficients of the interpolation function as well as the 
Lagrange parameters and the physic and geometric parameters 
are now the unknowns to be identified, 

• solve Eq. 12 with the set of parameters being ( )( )** ,, tj iC λp . 

To accomplish this last task, the same procedure as the one used 
in previous section is applied. 

Indirect Temporal Identification 

The proposed procedure consists in reducing the difference 
between experimental kinematics data and evaluated variables that 
are obtained through the solution of DAE Eq. (1). As in the previous 
section, the proposed solution can also be regarded as an 
optimization procedure but declared by means of Eq. (15) 
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The Greek variables are weight factors representing the 

influence of each term. With the parameter set ( )** , t
λ

p  the dynamics 

efforts in the joints and the reaction forces can be obtained through 
Eq. (1) by correspondent components of fint and BTλλλλ. 

The main advantage of this procedure is that the residue vector 
does not have to be composed of all kinematics data but only of a 
part of them. With such a choice, velocity, acceleration as well as 
rotational data may be not employed in the comparison vector z of 
the Eq. (16). 
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Even though, two tests were made using the whole kinematics 

data as presented in Eq. (17).  
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The kinematics variables set ( )000 ,, ttt qqq ɺɺɺ  is obtained by 

simulating the movement with an initial given set of parameters 

( )00, t
λ

p  until the comparison time t is reached. The residue vector 

( )t
λ

pz ,  is then evaluated. The set of parameters ( )n
t

n λp ,  is 

updated until convergence through the optimization procedure. As 
the system is highly non-linear, it also imposes a numerical 
evaluation of the gradient matrix necessary for the optimization 
procedure and described in the previous section. This fact implies to 
run the whole simulation from initial time until time t for each 
disturbance introduced in each unknown parameter. For long time 
simulation, this procedure becomes calculating time expensive. 

Numerical Evaluation 

Before to face the proposed biomechanical problem, some tests 
are made on a simpler model where the formulation is easier and 
results are more conclusive. This proposed model example is shown 
in Fig. 1. Despite its geometric simplicity, it can bring all sort of 
difficulties expected in a biomechanical model. It's composed of two 
flexible bars linked by a torsional and linear spring element. One of 
the bars is attached to a fixed point through a spring element, similar 
to the previous but having different stiffness. The spring element 
stiffness will be the parameters p to identify. 

 

 
Figure 1. Two flexible bars linked by spring elements. 

 
The following data were given to this problem: bar's Young 

modulus E=2.1x1010 Pa, section area A=25x10-6 m2, inertia section 
I=52.1x10-12 m4, bar's volume density ρ=7800 kg/m3, bar's initial 
length Lb=0.9 m, non extended spring length Ls=0.1 m, 
ktorsional=0.5 Nm/rad, klinear(elt 1)=700 N/m, klinear(elt 3)=400 N/m. 
The exact set of parameters to identify is then 
p* = [700 0.5 400 0.5]T. 
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The only solicitations are the gravity forces. The initial situation 
consists in letting this whole multibody system falling freely from a 
same initial angle of bars and springs with respect to a vertical line 
equal to π/6. The DAE are integrated for 3s using the HHT scheme 

presented before. All nodal kinematics responses ɺɺ ɺt t tq ,q ,q    
      are 

registered as our simulated set. We generate our measured set by 

using only the set tq . Derivative ɺ tq  and ɺɺtq  are obtained by finite 

central difference method from tq . 

We decided to apply the three temporal identification methods 
starting from a vicinity of our parameter solution. 

We test the direct and the indirect identification procedures at 
times t1=0,69 s and t2=2,83 s. These times were close and far, 
respectively, from the starting state. They were also defined 
according to a criterion of bad numerical evaluation meaning that at 
times chosen difference between simulated and measured responses 
is the greatest. 

For the adapted procedure, because it is analyzed separately, the 
first time instant set is taken in the first third of time simulation 
[0.5s 1.0s]. Then, two sets of five instants [0.6s 0.9s 1.4s 2.1s 2.7s] 

and [0.4s 1.1s 1.6s 1.9s 2.3s] are taken in a more or less distributed 
form between 0s and 3s. 

Results and Conclusions 

The indirect identification procedure was performed with the 
two residues presented in Eq. (16) and Eq. (17). In Eq. (16) only the 

nodal position variables were used in ( )q t  and ( )tq , as an example 

we test the procedure with 2 4 5 5=   q
TT x y x y  and 

[ ]TT yxyx 5542=q . This has been done in order to evaluate 

the capabilities of the procedure when dealing with a reduced 
residue vector. 

The simulated and the measured sets are used consecutively as 
measured data to perform the identification. Several starting sets of 
parameters between 0.8 p* and 1.2 p* are chosen for the 
optimization procedure. Identification evaluations were summarized 
in Tab. 1. 

 

Table 1. Tests results. 

Identif Reference Data t1 = 0.69 s t2 = 2.83 

Simulated set Convergence to p* Convergence to p*  

Simulated set except speed 
that comes from measured set 

Convergence to p1 Convergence to p1 Direct 
 

Measured set 
Bad convergence even starting from 

solution parameter set 
Bad convergence even starting from 

solution parameter set 

Simulated set with (17) 
Convergence to p* when starting 

from (0.93 to 1.10).p* 
Convergence to p* when starting from 

(0.90 to 1.02).p* 

Positions and accelerations from 
simulated set with (17). Velocities 

from measured set 

Convergence to p* when starting 
from (0.93 to 1.10).p* 

Convergence to p* when starting from 
(0.90 to 1.02).p* 

Measured set with (17) 
Bad convergence even starting from 

parameter solution set 
Bad convergence even starting from 

parameter solution set 

Indirect 

Simulated set with (16) 
Convergence to p* when starting 

from (0.90 to 1.18).p* 
Convergence to p2 when starting from 

(0.98 to 1.02).p* 

 
 
With the solution sets being p1=[663 0.49 379 0.49]T and 

p2=[757 0.50 465 0.52]T. In table 1, a "Bad convergence" means that 
the identified set of parameters has no mechanical signification; a 
negative Young modulus as example. 

The results show that the direct identification procedure is very 
sensible to modified acceleration values but less to velocities. 
Nevertheless, a small modification of velocities, due to the finite 
difference scheme for derivation, causes an error on the identified 
parameter set: p1 instead of p*. 

The indirect procedure proposes a very interesting alternative 
with allowing to not use accelerations. Nevertheless, the starting set 
of parameters for the optimization procedure has to be very close 
from the expected response. 

The simulation time also plays an important role in the results 
obtained. We could verify that the more the simulation time is big 
the more the starting point has to be near of the solution to 
convergence. This can be explained by the great differences, 
especially in trajectory accelerations, generated by different 
parameter sets. Moreover, the time processing is strongly linked to 
time simulation for the indirect procedure. 

For the node 5 of the Fig. 1, the sensibility of evaluated 
kinematics to the parameter sets are shown in Fig. 2, Fig. 3 and 
Fig. 4. In Figure 2, nodal displacements in the x and y directions and 
the nodal rotation according to z are presented for the 3 sets of 
parameters. Figure 3 and figure 4 present the same results for 
velocities and accelerations. One can notice on Fig. 2 the low 
sensibility of the displacement to the parameters. Figure 3 shows the 
higher sensibility of velocity. At last, Fig. 4 shows the high 
dependency of acceleration to the parameters. 
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Figure 2. Displacements sensibilities. 

 

 
Figure 3. Velocities sensibilities. 

 

 
Figure 4. Accelerations sensibilities. 

 
Figure 5 shows the sensibility of forces in x and y directions and 

of the torque to parameters in the first element spring. It is 
interesting to notice here that even if force responses are dependent 
from the parameter sets, the levels of force magnitudes are not. 

 
Figure 5. Forces sensibilities. 

 
For the adapted direct identification procedure, evaluations are 

summarized in Tab. 2. The linear stiffness always converges 
towards the solution values, even for the reduced instant set. 
Further, their convergence are also verified for departure points far 
from the solution values (30 p*). This means that those parameters 
strongly affect the studied dynamic system behavior. In the other 
hand, the variation in torsional stiffness does not seem to play an 
important role in the system equations, especially when short 
instants sets are used, i.e. few equations are employed in the 
optimization procedure. 

 

Table 2. Parameter solution for different instant sets. 

Instant set Identified p 
[0.5s 1.0s] [700 –0.47 400 5.10] 

[0.6s 0.9s 1.4s 2.1s 2.7s] [700 0.42 400 0.58] 
[0.4s 1.1s 1.6s 1.9s 2.3s] [700 0.51 400 0.58] 

 

The nodal relative rotations ( ) iiii θθθθ /−=∂  and the relative 

Lagrange parameter ( ) θθθθ λλλλ /−=∂  obtained after the 

optimization procedure, are shown in Tab. 3 for the third instant set 
[0.4s 1.1s 1.6s 1.9s 2.3s]. The Lagrange parameter θλ   concerns the 

torsion reaction at node 1 (Fig. 1). 
 

Table 3. Relative errors (x103) of rotations and Lagrange parameter. 

ti cθ2 cθ3 cθ4 cθ5 cλθ 
0.4s 0.05 0.1 0.1 0.04 1.68 
1.1s 0.06 0.07 0.05 0.02 5.68 
1.6s 0.01 0.06 0.04 0.02 1.88 
1.9s 0.01 0.03 0.03 0.02 3.42 
2.3s 0.1 0.19 0.17 0.07 4.05 

 
One can see that some parameters, and especially the 

coefficients of the employed interpolation functions, are well 
determined meaning they also have considerable weight in dynamic 
equations what is not true for the rotation time derivatives. The 
results have revealed this can be a good and simple manner of 
identifying kinematics, dynamic, physic and geometric parameters 
in multibody flexible dynamic systems when the rotation data are 
not provided. 

We tend to forget the direct identification procedure that is not 
adapted to data characteristics. In the other hand, the strategy of 
using the reduced simulated set in indirect procedure has revealed a 
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good alternative to follow due to its similarity with the available 
data of the original biomechanical problem. However, more 
powerful search methods are required to overcome the uncertainties 
of the departure searching point when the answer is not known. 
Future tests, using many reference times and introduced noise in 
position reference data, will be performed to verify how those 
changes can affect the response quality and the departure point 
range of parameter set. At last, the adapted direct procedure presents 
good identification capabilities but have to be investigated for more 
instant sets. Its robustness has to be verified with measurement 
noises. 

We still have to take into account the fact that temporal 
integration schemes impose modification of the equilibrium 
equation to solve. It is well known that these schemes present 
numerical dissipation due to the damping coefficient introduced to 
filter high frequencies causing the instabilities. But even 
conservative schemes present defects as phase error. To give a 
mechanical meaning of the parameters evaluated, this drawback has 
to be included in the identification procedure when simulated data 
are compared to measured ones. Nevertheless, we are great 
confident in the recent development in the simulation of MBS 
(Schiehlen, 2005)(Ibrahimbegovic & al., 2003) and we will focus 
our future investigations on the identification process. 
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