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Applied Nonlinear Dynamics of Non-
Smooth Mechanical Systems 
This paper introduces practically important concept of local non-smoothness where any 
dynamical system can be considered as smooth in a finite size subspace of global 
hyperspaceΩ. Global solution is generated by matching local solutions obtained by 
standard methods.  If the dynamical system is linear in all subspaces then an implicit 
global analytical solution can be given, as the times when non-smoothness occurs have to 
be determined first. This leads to the necessity of solving a set of nonlinear algebraic 
equations. To illustrate the non-smooth dynamical systems and the methodology of solving 
them, three mechanical engineering problems have been studied. Firstly the vibro-impact 
system in a form of moling device was modelled and analysed to understand how the 
progression rates can be maximised. Periodic trajectories can be reconstructed as they go 
through three linear subspaces (no contact, contact with progression and contact without 
progression). In the second application frictional chatter occurring during metal cutting 
has been examined via numerical simulation method. The analysis has shown that the 
bifurcation analysis can be very useful to make an appropriate choice of the system 
parameters to avoid chatter. The last problem comes from rotordynamics, where nonlinear 
interaction between the rotor and the snubber ring are studied. The results obtained from 
the developed mathematical model confronted with the experiment have shown a good 
degree of correlation. 
Keywords: Nonlinear dynamics, non-smooth systems, mechanical vibrations 
 
 
 

Introduction 
1Most of real systems are nonlinear and their nonlinearities can 

be manifested in many different forms. One of the most common in 
mechanics is the non-smoothness. One may think of the noise of a 
squeaking chalk on a blackboard, or more pleasantly of a violin 
concert. Mechanical engineering examples include noise generation 
in railway brakes, impact print hammers, percussion drilling 
machines or chattering of machine tools. These effects are due to the 
non-smooth characteristics such as clearances, impacts, intermittent 
contacts, dry friction, or combinations of these effects.  

Non-smooth dynamical systems have been extensively studied 
for nearly three decades showing a huge complexity of dynamical 
responses even for a simple impact oscillator or Chua's circuit. The 
theory of discontinuous and non-smooth dynamical systems has 
been rapidly developing and now we are in much better position to 
understand those complexities occurring in the non-smooth vector 
fields and caused by generally discontinuous bifurcations. There are 
numerous practical applications, where the theoretical findings on 
nonlinear dynamics of non-smooth systems have been applied in 
order to verify the theory and optimize the engineering performance. 
However from a mathematical point of view, problems with non-
smooth characteristics are not easy to handle as the resulting models 
are dynamical systems whose right-hand sides are discontinuous, 
and therefore they require a special mathematical treatment and 
robust numerical algorithms to produce reliable solutions. 
Practically, a combination of numerical, analytical and semi-
analytical methods is used to solve and analyse such systems and 
this particular aspect will be explored here. 

The main aim of the paper is to outline a general methodology 
for solving of non-smooth dynamical systems, and to apply it to 
practical problems. The methodology will be illustrated and 
examined through three case studies. Firstly periodic responses of a 
drifting vibro-impact system with drift will be investigated through 
a novel semi-analytical method, developed by Pavlovskaia and 
Wiercigroch (2003a), which allows to determine the favourable 
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operating conditions. The model accounts for visco-elastic impacts 
and is capable to mimic dynamics of a bounded progressive motion 
(a drift). Then the frictional chatter in orthogonal metal cutting will 
be modelled and analysed using numerical and analytical methods 
(see Wiercigroch and Krivtsov, 2001). In this paper an extensive 
nonlinear dynamic analysis has been performed giving some new 
light on the frictional chatter occurrence, i.e. that the discontinuous 
character of the friction force is essential for the chatter generation. 
Finally, the dynamic responses of a Jeffcott rotor system with 
bearing clearances will be examined (see Karpenko et al., 2002a and 
Pavlovskaia et al., 2004).  

Nomenclature 

a = constant of dynamic component 
b = constant of static component 
c = damping coefficient  
d = dry friction force 
e = eccentricity vector 
f = vector function 
f = external force 
h = gap 
H = Heaviside step function 
k = stiffness coeficient 
m = mass 
p = vector of system parameters 
R = radius vector 
q = cutting parameter 
ɺx  = velocity vector 

x = state space vector 
X = subspace 
x = absolute displacement in the x-direction 
x′  = absolute velocity in the x-direction 

y = absolute displacement in the y-direction 
y′  = absolute velocity in the y-direction 

v = absolute displacement of the slider bottom 
z = absolute displacement of the slider top 

Greek Symbols α  = stiffness ratio ε  = offset η  = frequency ratio 
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κ  = stiffness ratio �  = static friction coeficient ξ
 = damping ratio φ  = phase angle ω  = rotational frequency τ  = time � τ

 = time interval 

Subscripts 

r relative to the rotor 
s relative to the snubber ring 
x relative to component in x direction 
y relative to component in y direction 

Non-Smooth Dynamical Systems 

In many engineering applications, characteristics of the system 
can be either discontinuous or non-smooth. As well-known 
examples, one may point an oscillator with clearance analysed in 
(Peterka & Vacik, 1992), piecewise linear oscillators (Shaw & 
Holmes, 1983; Wiercigroch & Sin, 1998, Pavlovskaia et al., 2001), 
Jeffcott rotor with bearing clearances (Gonsalves et al, 1995, 
Karpenko et al., 2002a, Pavlovskaia et al., 2004), systems with 
Coulomb friction (Feeny, 1992; Wiercigroch, 1994) and metal 
cutting processes (Grabec, 1988, Wiercigroch, 1997). General 
methodology of describing and solving non-smooth dynamical 
system can be found in (Wiercigroch & de Kraker, 2000). It 
includes modelling of non-smooth systems by discontinuous 
functions and modelling of discontinuities by smooth functions. In 
the latter case extra care is required as smoothing discontinuities can 
produce a ghost solution (Karpenko et al., 2002a). The first 
approach considers first a dynamical system, which is continuous in 
global hyperspace Ω, and in autonomous form can be described as 

 

( ),=x f x pɺ  (1) 

 
where x=[x1,x2,…,xn]

T is the state space vector, p=[p1,p2,…,pm]T is a 
vector of the system parameters, and f=[f1,f2,…,fn]

T is the vector 
function which is dependent upon the process being modelled. Then 
we assume that the dynamical system (1) is continuous but only in N 
subspaces Xi of the global hyperspace Ω (see Fig. 1), therefore, the 
right hand side of Eq.(1) will be piecewise smooth. For each 
subspace Xi when x=Xi the right hand side of Eq.(1) will be 
different function equal to fi (x, p) where i=[1,...,N]. 
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Figure 1. Trajectory of a non-smooth dynamical system. 

 
 

Vibro-Impact Systems 

Vibro-impact systems are inherently nonlinear and have been 
widely used in civil and mechanical engineering applications. One 
may give examples of ground moling machines, percussive drilling, 
ultrasonic machining and mechanical processing (cold and hot 
forging). In the past all these machines and processes have been 
designed based on linear dynamic analysis. 

Imagine for example, a vibro-impact system driving a pile into 
the ground. During its operation the driving module moves 
downwards, and its motion can be viewed as a sum of a progressive 
motion and bounded oscillations. The simplest physical model 
exhibiting such behaviour is comprised of a mass loaded by a force 
having static and harmonic components, and a dry friction slider. 
This model was introduced and preliminary analysed in Krivtsov & 
Wiercigroch (1999, 2000). Despite its simple structure, a very 
complex dynamics was revealed. The main result from that work 
was a finding that the best progression occurs when the system 
responds periodically. A more realistic model including visco-
elastic properties of the ground and its optimal periodic regimes 
were studied in Pavlovskaia et al. (2001, 2003a, 2003b, 2004). 

Modelling of Vibro-Impact Moling 

As a first approximation a vibro-impact moling system may be 
represented as an oscillating mass with a frictional visco-elastic 
slider as shown in Fig. 2a. The frictional visco-elastic slider models 
well the hysteretic soil resistance depicted in Fig. 2b. This model 
allows mimicking the separation between the mole head and the 
front face of the hole. 

A mass m is driven by an external force f containing static b and 
dynamic a cos(ωτ + ϕ) components. The weightless slider has a 
linear visco-elastic pair of stiffness k and damping c. As has been 
reported in Pavlovskaia et al. (2001) the slider drifts in stick-slip 
phases where the relative oscillations between the mass and the 
slider are bounded ranging from periodic to chaotic motion. 
Similarly to the stick-slip phenomenon, the progressive motion of 
the mass occurs when the force acting on the slider exceeds the 
threshold of the dry friction force d, x, z, v represent the absolute 
displacements of the mass, slider top and slider bottom, 
respectively. It is assumed that the model operates in a horizontal 
plane, or the gravitational force is compensated.  At the initial 
moment τ = 0 there is a distance between the mass and the slider top 
called gap, g. 
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Figure 2. (a) Physical model of drifting vibro-impact system, (b) model of 
soil. 

 
The considered system operates at the time in one of the 

following modes: No contact, Contact without progression, and 
Contact with progression. A detailed consideration of these modes 
and dimensional form of the equations of motion can be found in 
Pavlovskaia et al. (2001). The equations of motion covering all 
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modes can be written using Heaviside step functions Hi in the 
following form: 

 

( ) ( )
( )( )

( )( )

1 2 3 1 3

1 1

1 3 4

,

cos (2 )H H 1 H H H ,

H 1 H 2 ,

H H H 1 2 ,

,

x y

y a s b y z

z y z

y z

s

ϕ ξ

ξ

ξ

ω

′ =
′ = + + − + − − −

′ = − − −

′ + −

′ =

v

v

v = v -

 (2) 

 
where 

 

( ) ( )
( ) ( )

1 2

3 4

H , H 2 ,

H 2 1 , H

H x z e H y z

H y z H y

ξ

ξ

= − − = +

= + − =
 

 
The basic function of the investigated system is to penetrate 

through soil. Despite the fact that the considered model has only two 
degrees-of-freedom, its dynamics is very complex. Since 
displacements of the system elements are moving from the origin, 
the mass velocity has been used to view the structural changes in the 
system responses due to the fact that it is bounded. The control 
parameter in form of static force, b proved to be very useful for 
determining the regions of the best progression. 
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Figure 3. (a) Four phases of a periodic progressive motion, (b) 
comparison of the numerical simulation with the semi-analytical method 
(thick solid line). 

 

The construction of the bifurcation diagrams has brought some 
practical insight regarding progression rates. Since the system drifts 
towards larger displacements, v, one way to monitor progression 
rate is to calculate displacement in a finite time, which in our 
computations was equal to 50 periods of external loading. As has 
been reported in (Pavlovskaia et al., 2001), the maximum 
penetration rate coincides with the point where periodic regime 
becomes aperiodic. This information has been used to develop a 
semi-analytical algorithm for determining this point, and it can be 
found in Pavlovskaia & Wiercigroch (2003). The method constructs 
a periodic response assuming the global solution is comprised of a 
sequence of distinct phases for which local analytical solutions are 
known explicitly. A solution may consist of the following sequential 
phases (see Fig. 3a): (I) contact with progression, (II) contact 
without progression, (III) no contact and (IV) contact without 
progression. Progressions per period were calculated from the 
numerical simulation of the system dynamics and then compared 
with the results from the devised semi-analytical method (thick solid 
line in Fig. 3b). As can be seen from Fig. 3b, a very good correlation 
between two methods was obtained. 

Vibrations in Metal Cutting 

Despite the continuing effort in the field, and generation of new 
theories, there is no consistent explanation for the existence of 
chatter. The fundamental reason behind it is the complexity of the 
chip-formation process, where the following strongly nonlinear 
phenomena are interrelated and dependent: temperature-dependent 
plasticity; temperature- and velocity-dependent friction; nonlinear 
stiffness of machine tools; regenerative effects; and intermittency of 
the cutting process. There are two different types of chatter: primary 
and secondary. Primary chatter is caused mainly by the variable 
shear stresses in the primary and secondary plastic deformation 
zones, and the frictional effects of the chip acting on the rake 
surface due to the relative motion between the workpiece and tool. 
Secondary chatter is predominantly a result of the regenerative 
effects, where the workpiece geometry from the previous pass 
influences the dynamics of the next pass. 

The most influential work on the dynamics of machine tools and 
cutting processes was conducted in the mid forties by Merchant 
(1945), and later by Russians. The studies carried out by Zorev 
(1956) and Kudinov (1963) are good examples of those 
investigations, where the dynamics characteristics of the cutting 
process play a key role in process stability. Contrary to this 
approach, there is a significant body of research assuming that the 
machine-tool structure is responsible for the dynamic instabilities 
(e.g. Tlusty, 1986). Recent investigations into nonlinear dynamics 
have shown an existence and importance of chaotic motion 
occurring in machining. The models by Grabec (1988), Wiercigroch 
(1997) and Wiercigroch & Krivtsov (2001) have shown evidence of 
chaotic vibrations, which are mainly due to the nonlinearity of the 
dry friction and then intermittent contact between the cutting tool 
and the workpiece. 

The instantaneous separation of the cutting tool from the 
workpiece, namely an intermittent cutting process, has a great 
influence on the system dynamics. Therefore, a model of the 
machine tool – cutting process (MT-CP) system should take into 
account a feedback control loop through the cutting force and also 
the discontinuity of the process. To concentrate on the nonlinear 
dynamics issues, a simple but realistic model of the MT-CP system 
will be considered. The elastic, dissipative and inertial properties of 
the machine-tool structure, tool and the workpiece are represented 
by a planar oscillator, which is excited by the cutting-force 
components fx and fy (see Fig. 4a). It is assumed that the relationship 
between the cutting forces and the chip geometry, namely the 
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cutting-process characteristics, is captured by orthogonal cutting, 
where the cutting edge is parallel to the workpiece and normal to the 
cutting direction, as depicted in Fig. 4b.  

Since fx and fy are mutually related, one can be expressed by the 
other. This approach was adopted from Hastings et al. (1980), where 
the cutting forces for a wide class of technical materials are 
described by the following expressions, 

 

( ) ( )( )( ) ( )2

0 1, ,    1 1  x rf y x y q h c abs v H h′ ′ = − +  (3) 

 

( ) ( ) ( ), , ,  , ,y r f xf y x y v v h f y x yξ′ ′ ′ ′=  (4) 

 
where 

 

( )( ) ( )( ) ( ) ( )
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c v c h H f v

v v x v v Ry h h y

R R c v
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′ ′= − = − = −

= − +

 

 
 
 

φh

Tool

Workpiece

1
vr

0

fx

1

1
vr

0

fx

1

µ0
µ0+1

(b)

(c) (d)

(a)

m
cx

kx

fy

fx

x

y

v0

ky cy

 
Figure 4. MT-CP system; (a) physical model, (b) chip geometry, (c) former 
form of fx, (d) new form of fx as a function of the relative velocity vr. 

 
The cutting process starts with an initial depth of cut, h0, where 

a layer is taken from the workpiece with the constant velocity, v0. 
Throughout the process it is assumed that the cutting parameters, 
such as c1, …, c4 and q0 are fixed. The nonlinear relationship 
between the cutting force, fx, and chip velocity is graphically 
presented in Fig. 4c where, for vr<0, the excitation force is equal to 
zero. In reality, this force never disappears completely as there is 
always a considerable friction force due to the compression force in 
the vertical spring.  To make this approach more realistic, a dry 
friction force acting in x-direction for the vr < 0 cases needs to be 
added. On the other hand, Eq.(4) should still be valid to predict the 
total force, fx for the vr ≥ 0 cases. A modified formula, which 
satisfies the conditions listed above, is written below and presented 
graphically in Fig. 4d 

 

( ) ( ) ( )

( )( )( ) ( )
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µ µ
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 
 
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where µ0 is the static friction coefficient. 

 
Dynamics of the analysed system can be described by a set of 

two second-order differential equations, which is presented in a non-
dimensional form 
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2 , , ,
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x x

y y

x x x f y x y
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ξ
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As the analysed system is nonlinear and can exhibit a broad 

range of responses, it is essential to provide a high-accuracy 
integration routine. Each time a discontinuity occurs, the precise 
value of the time has to be calculated in order to provide the correct 
initial conditions for the next integration step. A standard zero-
finder algorithm cannot effectively be applied in this case; therefore 
the computations were conducted using the method specifically 
developed for this problem, (see Wiercigroch, 1997). For a given set 
of parameters and initial conditions, the numerical integration is 
carried out using the fourth-order Runge-Kutta procedure with a 
fixed time-step, ∆τ = 0.001, until a discontinuity is detected. Then, 
based on the type of discontinuity recognized, the precise time value 
is calculated, either by an inverse interpolation or a bisection 
routine. 

The investigated system is described by a 12-parameter vector, 
however, for the purpose of this analysis, a two-parameter vector, 
p=[ξ,q0]

T, was chosen, where ξx = ξy  = ξ.  The results presented here 
were obtained by fixing the values of the following parameters, i.e. 
µ0=0.1, c1=0.3, c2=0.7, c3=1.5, c4=1.2, h0=0.5, R0=2.2 and v0=0.5. 
Figure 5 show an influence of the cutting forces modules, q0, on the 
system dynamics in the x and y direction respectively. For the 
stiffness ratio, α, equal to 0.25, and q0 up to 1.6, the system behaves 
in an irregular manner. By increasing the value of q0 above 1.6, the 
periodicity is regained. Further careful investigations of the above-
mentioned region of q0 demonstrate an interesting scenario of a 
transition between different types of motion with an increase of the 
branching-parameter value. The system’s responses are irregular for 
lower values of q0 , however, irregularities are more pronounced for 
the y direction. If the value of the branching parameter is between 
0.36 and 0.43, the system experiences period 3. After the first 
periodic region, a catastrophic transition to a chaotic motion is 
observed, which lasts until q0≈1.0. Then the system approaches 
gradually stable oscillations, with period 1 passing through narrow 
windows of irregular motion. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Bifurcation diagrams x = f(q0); (a) αααα = 0.25, (b) αααα = 1, (c) αααα = 4, (d) 
αααα = 16. 

 
Summarizing, for α=0.25, the system dynamics undergoes vast 

changes. Setting up the stiffness ratio, α, to 1 and 16, the behaviour 

is completely different (see Fig. 5b, d). For almost the entire range 
of the cutting-force modulus, the system oscillates either 
periodically or almost periodically, excluding the lower values of q0, 
where some transient irregular motion occurs. The bifurcation 
diagrams constructed for α=4 show another example for an unusual 
behaviour, that is, unidirectional bifurcation. The system bifurcates 
in the x direction and is stable in the y direction, for q0 between 0.24 
and 0.54, despite the fact that the equations of motion are coupled. 
There is also a shift of the critical point for the x and y directions. 
For the x direction, the system starts with two bifurcation periods of 
the doubling type, and then vibrates chaotically. For the y direction, 
the system, after crossing the critical value, oscillates with period 4, 
and then becomes chaotic. The bifurcation diagrams depicted in Fig. 
5 show that, for α=0.25 and α=1.0, the system, after regaining 
periodicity, decreases its vibration amplitude with an increase of the 
cutting force. This fact can be used in the design of the machine 
tools and control of the cutting processes. For α=16, the system 
responses are consistent with a traditional understanding of the MT-
CP interactions, i.e. higher amplitudes are generated by larger 
cutting forces.  

Nonlinear Oscillations of Jeffcott Rotor with Snubber 
Ring 

In rotor systems non-smoothness may appear due to bearing 
clearances. This may result in piecewise stiffness characteristics, 
which can consequently lead to nonlinear behaviour including 
chaotic motion. The existence of this characteristic implies that 
there is intermittent contact between the components of the rotor 
system, which is critical to predict and control their complex 
behaviour. 

Rotor systems with bearing clearances have been studied in the 
past, where the investigations concentrated primarily on the Jeffcott 
rotors. In particular, Choy and Padovan (1987), Muszynska and 
Goldman (1995), Childs (1982) and Chu and Zhang (1997, 1998) 
paid attention to rub interactions in rotating machinery. Ehrich 
(1992) investigated spontaneous sidebanding, while Ganesan (1996) 
looked at the stability analysis. Numerical investigation of the 
model of the Jeffcott rotor with a snubber ring by Karpenko et al. 
(2002b) has shown the existence of multiple attractors and fractal 
basins of attraction. Influence of the preloading and viscous 
damping of the snubber ring was investigated in Karpenko et al. 
(2003b) where it was shown how the preloading of the snubber ring 
could stabilize the dynamic responses.  

Rotor System with Bearing Clearances 

The rotor system (see Karpenko, 2003b) is modelled as a two-
degrees-of-freedom piecewise nonlinear planar oscillator, where the 
rotor makes intermittent contact with the preloaded snubber ring. 
The physical model and the geometrical description of the model are 
given in Fig. 6. The excitation of the rotor is provided by an out-of-
balance rotating mass producing the loading force f0 = mrw2. Here 
Or and Os denote the current positions of the rotor and the snubber 
ring respectively. Figure 6a presents the situation when the initial 
and current positions of the snubber ring coincide. The eccentricity 
vector e=(ex,ey) determines the initial position of the rotor Or,0 
relative to the initial position of the outer ring. The radius vectors Rr 
and Rs show the current positions of the rotor and the snubber ring. 
D is the distance between the centres of the rotor and the snubber 
ring. R is the radial displacement of the rotor. For the “no contact” 
situation the distance between the centres of the rotor and the 
snubber ring is equal to the radial displacement of the rotor D = R.  
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Figure 6. (a) Physical model of the Jeffcott rotor with bearing clearances, 
(b) adopted co-ordinate system. 

 
When rotor moves inside the stator without any interaction with 

the ring the equations of motion for the rotor and the snubber ring 
are as follows (Karpenko et al., 2003a) 

 

( )
( )
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2 2

2 cos ,

2 sin ,

2 0, 2 0.

r r r x

r r r y

s s s s

x x x f

y y y f

x x y y

ξ ε ϕ ητ

ξ ε ϕ ητ
ξ κ ξ κ

′′ ′+ + − = +

′′ ′+ + − = +
′ ′+ = + =

 (7) 

 
When the rotor is in contact with the snubber ring there are four 

unique regimes (see Pavlovskaia et al., 2004), for which the 
stiffness of the snubber ring for x and y directions differs. Equations 
of motion can be written as  

 

( )
( )
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2 cos ,

2 sin ,
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r r r x s x

r r r y s y
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 (8) 

 
In Eqs( 7) and (8), x1 and x2 denote the viscous damping ratios 

of the rotor and the snubber ring, where fs,x and fs,y are the restoring 
forces in the snubber ring in x and y direction respectively. The 
constraints between the rotor and the snubber ring co-ordinates were 
developed in Pavlovskaia (2004). Equations of motion (8) and (9) 
have been derived using the following series of assumptions. Firstly 
dry friction between the ring and rotor has been neglected. Secondly 
it was assumed that the snubber ring itself is massless, because it is 
manufactured from aluminium and highly preloaded by compression 
springs. Thirdly gyroscopic forces are not taken into consideration 
since no angular motion occurs. 

Experimental Verification 

In this section sample of extensive experimental studies in 
Karpenko (2003b) conducted to verify the mathematical model of 
Jeffcott rotor system with a snubber ring developed at the University 
of Aberdeen is presented.  

For the bifurcation diagram presented in Fig. 7a comparison of 
the theoretical (Fig. 7a) and experimental (Fig. 7b) responses shows 
a number of similarities. In both figures for the low magnitude of 
the forcing frequency period one motion is observed for 
f=(7,13.6)Hz and at f=(16.2,17.7)Hz followed by chaotic regimes 
for f=(13.6,16.2)Hz and f=(17.7,22.8)Hz respectively. In the 
theoretical and experimental diagrams the width of both periodic 
and chaotic regimes are the same. After the flip bifurcation at 
f=22.8Hz the theoretical response becomes periodic up to the end of 
the diagram. In the experimental bifurcation diagram in Fig. 7b for 
f=(25.6,32)Hz some kind of quasi-periodic regime was obtained. In 
both diagrams two cross-sections were examined in the form of 
Poincaré maps. It is also seen that the theoretical and experimental 
attractors are similar in shape. However, despite of the shape 
similarity, there are some differences in the amplitudes of 
displacements and velocities.  

Conclusions 

This paper introduces a practically important concept of non-
smoothness where a dynamical system can be considered as smooth 
in a finite size subspace of global hyperspace. Global solution is 
generated by matching local solutions obtained by standard 
methods. If the dynamical system is linear in all subspaces then only 
an implicit global analytical solution can be given as the times when 
non-smoothness occurs have to be determined first. This leads to the 
necessity of solving a set of nonlinear algebraic equations. To 
illustrate the non-smooth dynamical systems and the methodology 
of solving them, three mechanical engineering problems have been 
studied. 
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Figure 7. Bifurcation diagrams for the forcing frequency; (a) theoretical, 
(b) experimental. 

Firstly the vibro-impact system in a form of moling device was 
modelled and anaysed in order to understand how the progression 
rates can be maximised. Periodic trajectories can be reconstructed as 
they go through three linear subspaces (no contact, contact with 
progression and contact with progression). It was shown that the 
considered model reflects well the dynamics of the vibro-impact 
system and also the soil resistance curves. A typical nonlinear 
dynamic analysis has revealed complex behaviour ranging from 
periodic to chaotic motion. Bifurcation diagrams were constructed 
using variation of the mass velocity as the displacement has a drift. 
It was found out that the maximum progression is achieved when 
system responds periodically with the period of external excitation. 

In the second application frictional chatter occurring during 
orthogonal metal cutting has been examined via numerical 
simulation method. The physical models consider a dry friction 
force acting on the cutting edge. The system demonstrates complex 
dynamic behaviour, which is manifested by the existence of 
periodic, quasi-periodic, subharmonic and chaotic motion. It was 
found that some of the bifurcation diagrams couldn’t be classified 
into standard routes to chaos, however; crisis type transition to 
chaos is dominating. The analysis has shown that the bifurcation 
analysis can be very useful to make an appropriate choice of the 
system parameters to avoid chatter.  

The last problem comes from rotordynamics, where nonlinear 
interactions between the rotor and the snubber ring are studied. The 
mathematical model neglects the frictional and gyroscopic forces, 
and concentrates on the dynamic responses caused by interactions 
between a whirling rotor and a massless snubber ring, which has 
much higher stiffness than the rotor. The mathematical model has 
been solved using both the approximate analytical method and 
numerical by a direct integration of the equations of motion. By 
employing various techniques such as construction of bifurcation 
diagrams and Poincaré maps, comparisons are made between the 
results obtained from the experiment and the theory. The results 

obtained showed that a wide variety of motion was exhibited by this 
system ranging from periodic to chaotic. A good correlation 
between experimental and theoretical results has been obtained. It 
was shown that the experiment has confirmed the basic bifurcation 
scenarios predicted theoretically. 
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