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This paper introduces practically important concept of local hon-smoothness where any
dynamical system can be considered as smooth in a finite size subspace of global
hyperspace2. Global solution is generated by matching local solutions obtained by
standard methods. If the dynamical system is linear in all subspaces then an implicit
global analytical solution can be given, as the times when non-smoothness occurs have to
be determined first. This leads to the necessity of solving a set of nonlinear algebraic
equations. To illustrate the non-smooth dynamical systems and the methodol ogy of solving
them, three mechanical engineering problems have been studied. Firstly the vibro-impact
system in a form of moling device was modelled and analysed to understand how the
progression rates can be maximised. Periodic trajectories can be reconstructed as they go
through three linear subspaces (no contact, contact with progression and contact without
progression). In the second application frictional chatter occurring during metal cutting
has been examined via numerical simulation method. The analysis has shown that the
bifurcation analysis can be very useful to make an appropriate choice of the system
parameters to avoid chatter. The last problem comes from rotordynamics, where nonlinear
Interaction between the rotor and the snubber ring are studied. The results obtained from
the developed mathematical model confronted with the experiment have shown a good
degree of correlation.
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Introduction

Most of real systems are nonlinear and their nealiities can
be manifested in many different forms. One of tr@sntommon in
mechanics is the non-smoothness. One may thinkeohbise of a
squeaking chalk on a blackboard, or more pleasanftlg violin
concert. Mechanical engineering examples includsengeneration
in railway brakes, impact print hammers, percussiniling
machines or chattering of machine tools. These&sffare due to the
non-smooth characteristics such as clearancesgctsypatermittent
contacts, dry friction, or combinations of theskeeffs.

Non-smooth dynamical systems have been extensgtaljied
for nearly three decades showing a huge complefitgynamical
responses even for a simple impact oscillator arahcircuit. The
theory of discontinuous and non-smooth dynamicatesys has
been rapidly developing and now we are in muchebgtbsition to
understand those complexities occurring in the smwoth vector
fields and caused by generally discontinuous bétioas. There are
numerous practical applications, where the themakfindings on
nonlinear dynamics of non-smooth systems have laggtied in
order to verify the theory and optimize the engiiregperformance.
However from a mathematical point of view, problewish non-
smooth characteristics are not easy to handlesaseulting models
are dynamical systems whose right-hand sides a®omtinuous,
and therefore they require a special mathematiegltrhent and
robust numerical algorithms to produce reliable usohs.
Practically, a combination of numerical, analyticahd semi-
analytical methods is used to solve and analysh systems and
this particular aspect will be explored here.

The main aim of the paper is to outline a generathwdology
for solving of non-smooth dynamical systems, andapply it to
practical problems. The methodology will be illeged and
examined through three case studies. Firstly pieri@sponses of a
drifting vibro-impact system with drift will be irestigated through
a novel semi-analytical method, developed by PaKaia and
Wiercigroch (2003a), which allows to determine tlaourable
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operating conditions. The model accounts for vislastic impacts
and is capable to mimidynamics of a bounded progressive motion
(a drift). Then the frictional chatter in orthogdmaetal cutting will
be modelled and analysed using numerical and acallynethods
(see Wiercigroch and Krivtsov, 2001). In this paper extensive
nonlinear dynamic analysis has been performed gigome new
light on the frictional chatter occurrence, i.eattthe discontinuous
character of the friction force is essential foe tthatter generation.
Finally, the dynamic responses of a Jeffcott ratgstem with
bearing clearances will be examined (see Karpehkb, 2002a and
Pavlovskaiet al., 2004).

Nomenclature

a = constant of dynamic component

b = constant of static component

¢ = damping coefficient

d = dry friction force

e = eccentricity vector

f = vector function

f = external force

h = gap

H= Heaviside step function

k = dtiffness coeficient

m= mass

p = vector of system parameters

R= radius vector

g = cutting parameter

X = velocity vector

X = state space vector

X= subspace

x = absolute displacement in the x-direction
X' = absolute velocity in the x-direction
y = absolute displacement in the y-direction
y = absolute velocity in the y-direction

v = absolute displacement of the slider bottom
z = absolute displacement of the dider top

Greek Symbols
o = stiffness ratio
¢ = offset

n = frequency ratio
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x = stiffness ratio

1 = static friction coeficient
¢ = damping ratio

¢ = phase angle

w = rotational frequency

7 = time

Az = time interval
Subscripts

r relative to the rotor

s relative to the snubber ring

X relative to component indirection
y relative to component ndirection

Non-Smooth Dynamical Systems

In many engineering applications, characteristicthe system
can be either discontinuous or non-smooth. As lmsbwn
examples, one may point an oscillator with cleagaanalysed in
(Peterka & Vacik, 1992), piecewise linear osciltatdShaw &
Holmes, 1983; Wiercigroch & Sin, 1998, Pavlovskatial., 2001),
Jeffcott rotor with bearing clearances (Gonsalhetsal, 1995,
Karpenkoet al., 2002a, Pavlovskaiat al., 2004), systems with
Coulomb friction (Feeny, 1992; Wiercigroch, 1994ndametal
cutting processes (Grabec, 1988, Wiercigroch, 19%3¢neral
methodology of describing and solving non-smootmadyical
system can be found in (Wiercigroch & de Kraker,0@0 It
includes modelling of non-smooth systems by diScolous
functions and modelling of discontinuities by sntoéanctions. In
the latter case extra care is required as smoothigogntinuities can
produce a ghost solution (Karpenka al., 2002a). The first
approach considers first a dynamical system, wisicdontinuous in
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Vibro-Impact Systems

Vibro-impact systems are inherently nonlinear araehbeen
widely used in civil and mechanical engineeringlaggions. One
may give examples of ground moling machines, psicadrilling,
ultrasonic machining and mechanical processingd(cahd hot
forging). In the past all these machines and psEediave been
designed based on linear dynamic analysis.

Imagine for example, a vibro-impact system drivangile into
the ground. During its operation the driving modubeoves
downwards, and its motion can be viewed as a suanpsbgressive
motion and bounded oscillations. The simplest patsimodel
exhibiting such behaviour is comprised of a massléal by a force
having static and harmonic components, and a dejidn slider.
This model was introduced and preliminary analyiselrivisov &
Wiercigroch (1999, 2000). Despite its simple stuet a very
complex dynamics was revealed. The main result ftoat work
was a finding that the best progression occurs wihensystem
responds periodically. A more realistic model imthg visco-
elastic properties of the ground and its optimaliquic regimes
were studied in Pavlovskaghal. (2001, 2003a, 2003b, 2004).

Modelling of Vibro-Impact Moling

As a first approximation a vibro-impact moling srst may be
represented as an oscillating mass with a frictionmsco-elastic
slider as shown in Fig. 2a. The frictional viscastic slider models
well the hysteretic soil resistance depicted in. 2ly. This model
allows mimicking the separation between the moladhand the
front face of the hole.

A massmi s driven by an external fordecontaining stati®d and
dynamica cos(r + ¢) components. The weightless slider has a

global hyperspac®, and in autonomous form can be described as |inear visco-elastic pair of stiffnessand damping. As has been

% =f (x.p) (1)
wherex=[x;,%,.... %] ' is the state space vectps[p.,p,,....Pml" is @
vector of the system parameters, drff,,....f.]" is the vector
function which is dependent upon the process beiadelled. Then
we assume that the dynamical system (1) is contisbat only inN

reported in Pavlovskaiet al. (2001) the slider drifts in stick-slip
phases where the relative oscillations betweennthss and the
slider are bounded ranging from periodic to chaatiotion.
Similarly to the stick-slip phenomenon, the progres motion of
the mass occurs when the force acting on the skdeeeds the
threshold of the dry friction forcd, X, z, v represent the absolute
displacements of the mass, slider top and slidettotm

subspace¥; of the global hyperspad® (see Fig. 1), therefore, the respectively. It is assumed that the model operiates horizontal

right hand side of Eq.(1) will be piecewise smookuar each

plane, or the gravitational force is compensate@lt the initial

subspaceX; when x=X; the right hand side of Eq.(1) will be momentz =0 there is a distance between the mass andidke ®p

different function equal t§ (x, p) wherei=[1,...,N].

Cross-section ofl  X,.,
through points B and C

Figure 1. Trajectory of a non-smooth dynamical system.
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Figure 2. (a) Physical model of drifting vibro-impact system, (b) model of
soil.

The considered system operates at the time in dnthe
following modes:No contact, Contact without progression, and
Contact with progression. A detailed consideration of these modes
and dimensional form of the equations of motion banfound in
Pavlovskaiaet al. (2001). The equations of motion covering all
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modes can be written using Heaviside step functidnsn the
following form:
X =y,
y' =acos(s+¢)+b- (Zy+z-v)HH(F H)- HH,,
Z = yH, - (1-H,) (z-v)/2¢
v'= H1H3H4(y+(z—v-1)/25) '
s =w,

@

where

=H(x-z-¢), H,=H(2y+2),
H(2fy+z-1), H,=H(y)

The basic function of the investigated system igpémetrate
through soil. Despite the fact that the considenedel has only two
degrees-of-freedom, its dynamics is very complexinc&
displacements of the system elements are moving fie origin,
the mass velocity has been used to view the stalathanges in the
system responses due to the fact that it is bountled control
parameter in form of static forcé, proved to be very useful for
determining the regions of the best progression.
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Figure 3. (a) Four phases of a periodic progressive motion, (b)

comparison of the numerical simulation with the semi-analytical method
(thick solid line).
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The construction of the bifurcation diagrams hasught some
practical insight regarding progression rates. Sihe system drifts
towards larger displacementg, one way to monitor progression
rate is to calculate displacement in a finite timehich in our
computations was equal to 50 periods of exterradlifg. As has
been reported in (Pavlovskaiat al., 2001), the maximum
penetration rate coincides with the point whereiqoér regime
becomes aperiodic. This information has been usedevelop a
semi-analytical algorithm for determining this ppiand it can be
found in Pavlovskaia & Wiercigroch (2003). The neethconstructs
a periodic response assuming the global soluticomsprised of a
sequence of distinct phases for which local aradytsolutions are
known explicitly. A solution may consist of the lfmlving sequential
phases (see Fig. 3a): (I) contact with progressidi), contact
without progression, (lll) no contact and (IV) cact without
progression. Progressions per period were calaulfitem the
numerical simulation of the system dynamics and tbempared
with the results from the devised semi-analyticetimod (thick solid
line in Fig. 3b). As can be seen from Fig. 3b, By\good correlation
between two methods was obtained.

Vibrationsin Metal Cutting

Despite the continuing effort in the field, and getion of new
theories, there is no consistent explanation fa #xistence of
chatter. The fundamental reason behind it is thrapdexity of the
chip-formation process, where the following strgngionlinear
phenomena are interrelated and dependent: tempeiddépendent
plasticity; temperature- and velocity-dependenttifon; nonlinear
stiffness of machine tools; regenerative effeatst mtermittency of
the cutting process. There are two different tygfeshatter; primary
and secondary. Primary chatter is caused mainlythleyvariable
shear stresses in the primary and secondary pldsficrmation
zones, and the frictional effects of the chip agtion the rake
surface due to the relative motion between the piede and tool.
Secondary chatter is predominantly a result of tbgenerative
effects, where the workpiece geometry from the iptey pass
influences the dynamics of the next pass.

The most influential work on the dynamics of maehiools and
cutting processes was conducted in the mid fotigsMerchant
(1945), and later by Russians. The studies camigdby Zorev
(1956) and Kudinov (1963) are good examples of dhos
investigations, where the dynamics characteristicghe cutting
process play a key role in process stability. Comtrto this
approach, there is a significant body of reseasguming that the
machine-tool structure is responsible for the dyicaimstabilities
(e.g. Tlusty, 1986). Recent investigations into lim@ar dynamics
have shown an existence and importance of chaotidiom
occurring in machining. The models by Grabec (1988grcigroch
(1997) and Wiercigroch & Krivtsov (2001) have shoexidence of
chaotic vibrations, which are mainly due to the lirearity of the
dry friction and then intermittent contact betweée cutting tool
and the workpiece.

The instantaneous separation of the cutting toolmfrthe
workpiece, namely an intermittent cutting procebas a great
influence on the system dynamics. Therefore, a adethe
machine tool — cutting process (MT-CP) system sthdake into
account a feedback control loop through the cutforge and also
the discontinuity of the process. To concentratettea nonlinear
dynamics issues, a simple but realistic model efMT-CP system
will be considered. The elastic, dissipative argttial properties of
the machine-tool structure, tool and the workpiaoe represented
by a planar oscillator, which is excited by the tiogtforce
componentd, andf, (see Fig. 4a). It is assumed that the relationship
between the cutting forces and the chip geometamety the
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cutting-process characteristics, is captured byogidnal cutting, o 1 Lo

where the cutting edge is parallel to the workpised normal to the fy (y, X,y ) =0gph| H (Vr ) 1+ + Sgn(Vr ) 1+ x

cutting direction, as depicted in Fig. 4b. Ho Ho ()
Since_fX andf, are mutually related, one can be expressed by the (cl(abs(v,)— )f+ )JH (h)

other. This approach was adopted from Hasteigs. (1980), where

the cutting forces for a wide class of technicalterials are
described by the following expressions, wherey, is the static friction coefficient.

Co 2 Dynamics of the analysed system can be describeal ¢8t of
B (y:X,y) = h ( cy(abs (v)-1"+ ]) H (h) ) two second-order differential equations, whichrissented in a non-
dimensional form

fo(y,x,y)=¢&v. ,v.h)f (y,X,y 4
y(y y) 5(r f ) x(y Y) 4 x"+2£xx’+x=fx(y,x’,y'),
(6)
where y'+26,Jay +ay=1,(y.x.y),
2
f:(cz(vf _1) +1)(C3(h_])2+])H(fx) Sgr(Vf) where
V. =Vg - X, V; =V,—-Ry', h=h,-y £ - c, Y
x ’ y ~ ’
R=R0(c4(vr —l)2+1). 2may, 2mey,,
k c
a=2 df = df =
" m
@ ®) As the analysed system is nonlinear and can exhitbtroad
K, c range of responses, it is essential to provide gh-Atcuracy

integration routine. Each time a discontinuity asguhe precise
value of the time has to be calculated in ordgurtvide the correct
y K initial conditions for the next integration step. #andard zero-
X finder algorithm cannot effectively be applied mistcase; therefore
m Tool the computations were conducted using the methertifggally
c, developed for this problem, (see Wiercigroch, 1996y a given set
of parameters and initial conditions, the numericaégration is
carried out using the fourth-order Runge-Kutta prhae with a

L > h — fixed time-stepAt = 0.001, until a discontinuity is detected. Then,
?_“_LJ Workpiece based on the type of discontinuity recognized piteeise time value
f, is calculated, either by an inverse interpolation ao bisection
routine.
© (d) The investigated system is described by a 12-pasarwector,

3 however, for the purpose of this analysis, a twapeeter vector,
p=[&.q0]", was chosen, whedg = & =¢& The results presented here

i~ 1¥—4 were obtained by fixing the values of the followipgrameters, i.e.
0 1 0 1 /J():O.l, C1=0.3, 02:0-7, C3=1.5, C4=1.2, h0=0.5, R()=22 andV():O.S.
v, S v, Figure 5show an influence of the cutting forces modutgson the

system dynamics in th& andy direction respectively. For the

stiffness ratiop, equal to 0.25, ang, up to 1.6, the system behaves

in an irregular manner. By increasing the valuggofbove 1.6, the

Figure 4. MT-CP system; (a) physical model, (b) chip geometry, (c) former  periodicity is regained. Further careful investigas of the above-

form of f, (d) new form of f, as a function of the relative velocity v. mentioned region ofj, demonstrate an interesting scenario of a

transition between different types of motion with iacrease of the

The cutting process starts with an initial depttcaf, hy, where branching-parameter value. The system’s responsgsregular for

a layer is taken from the workpiece with the consteelocity,v,.  lower values ofy, , however, irregularities are more pronounced for

Throughout the process it is assumed that thenguftarameters, they direction. If the value of the branching paramesebetween

such ascy, ..., ¢; and gy are fixed. The nonlinear relationship 0.36 and 0.43, the system experiences period Zr Afte first

between the cutting force,, and chip velocity is graphically periodic region, a catastrophic transition to aotitamotion is

presented in Fig. 4c where, fgkO0, the excitation force is equal to observed, which lasts untdy;=1.0. Then the system approaches

zero. In reality, this force never disappears cetgty as there is gradually stable oscillations, with period 1 pagsihrough narrow

always a considerable friction force due to the pssion force in  windows of irregular motion.

the vertical spring. To make this approach modiséc, a dry

friction force acting inx-direction for thev, < O cases needs to be

added. On the other hand, Eq.(4) should still Hiel ta predict the

total force,f, for thev, = 0 cases. A modified formula, which

satisfies the conditions listed above, is writtetolv and presented

graphically in Fig. 4d
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0.0 1.0 2.0 3.0
Gy
(d)

Figure 5. Bifurcation diagrams x = f(qo); (@) a = 0.25, (b) a =1, (c) a = 4, (d)
a=16.

is completely different (see Fig. 5b,. dor almost the entire range
of the cutting-force modulus, the system oscillategher
periodically or almost periodically, excluding tlosver values ofjg,
where some transient irregular motion occurs. Tiiferdation
diagrams constructed for=4 show another example for an unusual
behaviour, that is, unidirectional bifurcation. Tégstem bifurcates
in thex direction and is stable in tlyedirection, forgy between 0.24
and 0.54, despite the fact that the equations dfom@re coupled.
There is also a shift of the critical point for tkendy directions.
For thex direction, the system starts with two bifurcatfweriods of
the doubling type, and then vibrates chaotically. tRey direction,
the system, after crossing the critical value, ltzgels with period 4,
and then becomes chaotic. The bifurcation diagepscted in Fig.
5 show that, fora=0.25 ando=1.0, the system, after regaining
periodicity, decreases its vibration amplitude vathincrease of the
cutting force. This fact can be used in the degifjthe machine
tools and control of the cutting processes. Eefl6, the system
responses are consistent with a traditional unaiedstg of the MT-
CP interactions, i.e. higher amplitudes are geedrdty larger
cutting forces.

Nonlinear Oscillations of Jeffcott Rotor with Snubber
Ring

In rotor systems non-smoothness may appear duesddniy
clearances. This may result in piecewise stiffnelsaracteristics,
which can consequently lead to nonlinear behavimatuding
chaotic motion. The existence of this characterigtnplies that
there is intermittent contact between the companeiitthe rotor
system, which is critical to predict and controleithcomplex
behaviour.

Rotor systems with bearing clearances have beelestin the
past, where the investigations concentrated priynan the Jeffcott
rotors. In particular, Choy and Padovan (1987), Muska and
Goldman (1995), Childs (1982) and Chu and Zhan@®719998)
paid attention to rub interactions in rotating niaehy. Ehrich
(1992) investigated spontaneous sidebanding, v@aleesan (1996)
looked at the stability analysis. Numerical invgation of the
model of the Jeffcott rotor with a snubber ring Kgrpenkoet al.
(2002b) has shown the existence of multiple atracand fractal
basins of attraction. Influence of the preloadingd aviscous
damping of the snubber ring was investigated inpikako et al.
(2003b) where it was shown how the preloading efghubber ring
could stabilize the dynamic responses.

Rotor System with Bearing Clearances

The rotor system (see Karpenko, 2003b) is modelked two-
degrees-of-freedom piecewise nonlinear planarlasmi| where the
rotor makes intermittent contact with the preloadedibber ring.
The physical model and the geometrical descriptioime model are
given inFig. 6. The excitation of the rotor is provided &y out-of-
balance rotating mass producing the loading fé§ce mo«?. Here
O, and O, denote the current positions of the rotor andstigbber
ring respectively. Figure 6presents the situation when the initial
and current positions of the snubber ring coincittee eccentricity
vector e=(g,.,6,) determines the initial position of the rot@
relative to the initial position of the outer rinfhe radius vectorR,
andRs show the current positions of the rotor and thébber ring.
D is the distance between the centres of the ratdrthe snubber
ring. R is the radial displacement of the rotor. For the tontact”
situation the distance between the centres of tter rand the
snubber ring is equal to the radial displacemethefrotorD = R.

Summarizing, forn=0.25, the system dynamics undergoes vast
changes. Setting up the stiffness ratipto 1 and 16, the behaviour
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Figure 6. (a) Physical model of the Jeffcott rotor with bearing clearances,
(b) adopted co-ordinate system.

When rotor moves inside the stator without anyradton with
the ring the equations of motion for the rotor dhd snubber ring
are as follows (Karpenket al., 2003a)

X +26% +% —& = focodgo+n7)

Y +26y Yy, —g, = 1 Sin(¢0+/7r) '
25X +Kxg =0, 2,y +Kky, = 0.

™

When the rotor is in contact with the snubber timgre are four
unique regimes (see Pavlovskagh al., 2004), for which the
stiffness of the snubber ring farandy directions differs. Equations
of motion can be written as

524 [ Vol. XXVIII, No. 4, October-December 2006
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X: +2<'(lxr' X —E fs,x = fOCOS(¢O+/]T) )
i +25y; +Y, —&, + fs, = fosin(@o+17)
X =% ¥ ) Vs = Vs (% Y )-

(8)

In Egs( 7) and (8)¢,; andé, denote the viscous damping ratios
of the rotor and the snubber ring, whéygandfs are the restoring
forces in the snubber ring iw andy direction respectively. The
constraints between the rotor and the snubbercongrdinates were
developed in Pavlovskaia (2004). Equations of nmo{i®) and (9)
have been derived using the following series ofiaggions. Firstly
dry friction between the ring and rotor has beeglewted. Secondly
it was assumed that the snubber ring itself is faassbecause it is
manufactured from aluminium and highly preloadedtbgnpression
springs. Thirdly gyroscopic forces are not taketo iconsideration
since no angular motion occurs.

Experimental Verification

In this section sample of extensive experimentaldiss in
Karpenko (2003b) conducted to verify the matherahtimodel of
Jeffcott rotor system with a snubber ring develoagethe University
of Aberdeen is presented.

For the bifurcation diagram presented in Fig. 7engarison of
the theoretical (Fig. 7a) and experimental (Fig. résponses shows
a number of similarities. In both figures for threvl magnitude of
the forcing frequency period one motion is observeat
f=(7,13.6)Hz and atf=(16.2,17.7)Hz followed by chaotic regimes
for f=(13.6,16.2)Hz and f=(17.7,22.8)Hz respectively. In the
theoretical and experimental diagrams the widthbath periodic
and chaotic regimes are the same. After the flifurbation at
f=22.8Hz the theoretical response becomes periodic up terideof
the diagram. In the experimental bifurcation diagria Fig. 7b for
f=(25.6,32)Hz some kind of quasi-periodic regime was obtainad.
both diagrams two cross-sections were examinechénform of
Poincaré maps. It is also seen that the theoredivdlexperimental
attractors are similar in shape. However, despitethe shape
similarity, there are some differences in the atughks of
displacements and velocities.

Conclusions

This paper introduces a practically important cahosf non-
smoothness where a dynamical system can be coedidsrsmooth
in a finite size subspace of global hyperspaceb@lcolution is
generated by matching local solutions obtained Wgndard
methods. If the dynamical system is linear in abspaces then only
an implicit global analytical solution can be givathe times when
non-smoothness occurs have to be determinedTinit.leads to the
necessity of solving a set of nonlinear algebrajciations. To
illustrate the non-smooth dynamical systems andntieéhodology
of solving them, three mechanical engineering oisl have been
studied.
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Figure 7. Bifurcation diagrams for the forcing frequency; (a) theoretical,
(b) experimental.

Firstly the vibro-impact system in a form of molidgvice was
modelled and anaysed in order to understand hovpithgression
rates can be maximised. Periodic trajectories earebonstructed as
they go through three linear subspaces (no contacttact with
progression and contact with progression). It wasws that the
considered model reflects well the dynamics of tit®o-impact
system and also the soil resistance curves. A daypionlinear
dynamic analysis has revealed complex behaviougimgnfrom
periodic to chaotic motion. Bifurcation diagramsreveonstructed
using variation of the mass velocity as the disptaent has a drift.
It was found out that the maximum progression isie@d when
system responds periodically with the period oEaxal excitation.

In the second application frictional chatter ocimgrduring
orthogonal metal cutting has been examined via migale
simulation method. The physical models considerna fdction
force acting on the cutting edge. The system detraies complex
dynamic behaviour, which is manifested by the exise of
periodic, quasi-periodic, subharmonic and chaotmtion. It was
found that some of the bifurcation diagrams couldr® classified
into standard routes to chaos, however; crisis tipasition to
chaos is dominating. The analysis has shown thatbtfurcation
analysis can be very useful to make an appropohtéce of the
system parameters to avoid chatter.

The last problem comes from rotordynamics, wherslinear
interactions between the rotor and the snubberaiegstudied. The
mathematical model neglects the frictional and gyopic forces,
and concentrates on the dynamic responses causedebgctions
between a whirling rotor and a massless snubbe; vimich has
much higher stiffness than the rotor. The matherahtinodel has
been solved using both the approximate analyticathod and
numerical by a direct integration of the equatiafismotion. By
employing various techniques such as constructiobifoarcation
diagrams and Poincaré maps, comparisons are maddedethe
results obtained from the experiment and the the®he results

J. of the Braz. Soc. of Mech. Sci. & Eng.

obtained showed that a wide variety of motion weslgted by this
system ranging from periodic to chaotic. A good relation
between experimental and theoretical results has lobtained. It
was shown that the experiment has confirmed thi téfsircation
scenarios predicted theoretically.
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