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A Family of Vortex Rings and a
Variational Application to Potential
Flows Around Three-dimensional
Bodies

A variational formulation and solution of generairée-dimensional potential flows gave
rise to the construction of a special family ofdtrfunctions’. This family is composed by
circular-sector vortex rings, here namea -rings, i.e., rings that are positioned on the
border of a circular sector with aperture angle . An explicit formula for the velocity
potential describing therr -rings family is here derived. A particular casetle well-
known circular vortex-ring. The formula is given terms of a uniformly valid series
involving trigonometric and Hypergeometric functorResults concerning the complete
circular ring are compared to the well-known sotutigiven, in closed form, in terms of
Bessel functions, validating the present formulan¥&rgence is discussed. Graphical
examples are shown for various rings of differeatter angles. As an elementary
application, the steady potential flow around thdimensional bodies in unbounded fluid
is formulated and solved under the variational aggorh. The variational method is fully
validated through the sphere problem and for a famf spheroids. Examples concerning
either translatory or rotatory motion around a trarersal axis are presented for the

spheroid family.

Keywords. potential flow, sector vortex-rings, variationahethod, three-dimensional

bodies

Introduction *

Potential flow problems around three-dimensionaldies
represent a core of important applications in hggnamics.
Particularly the hydromechanic interactions of fiog bodies with
free-surface waves, usually referred to as the atmdi and
diffraction problems, form a formidable source @&y interesting
and practical applications in marine hydrodynam#&sl ocean
engineering.

A number of methods, as those based on the Grewmtidn
method, are well established in this area, leadiogonly to the
solution of linear (first-order) problems but algo the high-order
ones. Nevertheless, the precise computation of sonp®rtant
hydrodynamic coefficients, as added mass or wawepitey terms,
depends on the degree of accuracy obtained indlian of the
respective potential problem, particularly in regowhere the
curvature of the body surface is high, as in thgyghteorhood of
sharp edges. A high degree of mesh refinementuallysapplied
locally, leading then to intensive numerical work.

On the other hand, variational approaches areratiramon in
continuum mechanics and, despite being classiask been subject
of many and recent investigations; see, e.g., KrghiHoll, 2002,
Musicki, 2005. A previous, general and rigorousitmeent of such a
matter can be found in Seliger & Whitham, 1968.Sapproaches
are quite powerful, enabling to treat dynamical bpems in a
systematic and rather general way. In this contbetapplication of
Lagrangian formalisms to problems involving theenaction of
bodies with a liquid flow - sometimes named hydrohamics,
whenever the kinetic energy of the fluid is giventerms of the
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well-known added mass tensor - is also classic; H,ah®32, art.
137.

In the above cited linear radiation and diffractiproblems, a
variational approach was successfully used, faaim, leading to
a variational method; see Aranha & Pesce, 198¢itnmethod all
the hydrodynamic coefficients are shown to be atatiy points of
well-defined functionals, analogous to the well-mo Rayleigh
quotient in applied mechanics. The most importamsequence of
this fact is that a considerably rough approximafiar the potential

solution, with error of orded, say, gives rise to an orde® -error
approximation for the hydrodynamic coefficients.eThariational
solution is searched in a finite-dimensional spapanned by a set
of conveniently chosen ‘trial functions’. Elementasingularities
can be elected to form the core of such a setplifes, dipoles, line
densities of poles and dipoles. The set of ‘triadetions’ must
satisfy the field equation (Laplace) and some o thoundary
conditions (or, likewise, conditions at infinity),but the
corresponding natural condition on the body surfadgs latter
condition is enforced by solving the variationaka@k equation’ that
arises from the variational formulation.

Systems composed by rectilinear line vortices wased,
together with poles, dipoles and related elemensatytions, as
‘trial functions’, efficiently completing the consiction of a finite-
dimensional space in which the solution of thrematisional
potential flows around advancing bodies was detgzthi with
accuracy; Pesce et al, 1997. A special family mayalso sought,
however, that not only comprises much of the beadraef dipoles,
but does have the additional and important abdityepresenting
the large variations in the potential solution lie neighborhood of
high curvature regions: a family of vortex ringsreentrant vortex
filaments. Even more complex problems, as the tiagiaand
diffraction of water waves by floating bodies, ntighake use of
this ability.

We then firstly started to search for a sufficigngeneral
formulation for a family of vortex rings, in unboded fluid,
leading, if possible, to an explicit formula. THanily was chosen
to be composed by circular-sector rings, here namethgs, i.e.,
rings that are positioned on the border of a ciaukector with
aperture anglea. Despite the apparent simplicity, a generalization

ABCM



A Family of Vortex Rings and a Variational Application to ...

of the well-known circular line vortex potential imbounded fluid,

into a useful family, is not so trivial. We shoukimember that even
the simple circular vortex ring potential is givienterms of elliptic

integrals (see Lamb, art. 161), or can be congduah terms of

hypergeometric functions and Legendre polynomiaisrp, art.84)

or else, in terms of Bessel functions (Lamb, &t and 102).

The formula here presented for therings family is given in
terms of a uniformly valid series involving simpiegonometric
functions and hypergeometric functions or, altauedy to the
latter, in terms of incomplete Beta functions. Thsults have been
tested concerning convergence, and by properlyngtanalytic
continuations and asymptotic behaviors. Resulte teen fully and
consistently compared to the circular vortex soluti Examples
concerning some particularangle values are shown in detail.

The a-rings family is then used within the variational thwd.
Firstly the sphere problem is addressed, validatirgmethod and
the vortex family: the analytical solution is coretaly recovered
with the use of only one vortex ring. Then, a famif oblate
spheroids is analyzed, for which the analyticalusoh is also
available, in either steady translatory or rotatmgtion around any
transversal axis, when tloe-rings family demonstrates its ability.

Nomenclature

a = sphere radius, or semi-diameter of revolution obhlate
spheroid, or a parameter

a; = nondimensional added mass tensor

B(z, p,q) = the incomplete Beta function

b =radius of an oblate spheroid, or a parameter
C = parameter

F(a;b;c;w) = Hypergeometric function

Fu (@) = Rayleigh quotient functional

G(@y) = kinetic energy functional

G= [GG’i,Tj )] = kinetic energy matrix

I,(¢,a) = recursive trigonometric function

L(¢) = Lagrangian of the potential fielg

my added mass tensor

, = variational approximation for the added mass tensor

= natural number

= vector of coefficients

= radius of the vortex ring
= distance

= position vector

my
n
q
R
r

r

:%pG(go, @) = kinetic energy of the potential fielg

T;(r) = trial function

U = free stram velocity vector

V(¢) = work functional

v ={v(T)} = work vector

ve(£,{,¢;a) =nondimensional velocitf-component
v, (¢,{,¢;a) = nondimensional velocity—component
v4($,{. ¢;a) =nondimensional velocity-component
W (V) =Sobolev space

z =heightin cylindrical coordinates

Greek Symbols

o  =aperture angle of a circular sector of radius
0 = variation
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o =¢p+UD =velocity potential function

@ = velocity potential function

@(r) = variational approximation fap

I = Gamma function.

k = strength of a vortex filament

p =radial variable in cylindrical coordinates
@ =angular variable in cylindrical coordinates
@(r) =square integrable function

& =nondimensiongb

¢ =nondimensionat

Qpr =solid angle subtended at P by any diaphragmcibaes
the ring C

Mathematical Formulation

The theoretical basis for the study of vortex rimgsreentrant
vortex filaments, (or even else, closed line vexic was well
established since the end of the nineteenth centammb dedicates
an entire chapter (VIl) to the study of vortex mati giving some
emphasis to the analysis of vortex rings. Truesdgb4, in his
thorough Kinematics of Vorticity puts some attentn the subject,
but only from the conceptual perspective. Saffmba®92 in his
superb and complete monograph on vortex dynamiestst the
problem in depth, but attributes minor practicapartance to its use
when, concerning the singular behavior of the Biw® integral as
distance r to the line goes to zero, states thaggp37) “the
logarithmically infinite, non-circulatory, velocitglong the binormal
inhibits the curved line vortex (of zero-cross-gat) from being a
useful dynamical model”.

Nevertheless, if kinematics of potential flow arduthree-
dimensional bodies is concerned, vortex rings dap @n important
practical role. In fact, as well known, perturbedtgntial flows
resulting from the presence of a body, behave awmtioplly like
dipoles and, as pointed out by Saffman, “the linertex is
kinematically equivalent to a surface distributioh dipoles with
uniform density, the axis of the dipoles being adid along the
normal to the barrier ”.

It is not difficult to visualize the superpositiasf a circular
vortex and a uniform stream: a spheroidal-like bokty fact the
curious Hill spherical vortex (see Lamb, art. 1@fb)es the exact
solution for the flow pasting a sphere. Moreovdina vortex might
help, as emphasized before, to simulate the vege lsariation in
the velocity field near regions of high curvatuas, the edges of a
finite cylinder advancing along its own axis or evetating around
any transversal axis.

Vortex Rings

As shown for instance in Milne-Thomson, 1979, page, if the
vorticity is concentrated into a single closed egrtfilament C,
being Kk the strength, i.e. ‘the product of the magnitudette
vorticity and the (infinitesimal) area of the cresection of such a
filament’, the potential velocity induced at a pohis given by

o=l s

In Eq.(1)Sis any diaphragm enclosed by the ring ard the
distance fromP to the surface elemerdS Being € the angle
between the unit normal vector to the surfacel@&tand the line
joining P to dS then

@

April-June 2008, Vol. XXX, No. 2/ 119



Celso P. Pesce and Alexandre N. Simos

Hﬁds_—np )

where Qp is the solid angle subtended at P by any diaphttagtn

closes the ring C. The velocity potentfals a many-valued function
decreasing or increasing byrtdas P rounds the filament once.
However, as pointed out by Saffman, 1992, page“i8an be
made single valued by introducing a barrier comgisof a surface
bounded by the vortex, across which the velocitepiial jumps by
amount of «".

Figure 1. Circular-sector vortex ring or * ~ d-ring’

) . Let the circular sector be the surfaBen Eq.(3),P’ being a
Circular Vortex Rings point of integration, inside the diaphragm enclobgdhe ring, and
Let the vortex filament be of circular form. In shimportant P & point at which the velocity potential is searcfad Elementary

particular case the potential can be either exptesy means of geometry gives Eq.(2) in polar cylindrical coordesain the form
complete elliptic integrals, as in the analogueecasncerning

electro-magnetic phenomena; Jack;on, 1975, seé!:'!ﬁnor in a Ap,z,6:R a) :Lzl

more tractable manner, expressed in closed forralvimg Bessel a4

functions. In fact, see Lamb, Art. 161 and 102,irtgkpolar R a 1 (6)
cylindrical coordinates, witlz as the symmetry axis, the velocity | = [2'] P 77d¢'do’

potential of a circular vortex ring, of radil® positioned at the 0 0(,0 +p' +z —2005@'—¢))
planez=0, can be proven to be given by,

By a convenient transformation in the integrand tedocity

) 1% 4 potential function can be expressed in terms obnmgete elliptic

#Ap,ZR) =S|9n(Z)EKRJe Jo (ko) J; (kR)dk (3) integrals of second kind for a general angl€This derivation will
0 not be worked out here, however; see Batchelopteh&, section

7.2 for similar reasoning applied to the streamcfiom of a

The corresponding stream function reads, for z > 0 complete vortex ring. This solution is not explibitt still given in

1 . closed form.
ZR)=-= e 23 J1. (KR dk 4 Perhaps a wiser manner, or at least an alternfdive, to deal
vip.zR) ZKR'O-([ 1(k0)3, (kR @ with the problem is to separate the angular depereleby

transforming and then expanding the integrand staadard power

As pointed out by Lamb, the regions inside and idatgshe series. For, let
circle constitute two distinct equipotential sudaqa jump occurs)

o ’ 200’
over which it was assumed oz p') = . pg .
(p>RO;R) =0 prrptz Q)
>RUOR)= , , _
" W1, () np.zp)=(p%+p'% +2%)?
#Ap<RO*;R)=%=
2 By applying the above defined functions Eq.(6) $farms into

Well known, besides remarkable, is the already meatl fact . K
that the value ofpis the same as that corresponding to a system of #«p.z.¢;Ra) =—Z|1

dipoles distributed over the whole circle with axstant density. 8)
As it will be seen, this behavior is one of thesmes for the good J'pg(p,z p)J' 1 dg'do’
performance achieved when vortex rings are chosegleanentary ( -¥p,z p')cos@' - qz)))a/2
trial functions spanning a proper vector spaceliictva solution for
the flow around a body is searched, by means ofirdatonal Notice that
method. Moreover and intuitive, vortex rings may beitable
representations for the local potential flow aroshdrp edges, as in y< 2p0 200 <1 so
the case of a moving cylinder along its own axisyshmetry. p2 +p’2 (p—p’)2 +200
ycos@' —¢) <1 9)

Circular-Sector Vortex-Rings or a-Rings

Let now the vortex filament be placed over the leordf a everywhere outside the circular sector, but caretpeal to unity
circular sector of radiuR and aperture angle as shown in Figure inside, whenP =P'. This could cause some numerical difficulties
1. This kind of rings will be nameda®rings”. The circular vortex on convergence, of course, for points very closéhoconsidered

ring is, of course, a particular case whe2s7; a ‘27¢ring’. sector diaphragm. Strictly speaking the solid arjglaps by an
Take then, as shown in Figure Ig-@ing with radiusR, aperture amount of4rt when the potential barrier is crossed and thezeven
anglea, at the plane=0. distinct limit values for the potential function at=0"orz=0".

Nevertheless the corresponding limit values fbp are the same.
Considering then the standard Taylor series expansi
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(2n+1)!

22|"In|2 ! £<1

(10)

Z

- s)” )
EQq.(8) can be written in the following form,
@n+1)!

Ap.z.¢;:R0Q) ——ZIpn(p.z p)(a+2—nG)d '
' (11)

G=y"(pz p’)jco§ (¢' - ¢)dg’
0
Defining the integrals

In(#;@) = [cos'(¢' - g)d¢’
0

lo(d.a) =a
11(¢,a) =sin(a - @) +sing

I (0.0) = l[coé“l(o/ - @)sin(@ - @) + cod L gsing |+

(12)

n-1
+T|n 2(¢,0)

where the recursive relationship immediately comfem
elementary calculus, Eqg.(11) can be put in the form

2n 1)

dpzpRa) =423 )

mRE I,(#;:0)9,(0,ZR)

(13)
being
R R
Gn(p.ZR) =5 [V"(0.z.0)1(p, 2 0) pdp’, or
0

(0. ZR) = [gj fn(r,ZR)

f.(0) = du where
" j(u +0 )

2+ 72
o*(p.zR) =L ~

(14)

It follows at once that, fon=0,

g

f(0.ZR) = fo(0) :§ - ) (15)

1+0?

For n= 1, however, the definite integral in equation (1é&nhde
written in terms of Hypergeometric functions (seppAndix A)
leading to

1 1
f.(o,zR) = f =
n(p Z ) n(J) (2+n) (0.2)n+3/2 x
n 3

xF+2 24n2+ 2. g" 16
@+ > %) (16)

o>1
The Hypergeometric functiof(a;b;c;w ;wOC is usually

expressed in terms of the Gauss Hypergeometricessersee
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Abramowitz & Stegun, 15.1.1, or Erdélyi, Magnus, etiettinger
and Tricomi, 1953, v.1, chapter I, as

_$ @) w

F(a;b;c;w) ©r K

7,
k=0

Where
(@), =1

(a+k)
(@ = r@

(18a)

za(a+) OI{a+k-1); k=1,2,3...

or, explicitly,

(@) () _ {I

©) ¢’ clc+)
a(@a+1)(a+2bb+N(b+2) }

ab a(@+b(b+1)

(18b)

c(c+h(c+2)

The Gauss series is convergent in the cihmje: 1. In equation

(16) this condition holds i® > li.e.,

02+ 22
R2

>1 (19)

i.e., outside the sphere of radiRqthe sphere of non-dimensional
radius 1). However, constructing the analytic comndtion of (16)
(Appendix B; see Erdélyi, Magnus, Oberhettinger gcdmi, 1953,
pp. 105-108) we get a uniformly valid formula, fdk o > 0,

F@L+n/2,3/2+n2+n/2;-07%)
=(1-2)PF@/2+nL2+n/2;1/1+0?))
=(-2)F@A+n/2,92-n/22+n/2;1/ 1+ 5?))

so that Eq.(16) can be replaced by

fu(p,zR) = f,(0) =

- (Zin) (Jz)ln+3/2":(3/2+n,1;2+ n/2;1/ 1+ c?)) (16a)
allc>0

or, alternatively, by

1 1
(2+ n) (0_2)3n/2+2
xF@1+n/2,9/2-n/2;2+n/2;1/ 0+ 0?))
alloc>0

f.(0.zR) = f,(0) =
(16b)

The final formula for the velocity potential funati is then
given by

Aoz pra) =1 LS EN oo R)[gj (20)

or, in non-dimensional form, normalized with regpecthe vortex
strengthk ,being £ = p/R; ¢ =7/R; 02 =&2+?, by

April-June 2008, Vol. XXX, No. 2/ 121



(2””)! (Bia) ()€

AEL pra) = -—n z (202)

The usefulness of the Hypergeometric functions, itlespme
technical difficulties concerning the above-menédrseries, resides
in the recursive relationships involving the detives, as those will
be necessary in computing the velocity field. Idapccylindrical
coordinates, the velocity components, in nondinrai form read
(see Appendix C),

ve(@.0 i) =-c S CR g
df : (21a)
n n-1
{da oy M }
@n+1), i
v, (¢.4.¢; a)—_ﬂ Z 2N 12 dO' o(&,0) * (21b)
4”nz(zn+1)l @) 1y (0)E"
wEsgm =S CER g 1

Notice that the Gauss series in Eq.(16a) (and (Gldr&) not
convergent ifo = 0 However the asymptotic limit for the potential
function for =0 is given, in non-dimensional form, by (see

Appendix C)
¢al,_ K
90,¢;a) = - (22)
[dar” g
so that,
000 a) =+ (23)
4

Notice (see Appendix C) that the asymptotic behawisr
o - o |s, in nondimensional form,

J
wé. ¢, 0’)~4—F- - (24)
so that
a 1 -
wé ¢, p,a)=+t— yp= 252 ; { - too, allfinite & (25)

In words, the vortex ring behaves likelalipole, as expected,
what completes the analysis. It should be notidet inalogous
formula for the velocity potential could be obtainey the classical
expansion of the potential function in sphericalnmanics; see
Lamb, arts. 84-86.

Circular Vortex Ring

A particular case is the ‘complete’ circular vortéxg (a = 277).
The integrals in Eq.(12) are now simplified into,
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lo(p.2m) =21
1,(¢.2m) =0 (26)
@2m =", p2m
and, obviously,
Ih(¢.2m) =0 (27)

Equations (20a) (and (C13a,b)), with (C27), (C28),be used for
numerical comparison purposes with the closed-festation given

by Eq.(3).

Numerical Analysis and Examples

This section is dedicated to the numerical valaatof the
present formulation as well as to discuss intangsteatures of this
particular kind of potential flow, through some extbd examples.
Convergence is not exhaustively discussed but exdmplified by
means of numerical experiments.

Numerical Examples for a ‘Complete’ Vortex Ring

We start by comparing, for the complete vortex rig present
formulation (Equations 20a-26, 27) with the clogedm solution
given by Eq.(3). The vortex ring of unit radiusiscular, positioned
at plane z=0.

Figures 2 and 3 show, as function of radial distanihe
comparison between the present formulation andctbsed form
solution Eq.(3) for the velocity potential functiofwo distinct
values of z, corresponding £=0.5;1.0 are taken. N is the number
of terms in the truncated series. The agreemenbrisplete in the
whole range.

Figure 4a,b shows the same comparison, but nowfasction
of axial distance z, for radial distande,o/R=0.5 and foN=30,200.
The agreement is very good fgrz/R>0.3, but convergence rate is
slow for smaller values. Notice that the jump in gidential caused
by the presence of the potential barrier is nobtedut can be
better represented by the present formulationefrthmber of terms
in the series is increased. If N is increased furtgephical results
become undistinguishable. The asymptotic representdor the
unitary jump provided by the series is quite evidémfact, Figures
5a,b show this behavior quite well, #&roR=1.0.

Figures 6a,b show the axial component of velociy two
different values of z. Notice that there is a valoe (=z/R below
which the maximum absolute value is no more incégter, but at a
distanceé&pR that goes to 1 ag- 0. In Fig.7a the curve below
represents the solution given by EQq.(3). In Fig.€brves
corresponding to the present solution and to eguoafB) are
undistinguishable. Series are truncateb=t00, even thoughl=30
would be enough for the curves corresponding *6.5.

e

.25

N
\

0.z

.15
0.1

.05

Figure 2. Nondimensional Velocity Potential for a *
Vortex Ring comparison between present formulation
solution (3); a=2m;¢{=2/R=05N =30 .

Complete’ Circular
() and closed form
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0. 18]
0.1z

0.1 KN
.08

o6 AN

o o oo

0z [-e-

Figure 3. Nondimensional Velocity Potential for a *
Vortex Ring comparison between present formulation

solution (3); a =2m;{=2z/R =10N =30.

Complete’ Circular
() and closed form

-0.2 \f
o]

=/ R
(b) a =2m&=p/R=05N =200
Figure 4. Nondimensional Velocity Potential for a *

Vortex Ring comparison between present formulation
solution (4).

Complete’ Circular
() and closed form

0.25 \
0.z

z/R
(@ a=2mé=p/R=10;N=30

b.25 \
o.z2 f\\
0.15 T <
0.1 -
DDSI,J \\““%-,
. —
o
o
0 0.5 1 1.5 2z 2.5 3

z/R
(b) a=2mé=p/R=10;N =150
Figure 5. Nondimensional Velocity Potential for a *

Vortex Ring comparison between present formulation
solution (3).

Complete’ Circular
() and closed form
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As 3D-plot examples, Figures 7a,b,c,d show the miite
function and the three velocity components for artpr- vortex
rings a=12. Notice that for{=1.0 convergence is verified foi=30.
Notice also the presence of the azimuthal component.

Finally, a complete circular vortex ring was talegain as the
paradigm, in order to confirm the numerical resédtsarbitrary a.
In fact we can construct the complete circular eorting with a
sequence of@K-rings, in the form

A& p2m) =S 5.z.¢—(j—1)2?”;2?”] (28)
=

Figure 8 shows such a construction for the casatete
above,a=172 (K=4). Notice that the agreement is complete,
comparison with the paradigm being undistinguis@abl

Py

! [———t—o

|

|
[}
[ R =

(@) ¢ =z/R=025

a 1
-0.025

—-0.05 /
-0.078

-0.1 /
-0.125
-0.15
-0.175

(b) { =z/R=100

Figure 6. Nondimensional Axial Velocity Component
Circular Vortex Ring; comparison between present fo
closed form solution (3); o =2mg = z/R =0.25;10;N =100.

for a ‘Complete’
rmulation ( ¢) and

iz

¥z
2
(a) potential function

Figure 7. Nondimensional Potential and Cylindrical Polar Velocity
Components for a ‘Quarter’ Circular Vortex Ring;

a=m/2;{=2/R=10,N=30.
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(d) azimuthal velocity component
Figure 8. (Continued).

Bl

@j=1

Figure 8. Nondimensional Potential for a system of
Vortex Ring. o =m/2; =2/R = 10N = 30.

4 ‘Quarter’ Circular
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i)

(d) j=4
Figure 8. (Continued).

0. 13—
0.12
0.1 <
0.08
0.06 -]

0.04 ]

0.0z

Figure 8(e). Constructed circular vortex-ring with
Comparison with a closed form

a=m/2;{=2/R=10N=30.

4 ‘quarter-rings ( ).
solution, eq. 3).

A Variational Application to Potential Flows Around
Bluff Bodies in Unbounded Liquid

In what follows a variational approach is takenctmstruct a
numerical method where the-rings family is applied to solve
three-dimensional potential problems. The main athge of this

ABCM
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variational method is to adopt a “dessingularizeafiproach.
Numerical problems with singularities are avoidedcsi the trial
functions are placed “inside” the body. No singuiesi therefore
exist concerning integrations over the body sutface

The Variational Approach

Notice that the Lagrangian of the fluid system banput in the

form

L@ =%p6(¢, 9-V (@ (37)

and, as we treat a stationary problem, that thedrag equation

Consider a standard problem concering a stationaghmes from the stationarity condition fatg , namely

incompressible and irrotational flow around a baldgcribed by a

velocity potential®, satisfying the usual field equation and

boundary conditions

020 =0
O®h=00nS (29)
O - U, r - o

being S the body surface and the unit outward (from the fluid
body) normal vector. We write

P=¢+UD (30),

where ¢(r ) is the perturbed velocity potential, due to thespnce
of the body in the otherwise steady stream, withstant velocity
U , satisfying

0%p=0
Opth=-Uh=U, onS
g~ 0,1 - o (asl/r’)

(31).

Let ¢/(r) be any square integrable function in the sensbef
energy norm

/2
ol =i, 0y Fav] @2)
This class of functions is a Hilbert space/, YV D the
specialized literature). Defining now the functibna
Gley) =[,0pmMudv ; g IW (V) (33)

the kinetic energy associated to the perturbed npiatecan be
written’

T =§pe(¢. 9 (34)

Taking now the Laplacian o Eg.(31a), multiplying it by ,
integrating in the whole infinite fluid volume andsing the

divergence theorem together with the boundary ¢ given by
Eq.(33b,c) we get aweak equatiorior the potential problem

Glepw)=V@); ally WD (V) (35)
Where

G(py) = [[Dphyds )

V(@) =-[ ., ds '
4 The same symbabis here used for mass density, as usual
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A(@P=0 (38).
It is a standard exercise on variational calcutugrbve that (38)

just imply theweak equatior§35) and reciprocally.

Let now a numerical approximation fogr Be denoted by

&(r) . Theweak equatior37) will be solved in a finite dimensional
sub-space of finite energy spanned by a lineadgpendent set of
‘trial functions’ {TJ (r); ] =],...,N}. The ‘trial functions’ are chosen

to satisfy Eq.(31a) and Eq.(31c). We write

é(r)=§lqm " (39)
2

that transforms EQq.(35) into a linear algebraictays in the
unknown coef‘ficientiqj ;j=1...,N

Gg=V with
6 =lo(r )]
a=1dj

v ={v(m)}

(40).

It should be noticed that solving Eq.(40) is, intfdo search for
a stationary point of the Lagrangian (a minimunthis case), the
result so obtained being the best approximatiothen finite sub-
space spanned dyj )i =L...,N}.

Notice also that, considering the solutigg(r'); k =12,...6
for a unitary velocity or rotation in the directiafi x, , now in the
body reference frame, such that

IZIZ(/;(:O,and

Og h=v,onS

Vi =uh=ng; k=123
Vi = (r'xn),_3; k=456

Og - 0,1 — o (asl/r3)

(41)

the added mass tensor can be written in terms ef défined
functionals as

my /P =G(@&.4) =G(@. &) =Vi (@) =V (&) (42)
With
Vi) = jslﬂvde (43)

and where the usual reciprocity (symmetry) relatiovere shown
explicitly.
As in Aranha & Pesce (1989), let

Vi (Vi @)

44
Gle.y) “y

Fu(@w) =
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be a functional defined in

WO (V) xW® (V) °. Then

the Cartesian productacep

my = R (4. 4) (45)

If we write for the finite-space solution

m -~ ~ -~ ~ ~

%=G(¢&,¢4)=G(<4,¢K)=Vk(<4)=v|(@) (46)
Where

G =0 +0g; k=1..6 (47)
it can be shown (see Appendix D) that

G(dg,.@) = 0; allg (48)

or, in words, that a Galerkin orthogonality corafiti holds, as
pointed out above. This leads to
my =my +0G(d¢%,d9) (49)

finally yielding (see Aranha & Pesce, 1989, for hemanhatical
details)

jany | < clmandjog || [} (50)
wherec is an independent constant.

Notice that in terms of the ‘trial-functions expams the added
mass tensor is written

N N
Mq/p =3 aqG(T . T))

i=1j=1

(46a)

The results (equations 48-50) indicate that theiatianal
method provides an approximation for the added ntassor

coefficients with an error of orded?, if J is the error of the
approximated potential solution.

Notice also that from Eq.(32) and Eq.(48), see AwipeD,

loa] = [ op)l” =[Gl ol =M Gal*  (51)

As a matter of fact this method is rather general aan be
extended and applied for problems satisfying momenpiex
boundary conditions (see Aranha & Pesce, 1989)) He case of a
multi (rigid) body system, even in the presenca free surface (see
Pesce, 1988) or, e.g.,, for flexible bodies with thec.’s
corresponding to each vibration mode.

The choice of the ‘trial function’ set is particuléor each
problem. In the present case, stationary and incessfble potential
flow around bodies in unbounded fluid, an intergstthoice could
comprise poles, dipoles, line and surface densiiepoles and
dipoles and, of course and of our present intenestiex rings.
Previous work on the variational method (Aranha Redce, 1989)
has shown that a proper choice of the trial fumsjdased on the
expected flow pattern, may reduce drastically thenlper of trial
functions required for convergence. Anyway, thisé mandatory,

® We should note, as in Aranha & Pesce (1989), &) is well defined
and zero wherG(GII=0 .
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and the flow may always be reproduced by an extenset of
sources/sinks, following the procedure adopted EMBcodes with
source distributions.

Examples Using Solely Vortex-Rings

As well known, general axi-symmetrical potentialwis can be
worked out and solved, by separation of variahtespherical polar
coordinates, in terms of multipoles and Legendrgrpomials; see,
for example, Newman, 1978, section 4.9, Kochin let 1864,
chapter 7 or Lamb, art. 84. Two cases will be arealy a sphere and
a highly oblate spheroid. The first, besides behe simplest one,
for which a simple analytical solution exists, isré used as a
definite demonstration concerning the power of tregiational
method. For some other simple geometries, as thersjalal family
chosen as a paradigm, analytical solution is atsmd. The oblate
spheroid is as a kind of application for which thartex ring is
useful to simulate flow around the edges and sertex rings are
useful in solving the problem of rotation about ti@meter.

Variational Solution for a Sphere

The sphere is the simplest case among all threerdimanal
potential flows. The well-known analytical solutiéor a sphere of
radiusa advancing with unitary velocity in a still and wnnded
fluid is given in spherical polar coordinates (fixa the body) by

a.3

p= %r—z cosfd (52)

or in cylindrical coordinates, being the axis in the direction of
motion, by

1 a2 ¥
wp,za) = E[m] z (53)
Let
T(p.zR) = a,(p.ZR) (54)

be theonly ‘trial function’ in the variational method, in wdh
a.,(p,zR) is the potential of a complete circular vortexgriof
unitary strength, given by EQq.(20) and Eq.(26)=Zm) and
positioned at the plare0.

As we have taken just one trial function, the linaigebraic
system in Eq.(40) reduces in this case into a wnlmear equation
and the variational coefficieatis given by

_ v
e (45)

For the sphere, the non-dimensional added masdiaieef is
then written

2 1 V2
a; = 4q GU,T):4—W(I.—I_))
453 483 ,

3 3

(56).

As well known, g; = (:I/2)5ij , for a sphere.

Table 1 shows the non-dimensional added mass ffee tralues
of R/a The solution has been obtained taking the sami€x).(20)
truncated in 100 terms. Convergence of the seasshien checked
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for all case$ Notice that results are greatly improved for ¢betex- 0.z

ring of smaller radius. The agreement is indeey geiod even for f\
the intermediate value. The last two columns shoawréelative error e
for the added mass and the relative error for ttergial function 0
norm. Notice that errors in added mass coefficieares smaller .

-0.1

(O(||J¢1|2)), as predicted. \\vf

Figures 9 and 10 show the non-dimensional poteadiulated -3 -2z -1 o0 1 2z 3
for the three cases exemplified, compared to tlaetesolution given /=
by Eq.(53). We have takesia=1 andz/a=1 respectively. Notice that (¢) Rla= 025, p/a=1; N =100
agreement is improved drastically B& decreases. In fact, as a ' '
vortex ring is kinematically equivalent to a sudadistribution of Figure 9. (Continued).
dipoles with uniform density, this latter shrinksa single dipole as
Rla-0, what represents exactly the potential flow atbuan
advancing sphere. Figure 11 shows the non-dimeakipotential
calculatedon the sphere surface

Remarkable is also the fact, in the present propleat the error 0.2
in the added mass coefficient is exactly the sqotbe error norm
in the approximate potential solution. i

o o o
b

Table 1 Non-dimensional Added Mass Coefficient for a Sphere by a
Variational Method. One Vortex Ring at mid-plane.

pla

R/a q a8y (%) ||od (%)

0.75 298 0.42 16.26 40.32 0.5
050 7.76 0.48 3.05 17.46 0.4 “‘\
0.25 3194 050 0.19 4.34 o3
0.z =
0.2 0.1 \
ﬁ\ M““——--‘__
0.1 —_ o
= o 0.5 1 1.5 2 2.5 3
[u]}
0.1 i pla
o ‘\J (b) R/a = 050; z/a=1;N =100

-3 -2 -1 u] 1 2 3

™

z/a

(@) Rla=075; p/a=1; N =100

o ] ] [ R |
[

0.2 ’
; W1 \ s
0.1 “\--. o ]
0 0 0.5 1 1.5 2 2.5 3
-0.1 T \ p/a
-0.2 j (c) Rla=025; z/a=1;N =100
-3 -2 -1 © 1 2 3 ) ) . . . . .
Figure 10. Non-dimensional Velocity Potential Funct ion as a function of
z/a z/a for a Sphere of Radius: variational method () compared to the exact
(b) R/a=050; p/a=1; N =100 solution. Only one Vortex Ring.
Figure 9. Non-dimensional Velocity Potential Functi  on as a function of
; - 0.4
p/a for a Sphere of Radius a by the variational method , compared to the 7
0.z o]

exact solution. Only one Vortex Ring as ‘Trial Func  tion’.

-0.2
® A standard convergence analysis was done, folloliegsame approach e
described in section 3. For the sphere problemyergence is very fast and
a smaller number of terms could have been usedouitchanging the -1 -0.5 o 0.5 1

results. As a matter of fact, for small radius errtings, results are always
improved, irrespective additional terms taken ire theries, since the 2 o
asymptotic behavior of the trial function recovénst of a dipole as the () R/a=075p°+2“=a“;N =100
radius tends to zero. The use of large radii rireggiire a larger set of trial
functions to perform the same task.

z/a

Figure 11. Non-dimensional Velocity Potential on a Sphere of Radius a:
variational method ( ¢), compared to the exact solution. Only one Vortex
Ring.
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0.4
0.z P
u]
-0.2 =
-0.4
-1 -0.5 0 0.5 1
z/a

(b) R/a= 050,p° +z° = a%;N =100

0.4
0.z /
u}
-0.2
-0.4 /
-1 -0.5 o 0.5 1
=z/a

(c) R/la=0.25 p2+7%=a% N =100

Figure 11. (Continued).

Variational Solution for a Family of Spheroids

A rather general form, for which comparable anabjtsolutions
are available, are ellipsoids. Particularly, spisar ellipsoids of
revolutions, beingb the semi-diameter ané on the axis of
revolutionz. Examples will be shown for oblate spherc(iu}’$)<1);
Figure 12.

Table 2 shows the numerical results obtained ferattided mass
of an oblate spheroid advancing in unbounded iivifiaid along
the revolution axis. Paradigms have been extraitted Newman,
1978, page 147, up to two significant figures. Tag&pect ratios
have been chosefa/b = 06,02) . N is the number of terms used in

the series expansions. For the first cégéb = 06) only one trial

function, composed by just one complete circulatesoring placed
on the planez=0, normal to the axis of revolutiohas been used,
with non-dimensional radiu®k/b = 015. Convergence towards the

paradigm (0.56) is reached witthN = 10 For the second case
(a/b=02), two trial functions, composed by complete circula
vortex rings, placed on the plaze0, with R/a= 015and030
respectively, have been used. Convergence is aahiev N = 30.
Notice that the vortex ring has been able to repeedjuite well the

flow around large curvatures corresponding to smadn-
dimensional values/b .

Figure 12. Oblate Spheroid (a/b:O.G) ; a is the semi-diameter of
revolution.
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Table 2. Non-dimensional Added Mass Coefficients fo  r an Oblate Spheroid
advancing along its axis of revolution. (a is the s emi-axis of revolution)

A = Ms3
33 T 3
4/3 b
Paradigm,
ab N1 R/b N=5 N=10 N=30 N=50 (Newman)
06 1 0.15 0565 0.564 0.564 - 0.56

02 2 0.15;0.30 1.780 0.790 0.621 0.618 0.61

Figure 13. Oblate Spheroid: (a) a system of one pai  r of complete rings (2 T¢
rings) for a spheroid advancing along the revolutio n axis; (b) a system of

one pair of counter-rotating semi-circular vortex r ing (Terings) for a
rotation around a diameter axis.

0,2 \
0,15

0,1

Qs

0,05

0 2 4 6 8 10 12
N

Figure 14. Convergence Rate as a function of the nu  mber of terms in the
series expansions for the added moment of inertia ¢ oefficient for an

oblate spheroid (a/b = 0.6)

Table 3 presents the added moment of inertia @oeffi
corresponding to rotation about any diameter ftfexig normal to
the axis of revolution. Results are presented @miythe first case
(a/b = 06) . A system of two pairs of counter-rotating semcalar
vortex rings (o =7 ), with R/b= 015and030, placed on the
planez=0, has been used as the set of trial functiNgg = 2) .
Figure 13b illustrates the case of just one paicainter-rotating
1-rings. Convergence is reached quite fastNfar . The value
used as the paradigm, taken from Newman, 1978, Adge is
approximately 0.082. Results can be improved bintakdditional

pairs ofr-rings. Figure 14 shows the convergence rate foattuied
moment of inertia coefficient as a functionbf
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Table 3. Non-dimensional Added Moment of Inertia Co
Oblate Spheroid. (a/b=0.6).

efficient for an

M55 _ for rotation aboub-axis
8/1507h°

Y4 =ag5 =

Paradigm
Ntr Rb N=1 N=5 N=8 N=10 N=12 (Newman)
2 0.15;0.30 0.194 0.094 0.089 0.087 0.086 0.082

It should be noticed that, in general, the usei@utar vortex
rings does not increase the computational effgriiicantly, unless
they are placed too close to the body surface, vdoewergence is
slow. Results obtained in the paper were intended/dlidation of
the trial function only. Computations of the Hypeometric
functions were therefore performed through the veak
Mathematica®, which requires somewhat long compuriat time.
A detailed evaluation of computational effort wast intended at
this stage.

Other Possible Applications in Unbounded Flow

Many other applications in unbounded potential flovay be
devised. An interesting example is the potentiawflaround a
streamlined body, as a submarine. Figure 15a skivavstreamlines
on the fore-body of a typical submarine. This reswds obtained
with a set of trial functions composed by polegotis, as well as
by lines of poles and dipoles, positioned inside tiody surface;
Pesce et al., 1997. The yellow line marks the ttiamsto turbulence
of the boundary-layer, determined by the classigethod of

Michel, after post-processing the potential flowattivas obtained by

the variational method. Figure 15b shows a typicabks-section of

the submarine and a possible settefings, suitable to represent the

flow around the upper and lower body.

Side

view view

(@

(b)

Figure 15. Flow around a typical submarine fore-bod
(line marks the transition of the boundary-layer to turbulence, determined
by the classical method of Michel); (b) a typical ¢  ross-section of the
submarine and a possible set of  a-rings, suitable to represent the flow
around the upper and lower body.

y: (a) stream-lines
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The variational method can be also applied to ottwenplex
problems, like the surface wave interaction withltiple bodies.
The free-surface boundary condition can then berea#l for trial-
functions composed by elementary unbounded fluignt@ls, like
the a-rings family, through a convenient combination bfge
functions and their normal derivatives with respaztthe free-
surface; see Aranha & Pesce, 1990.

Another further sought application of tle-rings family is to
the classical hydrodynamic impact of a body agaith& free-
surface; see, e.g., Korobkin and Pukhnachov, 19B8s is,
however, a highly transient and geometrically nioedr potential
flow phenomenon, in which jets (or sprays) are fednalong the
rapidly marching intersection line that exists betw the wetted
surface of the body and the free surface; see, ayobkin and
Scolan, 2006. To compute the hydrodynamic impadtinge on the
body, the added mass tensor has to be properhnedefand
determined as a function of the penetration of hbey into the
formerly quiescent free-surface. Analytical meckanapproaches
may be rather useful in this case, see, e.g., P2868, Cointe et al,
2004 or Casetta and Pesce, 2006.

jet

jet

free surface

Figure 16. The impact of a rigid body against a liq  uid free surface. Jets or
sprays are formed. 0C indicates the instantaneous position of jet's root
across which there is a flux of kinetic energy and mass.

It should be also pointed out that the main appticeenvisaged
for the present method is to deal with zero-lift 8@ws with free-
surface, mainly for offshore applications. Nonegiss| lifting flows
could also be sought as possible further applinatioAn
encouraging example may be found in Burr, 1993, sinxessfully
addressed the two-dimensional lifting problem, tiglo the
variational approach, by a proper implementatiorthef classical
Kutta condition.

Conclusions

A variational formulation for steady potential flewaround
three-dimensional bodies gave rise to the constnucif a family of
circular sector vortex rings in order to composeset of ‘trial
functions’ able to simulate not only the dipole agr at infinity
but also the local characteristics of the flow nesgions of high
degree of body surface curvature. This variatioma¢thod,
originally meant in the context of the wave-bodytenaction
problems in the presence of a free-surface, ieragkneral indeed
taking, in fact, a much simpler form in the unboeddluid case.
The most important feature of such a method is hilgdtodynamics
coefficients, like added mass and moment of inegtie stationary
points of well-defined (energy) functionals, analag to the well-
known Rayleigh quotient in applied mechanics. Iheotwords,
these hydrodynamics coefficients are computed \aitiquadratic
error if compared to the norm of the error for Hagiational solution
corresponding to the potential function, whichhis best solution, in
the Galerkin sense, obtained in a finite sub-sgpe@ned by a set of
conveniently chosen ‘trial functions’. In the vadigmal method the
set of ‘trial functions’ is chosen in a very iniug manner, by
electing and positioning, inside the body, elemgntpotential
solutions that resemble main characteristics of tiasidered
potential flow.
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An explicit formula for the velocity potential degaing a family
of vortex-rings in unbounded fluid was firstly dexd. The special
family is composed by circular-sector rings‘arrings’, i.e., rings
that are positioned on the border of a circulat@wewith aperture
angle a. An obvious particular case is the well-known clex
vortex-ring. The formula is given in terms of a foninly valid
series involving trigonometric and Hypergeomettimdtions. The

convergence of the series was discussed, propetytiana ¢

continuations constructed and asymptotic behaviecevered. The
series can also be expressed in terms of the inetenfBeta
function.

Results concerning the complete circular ring wanapared to
the well known closed solution formula given inntsr of Bessel
functions with perfect agreement, even recoverihg potential
jump that occurs by trespassing the barrier paefdrmed by the
ring itself. Graphical examples were shown for @as rings of
different sector angles. Numerical results for taloy a-angles have
been verified, by recovering the complete circulartex ring

potential through the finite sum of a sequenc@af K - rings.

Finally, as a simple application, the potentialflaround three-
dimensional bodies was formulated and solved uadeariational
approach. The method was numerically validated dmparison
with results for a sphere and for a family of spi#s. A unique
‘trial function’ corresponding to a circular vorteixg recovers the
advancing sphere potential with excellent resuéts, expected.

Simple systems of rings amm-rings were used as trial-functions

sets to compute the solution for a family of spiagpeither for the
advancing or rotating cases.

Some other complex problems were devised as pesé$iither
applications.

Appendix A - Alternative Expressions forf, (o)

Take, in the complex planes u?/c?, such thatt = re(¢*2<)
and sot¥? = -r¥2¢'92  The integral
1 un+1
fn(U)—J(;mdU (Al)
transforms into
l (O' )n/2+1 n/
()= 5 g7y (V" j e (A2).
Now, takingr =-v the integral reads
B 1 (0_ )I"I/2+l /2 |"I/2
f.(0) = 2 ()" )"(-1" _f de (A3),

that can be written

1 (0.2)n/2+l

()= oaymz (D" B-Y 0" 241-(1+12) (A0

where B(z p,q)=[8°*(1-9)%'d9 is the incomplete Beta
0

function. Then from the identity (see, for instan&&délyi et al.,
section 2.5.3),
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ZP
B(z, p,q)=?F(pl—q;p+l2) (A5),
where F(a,b;c, 2)=,F,(a,b;c;2) is the Hypergeometric function, it
follows that

1

m(z)wlz(lﬁ' n/2,3/2+n;2+n/2;_]/0'2)

f.(0) = (AB).
The Gauss Hypergeometric series is convergelzkérfl, that is,

. Notice also that

oB — op-1 g-1
—(z p.g)= 1-
5 ZPa=2""0-2)

in the present case, far >

(A7).

Appendix B - Alternative Expressions forf, (o)

Analytic Continuation of F(1+n/2,3/2+n;2+ n/2;—a"2)

Formula (6), section 2.10 in Erdélyi et al., presdhe analytic
continuation of F(1+n/2,3/2+n;2+n/2;-02) valid for alln. In
fact, from

F(abcc2) =@1-2"F(ac-bcz/(z-1) =

(B1)
=(1-2°F(b,c-ac;z/(z-1))
we get, in the present case,
F@A+n/2,3/2+n2+n/2;-07%) =
=(1-2)F@A+n/2,3/2-n/2;2+n/2;1/ A+ 0?)) = (B2)

=(1-2)PF@2+n12+n/2;1/ 1+ 0?))

that not only provides a proper analytic continuation buti&ays
convergent, forallc #0 .

Alternatively, noticing thatc—a= 1in the present case, we
could construct the analytic continuation from theomplete Beta
function (see Erdélyi et al., section 2.5.5).

Analytic Continuation of F(1+n/2,3/2+n;2+n/2;-¢72)

for o<1

A restrict form for the analytic continuation, \alionly for
o<1, is, alternatively, got from Barnes integral (seg. Carrier,
Krook & Pierson, section 5.3 (5-77), or Erdélyiadt section 2.10
(2), op. cit). For (b—a ) not integer the following analytic
continuation can be deduced

F(a,b,c,c;z) =B,(-2) ®F(al-c+al-b+az ")+

(B3)
B,(-2) PF(bl-c+bl-a+b;z?)
Where
_r(©r(b-2a) and
(b (c-a) (B4).
-r©r@-b
" r(ar(c-b)

In our case c-b-a=-(1/2+n);n=123...,
integer. Notice also that, ifn

is never an
is an even number, then,
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b-a=3/2+n-1-n/2=(n+1)/2 is not an integer number either.

So, forn even we have
F@+n/2,3/2+n2+n/2¢;-0 %) =

=B, (0)*"F@+n/20,1-n)/2;-0%) +
B, (0) ®*?V F (3/2+n,(L+n)/2;(3+n)/2;-0?)

(B5)

With

_r2+n2)r(in+1/2)
= 2+n)

_r2+n2)r(-(n+1/2)
~ r+n2)r(a-ny2)

,and

(B6)

27)

Equations (B5) and (B6) are convergent far< dnd

constitute, fom even, the analytic continuation of
F@A+n/2,32+n2+n/2;-07%)
in the sphere of unitary radius. Notice thatri@an odd number,

r(-(n+1)/2);n>0andr(@-n)/2);n>2,
have both singular behavior.

Appendix C - Asymptotics for ¢(&,§; @) and Velocity
Field
Asymptoticsfor ¢(§,5;a) when £=0

From (22), all terms in the series are null, excgpen n= Q
Equation (17) provides then

¢ 4]
fo(0.{)=%|1-—— (C1)
° 1< [ Y1+ 2 ]
so that, in non-dimensional form,
#0.50) = 1,0.0) (C2).
T
Particularly,
9(00%:a) = +L (C3).
4T
Asymptoticsfor ¢(§,;a) when =0
For & >1, equation (22) gives af = 0.
A<0,4.0)=0, £>1 (C4).

The same can be shown to be valid§r< 1, o <¢ < 2n.
Nevertheless,

+ a
®&.0°,0;0)=x—; £ <1;0<d<a (C5).
41
Asymptoticsfor @(¢,¢;a) when o=y&2+¢? - o
As F[a,b;c,0] =1, we have
1 1 -
fn(U)'-m(a-z)W, o - oo;n=12,... (CG)
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So that, from (22) and (17)

o adl,._ T co=JE2172
ﬂf!(!¢!a)~4ﬂa[l WJ! g 6 +Z (C7)

Writing (C7) in the form

. a 1 Yo e [z2 2
&l pa)s—| ————= 0= +{° - C8
WG bia) = {U 1+J/o—2] J (8)

and expanding (C8) in Taylor seriesJifu it follows at once that

a.a { _a 4 o[22 o
ﬂ{v(v¢’a)~ 477_20_3 - 4772(<(2 +Z2)3/2 0= { +Z - (Cg)
Velocity Field

The following relation is valid, see Abramowitz &te§un,
15.2.2, or Erdélyi et al, 1953, section 2.8 (20),

d_k ey — (@) (0) . .
oK F(a,b,c,w)——(c)k F(a+k,b+k;c+k;w)

and so, the velocity components in polar cylindrizzordinates are
given by

kK 1z
VO BRO T RR
5 n n-1](C10a)
S BN i) o[ 2] i, (0] 2]
n=0 2"n! do p2 +22 R R
o klza@En+, . df oz (p)
v.(pzpRa)=——— > In(#a)—= (,) +
4TRR% 2'n do p2+22 R (ClOb)
1.2 @n+1)! "
w23 B @yt o] 2]
) K zx@n+D!, e "
v, (0,2z,¢0;Rq) =—— | a)f (o) = C10
5.2 Ra) 477an=;‘> D n(@a) fi( )[Rj (C10c)
with,
Oy J_ 1 1 N3, ol 2
ao @ [(2+n) (02)n+2][(2”+3)':(1+2’2+n’2+2’ ’ )j+

+[ 12 ]{(1+n/2)(3/2+n)|:(2+%,5

5 ..n_ | (Cl1)
@+ @23 @+n2) 3o )}

og>1

or, if (18a) is used,

Oy @+ o |3 n. 2
do @ [ (2+n) (1+02)n+5/2J[F(2+n;L2+ 2']/(1+U )}L

| @2n+3) o 2 1 "
@+n) @+o2)™Y2 | (@4+n) @+ 0?)

><[F(%+ n,2,;3+2;1/(1+ az)}

(Clia)

allo>0

And
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a

Ih(@:a) = n[cod" (¢’ - p)serig’ - p)dg’
0

lo(¢,a)=0

11(¢, @) = —cos@ - §) + cosp

c12
In(d.a) :%’(n -1)cod" 2(a - g)serf(a - #) - cod(a - #) (€12)

+

+% — (n-1)cos" 2 gserfyp + cod’ ¢]
n-
n

+

L@

Appendix D - Galerkin Orthogonality in the Variatio nal
Method

It can be easily demonstrated that the ‘Rayleigb-tjuotient’

Vi@V @)

Fu(py) = Glaw)

(D1)

is stationary at a(ﬁ,é)DVTI(V)XVV( V)if the following weak
equations are satisfied W(V) D W (V)

G(@.@) =Vi(@) ; allgy OW(V) and

- _ _ s (D2)
G(@.¢) =M @) ; alg OW(V)

being V\7( V) the finite dimensional space in which a variationa

solution is searched for, and

V(@) = [ duds. (03)
From (39) we have also

- . ©
Gla ) =V @) ; ally DWD (V) and o)

Gla.@) =vi@) ; allg OWP (V)
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