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A Family of Vortex Rings and a 
Variational Application to Potential 
Flows Around Three-dimensional 
Bodies 
A variational formulation and solution of general three-dimensional potential flows gave 
rise to the construction of a special family of ‘trial functions’. This family is composed by 
circular-sector vortex rings, here named α - �rings, i.e., rings that are positioned on the 
border of a circular sector with aperture angle α . An explicit formula for the velocity 
potential describing the α - �rings family is here derived. A particular case is the well-
known circular vortex-ring. The formula is given in terms of a uniformly valid series 
involving trigonometric and Hypergeometric functions. Results concerning the complete 
circular ring are compared to the well-known solution given, in closed form, in terms of 
Bessel functions, validating the present formula. Convergence is discussed. Graphical 
examples are shown for various rings of different sector angles. As an elementary 
application, the steady potential flow around three-dimensional bodies in unbounded fluid 
is formulated and solved under the variational approach. The variational method is fully 
validated through the sphere problem and for a family of spheroids. Examples concerning 
either translatory or rotatory motion around a transversal axis are presented for the 
spheroid family. 
Keywords: potential flow, sector vortex-rings, variational method, three-dimensional 
bodies 
 
 
 

Introduction 1 
23Potential flow problems around three-dimensional bodies 

represent a core of important applications in hydrodynamics. 
Particularly the hydromechanic interactions of floating bodies with 
free-surface waves, usually referred to as the radiation and 
diffraction problems, form a formidable source of very interesting 
and practical applications in marine hydrodynamics and ocean 
engineering. 

A number of methods, as those based on the Green function 
method, are well established in this area, leading not only to the 
solution of linear (first-order) problems but also to the high-order 
ones. Nevertheless, the precise computation of some important 
hydrodynamic coefficients, as added mass or wave-damping terms, 
depends on the degree of accuracy obtained in the solution of the 
respective potential problem, particularly in regions where the 
curvature of the body surface is high, as in the neighborhood of 
sharp edges. A high degree of mesh refinement is usually applied 
locally, leading then to intensive numerical work. 

On the other hand, variational approaches are rather common in 
continuum mechanics and, despite being classical, have been subject 
of many and recent investigations; see, e.g., Irshik & Holl, 2002, 
Mušicki, 2005. A previous, general and rigorous treatment of such a 
matter can be found in Seliger & Whitham, 1968. Such approaches 
are quite powerful, enabling to treat dynamical problems in a 
systematic and rather general way. In this context, the application of 
Lagrangian formalisms to problems involving the interaction of 
bodies with a liquid flow - sometimes named hydromechanics, 
whenever the kinetic energy of the fluid is given in terms of the 
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2 This article is an updated extract of an unpublished monograph, written by 
the authors in 1998, under the same title. 

 

 

well-known added mass tensor - is also classic; Lamb, 1932, art. 
137. 

In the above cited linear radiation and diffraction problems, a 
variational approach was successfully used, for instance, leading to 
a variational method; see Aranha & Pesce, 1989. In this method all 
the hydrodynamic coefficients are shown to be stationary points of 
well-defined functionals, analogous to the well-known Rayleigh 
quotient in applied mechanics. The most important consequence of 
this fact is that a considerably rough approximation for the potential 

solution, with error of orderδ , say, gives rise to an order 2δ -error 
approximation for the hydrodynamic coefficients. The variational 
solution is searched in a finite-dimensional space, spanned by a set 
of conveniently chosen ‘trial functions’. Elementary singularities 
can be elected to form the core of such a set, like poles, dipoles, line 
densities of poles and dipoles. The set of ‘trial-functions’ must 
satisfy the field equation (Laplace) and some of the boundary 
conditions (or, likewise, conditions at infinity), but the 
corresponding natural condition on the body surface. This latter 
condition is enforced by solving the variational ‘weak equation’ that 
arises from the variational formulation. 

Systems composed by rectilinear line vortices were used, 
together with poles, dipoles and related elementary solutions, as 
‘trial functions’, efficiently completing the construction of a finite-
dimensional space in which the solution of three-dimensional 
potential flows around advancing bodies was determined with 
accuracy; Pesce et al, 1997. A special family may be also sought, 
however, that not only comprises much of the behavior of dipoles, 
but does have the additional and important ability of representing 
the large variations in the potential solution in the neighborhood of 
high curvature regions: a family of vortex rings or reentrant vortex 
filaments. Even more complex problems, as the radiation and 
diffraction of water waves by floating bodies, might make use of 
this ability. 

We then firstly started to search for a sufficiently general 
formulation for a family of vortex rings, in unbounded fluid, 
leading, if possible, to an explicit formula. This family was chosen 
to be composed by circular-sector rings, here named α−rings, i.e., 
rings that are positioned on the border of a circular sector with 
aperture angle α. Despite the apparent simplicity, a generalization 
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of the well-known circular line vortex potential in unbounded fluid, 
into a useful family, is not so trivial. We should remember that even 
the simple circular vortex ring potential is given in terms of elliptic 
integrals (see Lamb, art. 161), or can be constructed in terms of 
hypergeometric functions and Legendre polynomials (Lamb, art.84) 
or else, in terms of Bessel functions (Lamb, art. 161 and 102). 

The formula here presented for the α-rings family is given in 
terms of a uniformly valid series involving simple trigonometric 
functions and hypergeometric functions or, alternatively to the 
latter, in terms of incomplete Beta functions. The results have been 
tested concerning convergence, and by properly stating analytic 
continuations and asymptotic behaviors. Results have been fully and 
consistently compared to the circular vortex solution. Examples 
concerning some particular α-angle values are shown in detail.  

The α−rings family is then used within the variational method. 
Firstly the sphere problem is addressed, validating the method and 
the vortex family: the analytical solution is completely recovered 
with the use of only one vortex ring. Then, a family of oblate 
spheroids is analyzed, for which the analytical solution is also 
available, in either steady translatory or rotatory motion around any 
transversal axis, when the α−rings family demonstrates its ability. 

Nomenclature 

a = sphere radius, or semi-diameter of revolution of an oblate 
spheroid, or a parameter 

jja  = nondimensional added mass tensor 

),,( qpzB  = the incomplete Beta function 
b = radius of an oblate spheroid, or a parameter 
c = parameter 

);;;( wcbaF  = Hypergeometric function 

),( ψφklF  = Rayleigh quotient functional 

),( ψφG  = kinetic energy functional 

[ ]),( ji TTG=G  = kinetic energy matrix 

),( αϕnI  = recursive  trigonometric function 

)(L φ  = Lagrangian of the potential field φ 

klm  = added mass tensor 

klm~  = variational approximation for the added mass tensor 

n = natural number 
q  = vector of coefficients 
R = radius of the vortex ring 
r = distance  
r = position vector 

),(
2

1 φφρGT = = kinetic energy of the potential field φ 

)(rjT  = trial function 

U = free stram velocity vector 
)(ψV  = work functional 

{ })( iTV=V  = work vector 

);,,( αϕζξξv  = nondimensional velocity ξ−component 

);,,( αϕζξζv  = nondimensional velocity ζ−component 

);,,( αϕζξϕv  = nondimensional velocity ϕ−component 

)V()1(
2W  = Sobolev space 

z = height in cylindrical coordinates 

Greek Symbols 

α = aperture angle of a circular sector of radius R 
δ = variation 

rU ⋅+=Φ φ  = velocity potential function 

φ = velocity potential function 

)(
~

rφ  = variational approximation for φ 

Γ = Gamma function. 
κ = strength of a vortex filament 
ρ = radial variable in cylindrical coordinates 
θ  = angular variable in cylindrical coordinates 

)(rψ  = square integrable function 

ξ = nondimensional ρ 
ζ = nondimensional z 
ΩP = solid angle subtended at P by any diaphragm that closes 

the ring C 

Mathematical Formulation 

The theoretical basis for the study of vortex rings or reentrant 
vortex filaments, (or even else, closed line vortices) was well 
established since the end of the nineteenth century. Lamb dedicates 
an entire chapter (VII) to the study of vortex motion, giving some 
emphasis to the analysis of vortex rings. Truesdell, 1954, in his 
thorough Kinematics of Vorticity puts some attention on the subject, 
but only from the conceptual perspective. Saffman, 1992 in his 
superb and complete monograph on vortex dynamics, treats the 
problem in depth, but attributes minor practical importance to its use 
when, concerning the singular behavior of the Bio-Savat integral as 
distance r to the line goes to zero, states that (page 37) “the 
logarithmically infinite, non-circulatory, velocity along the binormal 
inhibits the curved line vortex (of zero-cross-section) from being a 
useful dynamical model”.  

Nevertheless, if kinematics of potential flow around three-
dimensional bodies is concerned, vortex rings can play an important 
practical role. In fact, as well known, perturbed potential flows 
resulting from the presence of a body, behave asymptotically like 
dipoles and, as pointed out by Saffman, “the line vortex is 
kinematically equivalent to a surface distribution of dipoles with 
uniform density, the axis of the dipoles being aligned along the 
normal to the barrier ”. 

It is not difficult to visualize the superposition of a circular 
vortex and a uniform stream: a spheroidal-like body. In fact the 
curious Hill spherical vortex (see Lamb, art. 165) gives the exact 
solution for the flow pasting a sphere. Moreover, a line vortex might 
help, as emphasized before, to simulate the very large variation in 
the velocity field near regions of high curvature, as the edges of a 
finite cylinder advancing along its own axis or even rotating around 
any transversal axis. 

Vortex Rings 

As shown for instance in Milne-Thomson, 1979, page 572, if the 
vorticity is concentrated into a single closed vortex filament C, 
being κ  the strength, i.e. ‘the product of the magnitude of the 
vorticity and the (infinitesimal) area of the cross-section of such a 
filament’, the potential velocity induced at a point P is given by 

 

dS
rnS








= ∫∫
1

4 ∂
∂

π
κφ  (1) 

 
In Eq.(1) S is any diaphragm enclosed by the ring and r is the 

distance from P to the surface element dS. Being θ the angle 
between the unit normal vector to the surface at dS and the line 
joining P to dS, then  

 



Celso P. Pesce and Alexandre N. Simos 

120 / Vol. XXX, No. 2, April-June 2008 ABCM  

P
S

dS
r

Ω== ∫∫ π
κθ

π
κφ

4

cos

4 2
 (2) 

 

where PΩ  is the solid angle subtended at P by any diaphragm that 

closes the ring C. The velocity potential φ is a many-valued function 
decreasing or increasing by 4π as P rounds the filament once. 
However, as pointed out by Saffman, 1992, page 35, “it can be 
made single valued by introducing a barrier consisting of a surface 
bounded by the vortex, across which the velocity potential jumps by 
amount of -κ”. 

Circular Vortex Rings 

Let the vortex filament be of circular form. In this important 
particular case the potential can be either expressed by means of 
complete elliptic integrals, as in the analogue case concerning 
electro-magnetic phenomena; Jackson, 1975, section 5.5, or in a 
more tractable manner, expressed in closed form involving Bessel 
functions. In fact, see Lamb, Art. 161 and 102, taking polar 
cylindrical coordinates, with z as the symmetry axis, the velocity 
potential of a circular vortex ring, of radius R, positioned at the 
plane z=0, can be proven to be given by, 

 

∫
∞

−=
0

10 )()(
2

1
)(sign);,( dkkRJkJeRzRz zk ρκρφ  (3) 

 
The corresponding stream function reads, for z > 0 
 

∫
∞

−−=
0

11 )()(
2

1
);,( dkkRJkJeRRz kz ρρκρψ  (4) 

 
As pointed out by Lamb, the regions inside and outside the 

circle constitute two distinct equipotential surfaces (a jump occurs) 
over which it was assumed 

 

κρφ

ρφ

2

1
);0,(

0);0,(

±=<

=>

± RR

RR
 (5) 

 
Well known, besides remarkable, is the already mentioned fact 

that the value of φ is the same as that corresponding to a system of 
dipoles distributed over the whole circle with a constant density κ. 
As it will be seen, this behavior is one of the reasons for the good 
performance achieved when vortex rings are chosen as elementary 
trial functions spanning a proper vector space in which a solution for 
the flow around a body is searched, by means of a variational 
method. Moreover and intuitive, vortex rings may be suitable 
representations for the local potential flow around sharp edges, as in 
the case of a moving cylinder along its own axis of symmetry. 

Circular-Sector Vortex-Rings or  αααα-Rings 

Let now the vortex filament be placed over the border of a 
circular sector of radius R and aperture angle α as shown in Figure 
1. This kind of rings will be named “αααα-rings”. The circular vortex 
ring is, of course, a particular case when α=2π : a ‘2π-ring’ . 

Take then, as shown in Figure 1, a α-ring with radius R, aperture 
angle α, at the plane z=0. 

 

ϕ

Pρ

α

0

O

z

R
κ

 

Figure 1. Circular-sector vortex ring or ‘ αααα-ring’ 

 
Let the circular sector be the surface S in Eq.(3), P’ being a 

point of integration, inside the diaphragm enclosed by the ring, and 
P a point at which the velocity potential is searched for. Elementary 
geometry gives Eq.(2) in polar cylindrical coordinates in the form 

 

( ) ρϕ
ϕϕρρ

ρ

π
καϕρφ

α
′′

−′−+′+
′=

=

∫∫ dd
z

I

zIRz

R

0
23222

0 )cos(2

1

4
),;,,(

 (6) 

 
By a convenient transformation in the integrand the velocity 

potential function can be expressed in terms of incomplete elliptic 
integrals of second kind for a general angle α. This derivation will 
not be worked out here, however; see Batchelor, chapter 7, section 
7.2 for similar reasoning applied to the stream function of a 
complete vortex ring. This solution is not explicit but still given in 
closed form. 

Perhaps a wiser manner, or at least an alternative form, to deal 
with the problem is to separate the angular dependence by 
transforming and then expanding the integrand in a standard power 
series. For, let 
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By applying the above defined functions Eq.(6) transforms into 
 

( )
ρϕ

ϕϕρργ
ρρηρ
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α
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Notice that 
 

1
2)(

22
222

≤
′+′−

′
=

′+
′

≤
ρρρρ

ρρ
ρρ

ρργ , so 

1)cos( ≤−′ ϕϕγ  (9) 
 

everywhere outside the circular sector, but can be equal to unity 
inside, when PP ′≡ . This could cause some numerical difficulties 
on convergence, of course, for points very close to the considered 
sector diaphragm. Strictly speaking the solid angle jumps by an 
amount of 4π when the potential barrier is crossed and there are two 

distinct limit values for the potential function at −+ == 0or  0 zz . 
Nevertheless the corresponding limit values for φ∇  are the same. 
Considering then the standard Taylor series expansion 
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Eq.(8) can be written in the following form, 
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Defining the integrals 
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where the recursive relationship immediately comes from 
elementary calculus, Eq.(11) can be put in the form 
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being  
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It follows at once that, for n=0, 
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For 1≥n , however, the definite integral in equation (14) can be 
written in terms of Hypergeometric functions (see Appendix A) 
leading to 
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The Hypergeometric function );;;( wcbaF ; Cw∈  is usually 

expressed in terms of the Gauss Hypergeometric series, see 

Abramowitz & Stegun, 15.1.1, or Erdélyi, Magnus, Oberhettinger 
and Tricomi, 1953, v.1, chapter II, as  
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Where 
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or, explicitly, 
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The Gauss series is convergent in the circle 1<w . In equation 

(16) this condition holds if 12 >σ , i.e., 
 

1
2

22

>+
R

zρ
 (19) 

 
i.e., outside the sphere of radius R (the sphere of non-dimensional 
radius 1). However, constructing the analytic continuation of (16) 
(Appendix B; see Erdélyi, Magnus, Oberhettinger & Tricomi, 1953, 
pp. 105-108) we get a uniformly valid formula, for all 0>σ , 
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so that Eq.(16) can be replaced by 
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or, alternatively, by 
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The final formula for the velocity potential function is then 

given by 
 

n

nn
n

n R
RzfI

n

n

R

z
Rz 







+= ∑
∞

=

ρραϕ
π
καϕρφ );,();(

!2

)!12(

4
),;,,(

0
2

 (20) 

 
or, in non-dimensional form, normalized with respect to the vortex 

strength κ ,being 222  ;  ; ζξσζρξ +=== RzR , by 
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The usefulness of the Hypergeometric functions, despite some 

technical difficulties concerning the above-mentioned series, resides 
in the recursive relationships involving the derivatives, as those will 
be necessary in computing the velocity field. In polar cylindrical 
coordinates, the velocity components, in nondimensional form read 
(see Appendix C), 
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Notice that the Gauss series in Eq.(16a) (and (C11a)) are not 

convergent if 0=σ . However the asymptotic limit for the potential 
function for 0=ξ  is given, in non-dimensional form, by (see 
Appendix C) 
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so that, 
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Notice (see Appendix C) that the asymptotic behavior as 

∞→σ  is, in nondimensional form, 
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so that 
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In words, the vortex ring behaves like a ζ-dipole, as expected, 

what completes the analysis. It should be noticed that analogous 
formula for the velocity potential could be obtained by the classical 
expansion of the potential function in spherical harmonics; see 
Lamb, arts. 84-86. 

Circular Vortex Ring 

A particular case is the ‘complete’ circular vortex ring )2( πα = . 
The integrals in Eq.(12) are now simplified into, 
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and, obviously, 
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Equations (20a) (and (C13a,b)), with (C27), (C28), will be used for 
numerical comparison purposes with the closed-form solution given 
by Eq.(3). 

Numerical Analysis and Examples 

This section is dedicated to the numerical validation of the 
present formulation as well as to discuss interesting features of this 
particular kind of potential flow, through some selected examples. 
Convergence is not exhaustively discussed but only exemplified by 
means of numerical experiments. 

Numerical Examples for a ‘Complete’ Vortex Ring 

We start by comparing, for the complete vortex ring, the present 
formulation (Equations 20a-26, 27) with the closed form solution 
given by Eq.(3). The vortex ring of unit radius is circular, positioned 
at plane z=0. 

Figures 2 and 3 show, as function of radial distance, the 
comparison between the present formulation and the closed form 
solution Eq.(3) for the velocity potential function. Two distinct 
values of z, corresponding to ζ =0.5;1.0 are taken. N is the number 
of terms in the truncated series. The agreement is complete in the 
whole range. 

Figure 4a,b shows the same comparison, but now as a function 
of axial distance z, for radial distance, ξ=ρ/R=0.5 and for N=30,200. 
The agreement is very good for ζ=z/R>0.3, but convergence rate is 
slow for smaller values. Notice that the jump in the potential caused 
by the presence of the potential barrier is noticeable but can be 
better represented by the present formulation if the number of terms 
in the series is increased. If N is increased further, graphical results 
become undistinguishable. The asymptotic representation for the 
unitary jump provided by the series is quite evident. In fact, Figures 
5a,b show this behavior quite well, for ξ=ρ/R=1.0. 

Figures 6a,b show the axial component of velocity for two 
different values of z. Notice that there is a value for ζ=z/R below 
which the maximum absolute value is no more in the center, but at a 
distance ξ=ρ/R that goes to 1 as ζ→0. In Fig.7a the curve below 
represents the solution given by Eq.(3). In Fig.7b curves 
corresponding to the present solution and to equation (3) are 
undistinguishable. Series are truncated at N=100, even though N=30 
would be enough for the curves corresponding to ζ >0.5. 

 

ξξξξξξξξ  
Figure 2. Nondimensional Velocity Potential for a ‘ Complete’ Circular 
Vortex Ring comparison between present formulation (♦♦♦♦) and closed form 
solution (3); 30502 ================ ;N.Rzζπ;α . 
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ξξξξξξξξ  
Figure 3. Nondimensional Velocity Potential for a ‘ Complete’ Circular 
Vortex Ring comparison between present formulation (♦♦♦♦) and closed form 
solution (3); 30012 ================ ;N.Rzζπ;α . 

 

 
(a) 2000.52 ==== N;Rρξπ;α  

 

 
(b) 200;5.0;2 ==== NRρξπα  

Figure 4. Nondimensional Velocity Potential for a ‘ Complete’ Circular 
Vortex Ring comparison between present formulation (♦♦♦♦) and closed form 
solution (4). 

 

 
 (a) 30;0.1;2 ==== NRρξπα  

 

 
(b) 150;0.1;2 ==== NRρξπα  

Figure 5. Nondimensional Velocity Potential for a ‘ Complete’ Circular 
Vortex Ring comparison between present formulation (♦♦♦♦) and closed form 
solution (3). 

 

As 3D-plot examples, Figures 7a,b,c,d show the potential 
function and the three velocity components for a quarter- vortex 
rings α=π/2. Notice that for ζ=1.0 convergence is verified for N=30. 
Notice also the presence of the azimuthal component. 

Finally, a complete circular vortex ring was taken again as the 
paradigm, in order to confirm the numerical results for arbitrary α. 
In fact we can construct the complete circular vortex ring with a 
sequence of 2π/K-rings, in the form 

 

∑
=








 −−=
K

j KK
j

1

2
;

2
)1(,,)2;,,(

ππϕζξφπϕζξφ  (28)  

 

Figure 8 shows such a construction for the case treated 
above, α=π/2 (Κ=4). Notice that the agreement is complete, 
comparison with the paradigm being undistinguishable. 

 

ξξξξξξξξ  
(a) 25.0== Rzζ  

 

ξξξξξξξξ  
(b) 00.1== Rzζ  

Figure 6. Nondimensional Axial Velocity Component  for a ‘Complete’ 
Circular Vortex Ring; comparison between present fo rmulation ( ♦♦♦♦) and 
closed form solution (3); 100012502 ================ ;N.;.Rzπ;ζα . 

 
(a) potential function 

Figure 7. Nondimensional Potential and Cylindrical Polar Velocity 
Components for a ‘Quarter’ Circular Vortex Ring; 

30012 ================ ;N.Rz;ζπα . 
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vξξξξvξξξξ

 
(b) radial velocity component 

vζζζζvζζζζ

 
(c) axial velocity component 

 

vφφφφvφφφφ

 
(d) azimuthal velocity component 

Figure 8. (Continued). 

 

 
(a) j=1 

Figure 8. Nondimensional Potential for a system of 4 ‘Quarter’ Circular 
Vortex Ring. 30012 ================ ;N.Rz;ζπα . 

 

 
(b) j=2 

 

 
(c) j=3 

 

 
(d) j=4 

Figure 8. (Continued). 

 

ξξξξξξξξ
 

Figure 8(e). Constructed circular vortex-ring with 4 ‘quarter-rings ( ♦♦♦♦)’. 
Comparison with a closed form solution, eq. (3). 

30012 ================ ;N.Rz;ζπα . 

A Variational Application to Potential Flows Around 
Bluff Bodies in Unbounded Liquid 

In what follows a variational approach is taken to construct a 
numerical method where the α-rings family is applied to solve 
three-dimensional potential problems. The main advantage of this 
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variational method is to adopt a “dessingularized” approach. 
Numerical problems with singularities are avoided since the trial 
functions are placed “inside” the body. No singularities therefore 
exist concerning integrations over the body surface. 

The Variational Approach 

Consider a standard problem concerning a stationary 
incompressible and irrotational flow around a body described by a 
velocity potential,Φ , satisfying the usual field equation and 
boundary conditions 

 

∞→→Φ∇
=⋅Φ∇

=Φ∇

rU

n

  ,

on   0

02

S  (29) 

 
being S the body surface and n the unit outward (from the fluid 
body) normal vector. We write  

 
rU ⋅+=Φ φ  (30), 

 
where )(rφ  is the perturbed velocity potential, due to the presence 
of the body in the otherwise steady stream, with constant velocity 
U , satisfying 

 

)r1 (as    

on   -

0

3

2

∞→→∇

=⋅−=⋅∇
=∇

r0,

nUn

φ

φ
φ

SU n  (31). 

 
Let )(rψ  be any square integrable function in the sense of the 

energy norm  
 

( )[ ] 21

V

2 Vd∫ ∇= ψψ  (32) 

 

This class of functions is a Hilbert space ( )V()1(
2W  in the 

specialized literature). Defining now the functional 
 

)V(,      ;  V),( )1(
2V

WdG ∈∇⋅∇= ∫ ψφψφψφ  (33) 

 
the kinetic energy associated to the perturbed potential can be 
written4 

 

),(
2

1 φφρGT =  (34) 

 
Taking now the Laplacian of φ  Eq.(31a), multiplying it by ψ , 

integrating in the whole infinite fluid volume and using the 
divergence theorem together with the boundary conditions given by 
Eq.(33b,c) we get an weak equation for the potential problem 

 

)V( all   ;  )(),( )1(
2WVG ∈= ψψψφ  (35) 

Where 
 

∫

∫
−=

⋅∇=

S n

S

dSUV

dSG

ψψ

ψφψφ

)(

),( n
 (36). 

 
                                                           
4 The same symbol ρ is here used for mass density, as usual. 

Notice that the Lagrangian of the fluid system can be put in the 
form 

 

)(),(
2

1
)(L φρφφρφ VG −=  (37) 

 
and, as we treat a stationary problem, that the Lagrange equation 
comes from the stationarity condition for )L(φ , namely 

 
0)(L =φδ  (38). 

It is a standard exercise on variational calculus to prove that (38) 
just imply the weak equation (35) and reciprocally. 

Let now a numerical approximation for )(rφ  be denoted by 

)(
~

rφ . The weak equation (37) will be solved in a finite dimensional 
sub-space of finite energy spanned by a linearly independent set of 
‘trial functions’ { }NjT j ,...,1);( =r . The ‘trial functions’ are chosen 

to satisfy Eq.(31a) and Eq.(31c). We write 
 

∑
=

=
N

j
jjTq

1

)()(
~

rrφ  (39) 

 
that transforms Eq.(35) into a linear algebraic system in the 
unknown coefficients { }Njq j ,...,1; =  

 

[ ]
{ }
{ })T(V

q

)T,T(G
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j
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=

=

=
=

V

q
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VGq    with

 (40). 

 
It should be noticed that solving Eq.(40) is, in fact, to search for 

a stationary point of the Lagrangian (a minimum in this case), the 
result so obtained being the best approximation in the finite sub-
space spanned by { }NjT j ,...,1);( =r . 

Notice also that, considering the solution 6,...,2,1  ;)( =′ kk rφ  

for a unitary velocity or rotation in the direction of kx , now in the 

body reference frame, such that  
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 (41) 

 
the added mass tensor can be written in terms of the defined 
functionals as 

 
)()(),(),( kllkkllkkl VVGGm φφφφφφρ ====  (42) 

 
With 

 

∫=
S kk dSvV ψψ )(  (43) 

and where the usual reciprocity (symmetry) relations were shown 
explicitly. 

As in Aranha & Pesce (1989), let 
 

),(

)()(
),(

ψφ
ψφ

ψφ
G

VV
F kl

kl =  (44) 
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be a functional defined in the Cartesian product space 

(V)(V) )1(
2

)1(
2 WW × 5. Then 

 
),( lkklkl Fm φφρ=  (45) 

 
If we write for the finite-space solution 
 

)
~

()
~

()
~

,
~

()
~

,
~

(
~

kllkkllk
kl VVGG

m φφφφφφ
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====  (46) 

 
Where 

 

6,...,1   ;
~

=+= kkkk δφφφ  (47) 
 

it can be shown (see Appendix D) that 
 

ψψδφ ~ all   ;0)~,( =kG  (48) 
 

or, in words, that a Galerkin orthogonality condition holds, as 
pointed out above. This leads to 

 
),(~

lkklkl Gmm δφδφρ+=  (49) 
 

finally yielding (see Aranha & Pesce, 1989, for mathematical 
details) 

 

{ }[ ]2;max lkkl cm δφδφδ ≤  (50) 

 
where c is an independent constant. 

Notice that in terms of the ‘trial-functions expansion’ the added 
mass tensor is written 

 

∑∑
= =

=
N

i

N

j

l
j

k
i

l
j
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ikl TTGqqm

1 1

),(~ ρ  (46a) 

 
The results (equations 48-50) indicate that the variational 

method provides an approximation for the added mass tensor 

coefficients with an error of order 2δ , if δ  is the error of the 
approximated potential solution. 

Notice also that from Eq.(32) and Eq.(48), see Appendix D, 
 

[ ] [ ] [ ] 212121 )(),(),( kkkkkkk VGG δφδφφδφδφδφ ===  (51) 

 
As a matter of fact this method is rather general and can be 

extended and applied for problems satisfying more complex 
boundary conditions (see Aranha & Pesce, 1989), as in the case of a 
multi (rigid) body system, even in the presence of a free surface (see 
Pesce, 1988) or, e.g., for flexible bodies with the b.c.’s 
corresponding to each vibration mode. 

The choice of the ‘trial function’ set is particular for each 
problem. In the present case, stationary and incompressible potential 
flow around bodies in unbounded fluid, an interesting choice could 
comprise poles, dipoles, line and surface densities of poles and 
dipoles and, of course and of our present interest, vortex rings. 
Previous work on the variational method (Aranha and Pesce, 1989) 
has shown that a proper choice of the trial functions, based on the 
expected flow pattern, may reduce drastically the number of trial 
functions required for convergence. Anyway, this is not mandatory, 
                                                           
5 We should note, as in Aranha & Pesce (1989), that ),( ⋅⋅F  is well defined 

and zero when 0);( =⋅⋅G . 

and the flow may always be reproduced by an extensive set of 
sources/sinks, following the procedure adopted in BEM codes with 
source distributions. 

Examples Using Solely Vortex-Rings 

As well known, general axi-symmetrical potential flows can be 
worked out and solved, by separation of variables in spherical polar 
coordinates, in terms of multipoles and Legendre polynomials; see, 
for example, Newman, 1978, section 4.9, Kochin et al, 1964, 
chapter 7 or Lamb, art. 84. Two cases will be analyzed: a sphere and 
a highly oblate spheroid. The first, besides being the simplest one, 
for which a simple analytical solution exists, is here used as a 
definite demonstration concerning the power of the variational 
method. For some other simple geometries, as the spheroidal family 
chosen as a paradigm, analytical solution is also found. The oblate 
spheroid is as a kind of application for which the vortex ring is 
useful to simulate flow around the edges and semi-vortex rings are 
useful in solving the problem of rotation about the diameter. 

Variational Solution for a Sphere 

The sphere is the simplest case among all three-dimensional 
potential flows. The well-known analytical solution for a sphere of 
radius a advancing with unitary velocity in a still and unbounded 
fluid is given in spherical polar coordinates (fixed in the body) by 

 

θφ cos
2

1
2
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r

a=  (52) 

 
or in cylindrical coordinates, being z the axis in the direction of 
motion, by 
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Let  

);,();,( RzRzT cv ρφρ =  (54) 
 

be the only ‘trial function’ in the variational method, in which 
);,( Rzcv ρφ  is the potential of a complete circular vortex ring of 

unitary strength, given by Eq.(20) and Eq.(26) (α=2π) and 
positioned at the plane z=0. 

As we have taken just one trial function, the linear algebraic 
system in Eq.(40) reduces in this case into a unique linear equation 
and the variational coefficient q is given by 

 

),(

)(

TTG

TV
q =  (55) 

 
For the sphere, the non-dimensional added mass coefficient is 

then written 
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TTG
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q
a jj

ππ
==  (56). 

 
As well known, ( ) ijija δ21= , for a sphere. 

Table 1 shows the non-dimensional added mass for three values 
of R/a. The solution has been obtained taking the series in Eq.(20) 
truncated in 100 terms. Convergence of the series has been checked 
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for all cases6. Notice that results are greatly improved for the vortex-
ring of smaller radius. The agreement is indeed very good even for 
the intermediate value. The last two columns show the relative error 
for the added mass and the relative error for the potential function 
norm. Notice that errors in added mass coefficients are smaller 

( )(O
2δφ ), as predicted. 

Figures 9 and 10 show the non-dimensional potential calculated 
for the three cases exemplified, compared to the exact solution given 
by Eq.(53). We have taken ρ/a=1 and z/a=1 respectively. Notice that 
agreement is improved drastically as R/a decreases. In fact, as a 
vortex ring is kinematically equivalent to a surface distribution of 
dipoles with uniform density, this latter shrinks to a single dipole as 
R/a→0, what represents exactly the potential flow around an 
advancing sphere. Figure 11 shows the non-dimensional potential 
calculated on the sphere surface. 

Remarkable is also the fact, in the present problem, that the error 
in the added mass coefficient is exactly the square of the error norm 
in the approximate potential solution. 

 

Table 1 Non-dimensional Added Mass Coefficient for a Sphere by a 
Variational Method. One Vortex Ring at mid-plane. 

aR  q 11a  11aδ  (%) δφ  (%) 

0.75 2.98 0.42 16.26 40.32 

0.50 7.76 0.48 3.05 17.46 

0.25 31.94 0.50 0.19 4.34 
 

 
(a) 1  ;75.0 == aaR ρ ; 100=N  

 

 
(b) 1  ;50.0 == aaR ρ ; 100=N  

Figure 9. Non-dimensional Velocity Potential Functi on as a function of 

aρ  for a Sphere of Radius a by the variational method , compared to the 

exact solution. Only one Vortex Ring as ‘Trial Func tion’. 

 

                                                           
6 A standard convergence analysis was done, following the same approach 
described in section 3. For the sphere problem, convergence is very fast and 
a smaller number of terms could have been used, without changing the 
results. As a matter of fact, for small radius vortex-rings, results are always 
improved, irrespective additional terms taken in the series, since the 
asymptotic behavior of the trial function recovers that of a dipole as the 
radius tends to zero. The use of large radii rings require a larger set of trial 
functions to perform the same task. 

 
(c) 1  ;25.0 == aaR ρ ; 100=N  

Figure 9. (Continued). 

 

ξξξξξξξξρ/aξξξξξξξξρ/a
 

(a) 100; 1  ;75.0 === NazaR  
 

ρ/aρ/a
 

(b) 100; 1  ;50.0 === NazaR  
 

ρ/aρ/a
 

(c) 100; 1  ;25.0 === NazaR  

Figure 10. Non-dimensional Velocity Potential Funct ion as a function of 
az  for a Sphere of Radius: variational method ( ♦♦♦♦) compared to the exact 

solution. Only one Vortex Ring. 

 

 
(a) 100;;75.0 222 ==+= NazaR ρ  

Figure 11. Non-dimensional Velocity Potential on a Sphere of Radius a: 
variational method ( ♦♦♦♦), compared to the exact solution. Only one Vortex 
Ring. 
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(b) 100;;50.0 222 ==+= NazaR ρ  

 
(c) 100250 222 ==+= N;az;.aR ρ  

Figure 11. (Continued). 

Variational Solution for a Family of Spheroids 

A rather general form, for which comparable analytical solutions 
are available, are ellipsoids. Particularly, spheroids or ellipsoids of 
revolutions, being b the semi-diameter and a on the axis of 
revolution z. Examples will be shown for oblate spheroids( )1<ba ; 

Figure 12. 
Table 2 shows the numerical results obtained for the added mass 

of an oblate spheroid advancing in unbounded inviscid fluid along 
the revolution axis. Paradigms have been extracted from Newman, 
1978, page 147, up to two significant figures. Two aspect ratios 
have been chosen )2.0;6.0( =ba . N is the number of terms used in 

the series expansions. For the first case )6.0( =ba  only one trial 

function, composed by just one complete circular vortex ring placed 
on the plane z=0, normal to the axis of revolution, has been used, 
with non-dimensional radius 15.0=bR . Convergence towards the 

paradigm (0.56) is reached with 10≥N .  For the second case 
)2.0( =ba , two trial functions, composed by complete circular 

vortex rings, placed on the plane z=0, with 30.0 and 15.0=aR  

respectively, have been used. Convergence is achieved for 30≥N . 
Notice that the vortex ring has been able to reproduce quite well the 
flow around large curvatures corresponding to small non-
dimensional values ba . 

 

 

Figure 12. Oblate Spheroid 0.6)ba( =  ; a is the semi-diameter of 

revolution. 

Table 2. Non-dimensional Added Mass Coefficients fo r an Oblate Spheroid 
advancing along its axis of revolution. (a is the s emi-axis of revolution) 

3
33

33
34 b

m
a

πρ
=  

a/b TFN  R/b N=5 N=10 N=30 N=50 
Paradigm, 
(Newman) 

0.6 1 0.15 0.565 0.564 0.564 - 0.56 
0.2 2 0.15;0.30 1.780 0.790 0.621 0.618 0.61 

 
        

 

 

Figure 13. Oblate Spheroid: (a) a system of one pai r of complete rings (2 ππππ- 
rings) for a spheroid advancing along the revolutio n axis; (b) a system of 
one pair of counter-rotating semi-circular vortex r ing ( ππππ-rings) for a 
rotation around a diameter axis. 
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Figure 14. Convergence Rate as a function of the nu mber of terms in the 
series expansions for the added moment of inertia c oefficient for an 
oblate spheroid 0.6)ba( =  

 
Table 3 presents the added moment of inertia coefficient 

corresponding to rotation about any diameter (the b-axis) normal to 
the axis of revolution. Results are presented only for the first case 

)6.0( =ba . A system of two pairs of counter-rotating semi-circular 

vortex rings )( πα = , with 30.0 and 15.0=bR , placed on the 

plane z=0, has been used as the set of trial functions )2( =TFN . 

Figure 13b illustrates the case of just one pair of counter-rotating 
π−rings. Convergence is reached quite fast, for 10≥N . The value 
used as the paradigm, taken from Newman, 1978, page 147, is 
approximately 0.082. Results can be improved by taking additional 
pairs of π−rings. Figure 14 shows the convergence rate for the added 
moment of inertia coefficient as a function of N. 
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Table 3. Non-dimensional Added Moment of Inertia Co efficient for an 
Oblate Spheroid. (a/b=0.6). 

5
55

5544
158 b

m
aa

ρπ
==  for rotation about b-axis. 

TFN  R/b N=1 N=5 N=8 N=10 N=12 
Paradigm  
(Newman) 

2 0.15; 0.30 0.194 0.094 0.089 0.087 0.086 0.082 
 
It should be noticed that, in general, the use of circular vortex 

rings does not increase the computational effort significantly, unless 
they are placed too close to the body surface, when convergence is 
slow. Results obtained in the paper were intended for validation of 
the trial function only. Computations of the Hypergeometric 
functions were therefore performed through the software 
Mathematica®, which requires somewhat long computational time. 
A detailed evaluation of computational effort was not intended at 
this stage. 

Other Possible Applications in Unbounded Flow 

Many other applications in unbounded potential flow may be 
devised. An interesting example is the potential flow around a 
streamlined body, as a submarine. Figure 15a shows the streamlines 
on the fore-body of a typical submarine. This result was obtained 
with a set of trial functions composed by poles, dipoles, as well as 
by lines of poles and dipoles, positioned inside the body surface; 
Pesce et al., 1997. The yellow line marks the transition to turbulence 
of the boundary-layer, determined by the classical method of 
Michel, after post-processing the potential flow that was obtained by 
the variational method. Figure 15b shows a typical cross-section of 
the submarine and a possible set of α−rings, suitable to represent the 
flow around the upper and lower body.  

 

Side 
view 

Front 
view 

 
(a) 

 
 

 
(b) 

Figure 15. Flow around a typical submarine fore-bod y: (a) stream-lines 
(line marks the transition of the boundary-layer to  turbulence, determined 
by the classical method of Michel); (b) a typical c ross-section of the 
submarine and a possible set of αααα-rings, suitable to represent the flow 
around the upper and lower body. 

The variational method can be also applied to other complex 
problems, like the surface wave interaction with multiple bodies. 
The free-surface boundary condition can then be enforced for trial-
functions composed by elementary unbounded fluid potentials, like 
the α−rings family, through a convenient combination of these 
functions and their normal derivatives with respect to the free-
surface; see Aranha & Pesce, 1990. 

Another further sought application of the α−rings family is to 
the classical hydrodynamic impact of a body against the free-
surface; see, e.g., Korobkin and Pukhnachov, 1988. This is, 
however, a highly transient and geometrically non-linear potential 
flow phenomenon, in which jets (or sprays) are formed along the 
rapidly marching intersection line that exists between the wetted 
surface of the body and the free surface; see, e.g., Korobkin and 
Scolan, 2006. To compute the hydrodynamic impacting force on the 
body, the added mass tensor has to be properly defined and 
determined as a function of the penetration of the body into the 
formerly quiescent free-surface. Analytical mechanics approaches 
may be rather useful in this case, see, e.g., Pesce, 2003, Cointe et al, 
2004 or Casetta and Pesce, 2006. 

 

C∂ jet

jet root

body

jet

free surface

Jv Jv

W

 
Figure 16. The impact of a rigid body against a liq uid free surface. Jets or 

sprays are formed. c∂  indicates the instantaneous position of jet's root , 
across which there is a flux of kinetic energy and mass. 

 
It should be also pointed out that the main application envisaged 

for the present method is to deal with zero-lift 3D flows with free-
surface, mainly for offshore applications. Nonetheless, lifting flows 
could also be sought as possible further applications. An 
encouraging example may be found in Burr, 1993, who successfully 
addressed the two-dimensional lifting problem, through the 
variational approach, by a proper implementation of the classical 
Kutta condition. 

Conclusions 

A variational formulation for steady potential flows around 
three-dimensional bodies gave rise to the construction of a family of 
circular sector vortex rings in order to compose a set of ‘trial 
functions’ able to simulate not only the dipole behavior at infinity 
but also the local characteristics of the flow near regions of high 
degree of body surface curvature. This variational method, 
originally meant in the context of the wave-body interaction 
problems in the presence of a free-surface, is rather general indeed 
taking, in fact, a much simpler form in the unbounded fluid case. 
The most important feature of such a method is that hydrodynamics 
coefficients, like added mass and moment of inertia, are stationary 
points of well-defined (energy) functionals, analogous to the well-
known Rayleigh quotient in applied mechanics. In other words, 
these hydrodynamics coefficients are computed with a quadratic 
error if compared to the norm of the error for the variational solution 
corresponding to the potential function, which is the best solution, in 
the Galerkin sense, obtained in a finite sub-space spanned by a set of 
conveniently chosen ‘trial functions’. In the variational method the 
set of ‘trial functions’ is chosen in a very intuitive manner, by 
electing and positioning, inside the body, elementary potential 
solutions that resemble main characteristics of the considered 
potential flow. 
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An explicit formula for the velocity potential describing a family 
of vortex-rings in unbounded fluid was firstly derived. The special 
family is composed by circular-sector rings or ‘ α−α−α−α−rings’ , i.e., rings 
that are positioned on the border of a circular sector with aperture 
angle α. An obvious particular case is the well-known circular 
vortex-ring. The formula is given in terms of a uniformly valid 
series involving trigonometric and Hypergeometric functions. The 
convergence of the series was discussed, proper analytic 
continuations constructed and asymptotic behaviors recovered. The 
series can also be expressed in terms of the incomplete Beta 
function.  

Results concerning the complete circular ring were compared to 
the well known closed solution formula given in terms of Bessel 
functions with perfect agreement, even recovering the potential 
jump that occurs by trespassing the barrier potential formed by the 
ring itself. Graphical examples were shown for various rings of 
different sector angles. Numerical results for arbitrary α-angles have 
been verified, by recovering the complete circular vortex ring 
potential through the finite sum of a sequence of rings-2 Kπ . 

Finally, as a simple application, the potential flow around three-
dimensional bodies was formulated and solved under a variational 
approach. The method was numerically validated by comparison 
with results for a sphere and for a family of spheroids. A unique 
‘trial function’ corresponding to a circular vortex-ring recovers the 
advancing sphere potential with excellent results, as expected. 
Simple systems of rings and α−rings were used as trial-functions 
sets to compute the solution for a family of spheroids, either for the 
advancing or rotating cases. 
Some other complex problems were devised as possible further 
applications. 

Appendix A - Alternative Expressions for )(σnf  

Take, in the complex plane, 22 σut = , such that )2( πθ kiret +=  

and so 22121 θiert −= . The integral 
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Now, taking vr −=  the integral reads 
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that can be written 
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where ∫
−− −=

z
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11 )1(),,( ϑϑϑ   is the incomplete Beta 

function. Then from the identity (see, for instance, Erdélyi et al., 
section 2.5.3), 
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where );;,(),;,( 12 zcbaFzcbaF =  is the Hypergeometric function, it 

follows that 
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The Gauss Hypergeometric series is convergent if 1<z , that is, 

in the present case, for 1>σ . Notice also that  
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Appendix B - Alternative Expressions for )(σnf  

Analytic Continuation of );;,( 2222321 −−−−−−−−++++++++++++ σσσσnnnF  

Formula (6), section 2.10 in Erdélyi et al., provides the analytic 

continuation of );22;23,21( 2−−+++ σnnnF  valid for all n. In 

fact, from 
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we get, in the present case, 
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that not only provides a proper analytic continuation but is always 
convergent, for all 0≠σ . 

Alternatively, noticing that 1=− ac  in the present case, we 
could construct the analytic continuation from the incomplete Beta 
function (see Erdélyi et al., section 2.5.5). 

Analytic Continuation  of )σ;nnnF 22;223,2(1 −−−−−−−−++++++++++++  

for 1<σ  
A restrict form for the analytic continuation, valid only for 
1<σ ,  is, alternatively, got from Barnes integral (see, e.g. Carrier, 

Krook & Pierson, section 5.3 (5-77), or Erdélyi et al, section 2.10 
(2), op. cit.). For )( ab −  not integer the following analytic 
continuation can be deduced 
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Where 
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In our case ...3,2,1 );21( =+−=−− nnabc , is never an 

integer. Notice also that, if n is an even number, then, 
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2)1(2123 +=−−+=− nnnab  is not an integer number either. 

So, for n even we have 
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Equations (B5) and (B6) are convergent for 1<σ  and 

constitute, for n even, the analytic continuation of  
 

);22;23,21( 2−−+++ σnnnF   
 

in the sphere of unitary radius. Notice that for n an odd number, 
 

( ) ( ) 2 ;2)1(  and  0 ;2)1( >−Γ>+−Γ nnnn , 

have both singular behavior. 

Appendix C - Asymptotics for α)ζ;φ(ξ,  and Velocity 
Field 

Asymptotics for α)ζ;φ(ξ,  when 0ζ =  

From (22), all terms in the series are null, except when 0=n . 
Equation (17) provides then 
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so that, in non-dimensional form, 
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Particularly, 
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Asymptotics for α)ζ;φ(ξ, when 0ζ =  

For 1>ξ , equation (22) gives at .0=ζ  
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The same can be shown to be valid in π2ϕα<ξ <<  ;1 . 

Nevertheless, 
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Asymptotics for );,( αζξφ  when ∞→+= 22 ζξσ  

As 1]0;;,[ =cbaF , we have 
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So that, from (22) and (17) 
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Writing (C7) in the form 
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and expanding (C8) in Taylor series in σ1  it follows at once that 
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Velocity Field 

The following relation is valid, see Abramowitz & Stegun, 
15.2.2, or Erdélyi et al, 1953, section 2.8 (20), 
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and so, the velocity components in polar cylindrical coordinates are 
given by 
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or, if (18a) is used, 
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And 
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Appendix D - Galerkin Orthogonality in the Variatio nal 
Method 

It can be easily demonstrated that the ‘Rayleigh-like quotient’ 
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being V)(
~

W  the finite dimensional space in which a variational 
solution is searched for, and 
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From (39) we have also 
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Taking ψψ ~=  in (D4) above and subtracting them from (D2) 
we get the Galerkin orthogonality condition in the finite dimensional 

sub-space V)(
~

W  
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For a more general application, see Aranha & Pesce, 1989. 
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