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An Adaptive Mesh Strategy for High 
Compressible Flows Based on Nodal 
Re-Allocation 
An adaptive mesh strategy based on nodal re-allocation is presented in this work. This 
technique is applied to problems involving compressible flows with strong shocks waves, 
improving the accuracy and efficiency of the numerical solution. The initial mesh is 
continuously adapted during the solution process keeping, as much as possible, mesh 
smoothness and local orthogonality using an unconstrained nonlinear optimization 
method. The adaptive procedure, which is coupled to an edge-based error estimate aiming 
to equidistribute the error over the cell edges is the main contribution of this work. The 
flow is simulated using the Finite Element Method (FEM) with an explicit one-step Taylor-
Galerkin scheme, in which an Arbitrary Lagrangean-Eulerian (ALE) description is 
employed to take into account mesh movement. Finally, to demonstrate the capabilities of 
the adaptive process, several examples of compressible inviscid flows are presented. 
Keywords: adaptive mesh strategy,high compressible flows,finite element method 
 
 
 

Introduction 
1The numerical solution of complex problems in many 

engineering fields normally requires the use of a large number of 
mesh points to accurately capture phenomena exhibiting high 
gradients of one or more variables such as those appearing in 
boundary layers, regions with stress concentrations, shock waves, 
etc. As the regions where these phenomena take place are not 
known a priori in most cases, it is rarely feasible to create a suitable 
initial mesh with small elements at the corresponding location, 
where high gradients may be found. 

Several approaches have been employed for both structured and 
unstructured mesh adaptation. The most widely used approaches 
consist in nodal re-allocation, automatic mesh 
refinement/unrefinement and changes of the approximation order of 
the variables. Sometimes it is appropriate to use simultaneously 
more than one of these approaches. Most of these subjects are well 
summarized in Löhner (2001), where many references are given. 

A strategy for mesh adaption, using only mesh movement and 
nodal re-allocation, has the advantage that the mesh connectivity 
and number of elements and nodes do not vary with respect to the 
initial mesh and hence computational cost does not increase when a 
new flowfield is calculated on the adapted mesh. This intrinsic 
simplicity is also the cause of the limitations of r-strategy. The 
accuracy which can be achieved with an adaptive mesh nodal re-
allocation strategy is limited, because the number of nodes and the 
mesh topology are fixed from the beginning, when the initial mesh 
is built. In fact, the initial mesh heavily influences the adaptive 
process. Once the node location is “optimal” according to the error 
estimate, a more accurate, complex and expensive solution can only 
be achieved by increasing the number of nodes or/and change the 
order of accuracy of the discretized approximation. The node 
movement technique, within an a posteriori adaptive framework, 
was originally presented by Gnoffo (1983), and was after 
generalized by Nakahashi and Deiwert (1987), for fluid flow 
problems. The schemes used by these authors are based in the spring 
analogy, in which the mesh is viewed as a set of springs with 
constraints on mesh orthogonality and their constants representing 
error measures. Each apex (or node) is moved until equilibrium are 
reached by the spring forces. 

The refinement technique using exclusively nodal movement 
has been less popular in the finite element community; the main 
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difficulty seems to be the lack of a reliable and general procedure to 
determine the mesh movement (Cao et al., 1999). Nevertheless, as 
this method is easy to implement and inexpensive, because only the 
initial mesh with a non complex data structure is needed to originate 
continuos changes of the mesh in the time-space domain, it is 
worthwhile to employ this technique whenever it is possible. This 
procedure may sometimes be more efficient in terms of processing 
time and computer memory than refinement techniques (where new 
nodes and elements are created). 

Hawken et al. (1991) presented a review of adaptive node-
movement techniques in finite elements and finite differences. Ait-
Ali-Yahia et al. (1996, 1997) studied a methodology for 
quadrilateral elements using an edge-based error estimate with no 
constraints on mesh orthogonality, but high aspect ratios were 
obtained. However, the stability of most numerical schemes may 
depend on the mesh quality, for this reason, excessive mesh 
distortion, without any control, must be avoided using a smoothing 
process and preserving mesh regularity. Tam et al. (2000) extended 
this methodology for 3-D hexahedral and tetrahedral elements, 
considering nodal movement as well as the edge refinement and 
coarsening strategies. Hexahedral meshes have a better accuracy and 
require less CPU time than the tetrahedral meshes for the same 
number of nodes. 

This paper focuses an adaptive mesh nodal re-allocation method 
based on a variational principle, and its main objective is to build a 
mesh with an effective control of conflicting requirements such as 
mesh regularity, local orthogonality and mesh adaptation. The node-
technique is implemented for three-dimensional, inviscid, 
compressible flows characterized by strong shock waves, and 
analyzed with the Finite Element Method (FEM) using hexahedral 
isoparametric elements with eight nodes. An edge-based error 
estimate drives nodal movement to satisfy an optimal mesh 
criterion. The error is equidistributed over the edges and an initial 
mesh is continuously adapted during the solution process, keeping 
as well as possible mesh smoothness and local orthogonality with an 
unconstrained optimization method. An Arbitrary Lagrangean-
Eulerian (ALE) description is used in order to obtain a conservative 
computation of the flow when the adaptive mesh procedure 
transports information from the old to the new mesh. An analytical 
test case and classical computational fluid dynamics problems are 
chosen in order to validate and to show the simplicity of the 
proposed methodology. 
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Nomenclature 

A = area, dimensionless  
C = tolerance 
d = edge-based error 
D = stand-off distance 
e =total energy, dimensionless 
F = objective function 
Fi = vector flux variables  
h = element length 
H = hessian matrix 
H  = hessian modified matrix 

M = Mach number 
OR = measure the local orthogonality 
p = thermadynamic pressure, dimensionless 
P = node in typical cell  
r = position vector 
R = eigenvectors matrix 
s = independent variable 
SM = measure the local smoothness 
t = time, dimensionless 
u = internal energy, dimensionless 
U = vector of field variables 
vi = fluid velocity components, dimensionless 
V = unit vector 
wi = mesh velocity components, dimensionless 
Wij = monitoring function 
xi = spatial coordinates, dimensionless 
Greek Symbols 
α = angle of attack, deg. 
β = weight parameter for cell area control 
δ = weight parameter for control local orthogonality and 

local smoothness 
δij = Kronecker delta 
γ = ratio of specific heats 
Λ  = eigenvalues matrix 

ρ = dimensionless specific mass 
Subscripts 
∞  freestream flow 
max maximum value 
min minimum value 
s stagnation value  

The Numerical Scheme 

The governing equations for inviscid compressible flows with 
no source term, using an ALE description (Löhner, 2001), may be 
written in their dimensionless form (Bono, 2004) as:  
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where U and Fi are vectors containing field and flux variables, 
respectively. In these expressions, vi and wi are the fluid and mesh 

velocity components in the direction of the spatial coordinate xi, 
respectively, ρ is the specific mass, p is the thermodynamic pressure 
and e is the total energy. Finally, δij is the Kronecker delta and t is 
the time coordinate. Equation (1) is complemented by the equation 
of state for an ideal gas, which is given by:  

 
( )1p uγ ρ= −  (3) 

 
where γ is the ratio of specific heats at constant pressure and 
volume, and u is the internal specific energy. The problem is 
completely defined when initial and boundary conditions are added 
to these equations. 

The system of partial differential equations is solved with an 
explicit one-step Taylor-Galerkin scheme using the finite element 
method (Donea, 1984; Löhner, 2001). An isoparametric eight node 
hexahedrical element is used and the corresponding element 
matrices are obtained analytically employing one-point quadrature. 
Integration of element matrices with uniform reduced integration 
may lead to the appearance of Hourglass modes, which can modify 
the physical solution. To control these spurious modes the “h-
stabilization” method (Christon, 1997) was used. This code has been 
validated against analytical and experimental results for several 
compressible flows (Kessler and Awruch, 2004; Bono, 2008). 

Mesh Adaptation 

In general, the adaptive process with nodal redistribution 
consists of three main steps. The first step is to define an 
appropriated monitoring function, which is representative of 
important solution features. The second, and probably the most 
crucial step, is to redistribute the nodes in the computational domain 
in a manner which is consistent with the aforestated monitoring 
function. It is crucial to maintain the geometric fidelity of solid 
boundaries during the redistribution process. Mesh quality, 
measured by orthogonality and smoothness, must be also 
maintained. In the third step the metric terms are modified to reflect 
mesh movement with a consistent node speed to re-evaluate the 
flow variables at the new mesh using an appropriate scheme. 

Monitoring Function 

A key issue in this adaptive mesh strategy based on nodal re-
allocation is to find a proper monitoring function to control the mesh 
properties and interconnect the mesh and physical solution. A 
common practice consists to use the numerical solution u and/or its 
derivatives ( ,x xxu u ), so that the mesh is concentrated in regions 
where the solution changes rapidly. 

While it is reasonable to use the gradient of numerical solutions 
to identify the regions requiring high resolution, a more natural and 
general approach is to use error distribution since it measure directly 
the resolution of the numerical solution. In this work, the monitoring 
function is based on the second derivative of the generical variable u 
and the error is equidistributed over the edges. The specific mass is 
the variable used to estimate the error because the detection of 
shocks waves are of primary interest.  

Error Estimation 

Assume a one-dimensional problem, in which the specific mass 
ρ is approximated by hρ  using piecewise linear interpolation 
functions. An optimal mesh is obtained when the Root-Mean-Square 
error is equidistributed over the elements, that is (Peraire et al., 
1987):  
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where C is a specific tolerance and h is the element length. For a 
three-dimensional problem, the second derivative of the specific 
mass approximated by hρ  with respect to a direction defined by the 
versor V is given by:  
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where H is the Hessian matrix. As hρ  is interpolated with linear 
shape functions, the second derivative of hρ  at a node I can be 
calculated using a weak formulation (Ait-Ali-Yahia, 1996) 
obtaining:  
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where 1−M  is the inverse of the mass matrix, which is given by:  

 

( ) 1
1
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where φ  is a vector containing the shape functions, IΩ  is the 
volume of all the elements sharing the node I and IΓ  is the 
correspondign boundary.  I varies from 1 until the total number of 
nodes in the finite element mesh, nj represents the cossine of the 
angle formed by a normal axis to IΓ  with the coordinate axis xj. 
The first derivatives of  hρ  are nodal values that can be obtained 
using a smoothing process based in the mean square method. In Eq. 
(6) as well as in the smoothing process to obtain values of h jxρ∂ ∂  
at the nodes, the lumped mass matrix may be used instead of the 
consistent mass matrix, indicated in Eq. (7). 

The matrix H can be diagonalized and, in this case, Eq. (5) may 
be written as follows:  

 
2
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where Λ  is a diagonal matrix containing the eigenvalues of H and 
R contains the corresponding eigenvectors. In order to use H to 
define a metric, it can be substituted by H , where the absolute 
values of the eigenvalues are taken. Then, the following expression 
is obtained:  

 
2
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V H V V H V
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where the modified Hessian matrix H  is given by:  

 
T= R RH Λ  (10)  

 
In Eq. (10), Λ contains the absolute values of the eigenvalues. 

The criterion of mesh adaptation for a one dimensional case, taking 
a uniform distribution of the error over the element domain, is given 
by Eq. (4). Extending this concept to a 3-D case, the following 
equivalent equation may be written:  

2h C=TV H V  (11)  
 
In the current approach, the error, is equidistributed over the 

mesh edges, where h is the Euclidian length of an element edge, and 
the second derivative of hρ  is now given by Eq. (9), where V is a 
unit vector that support this specific edge. An optimal mesh would 
be defined as the one in which all the edges have the same length 
(equal to C ) in the Riemann metric defined by TV H V  (see Ait-
Ali-Yahia, 1996). Thus the edge-based error estimate is computed 
evaluating numerically the following expression on each edge:  

 

( ) ( )( )
1
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0

h
Th

j i j id s ds⎡ ⎤= − −⎢ ⎥⎣ ⎦∫ x x H x x  (12)  

 
where j i h− =x x  and s is an independent variable, such that 

0 s h≤ ≤ .  

The Mesh Movement 

Although the formulation will be presented for two-dimensional 
(2-D) flows, because it is easier to understand how the algorithm 
works, this method was implemented to deal with three-dimensional 
(3-D) flows. Brackbill and Saltzman (1982) formulated the grid 
equations in a variational form to produce satisfactory mesh 
concentration while maintaining relatively good smoothness and 
orthogonality. In order to improve computational efficiency and 
reliability of this method Carcaillet et al. (1986) and Kennon and 
Dulikravich (1986) adopted a more heuristic formulation for the 
local adaptation problem. Consider a typical cell, formed by four 
elements in the two-dimensional case (in a 3-D case the cell would 
be formed by eight elements), as it is shown in Fig. 1. Pij = P ( xij ) 
is a common node belonging to the four elements forming the cell, 
which is connected to the other nodes by straight segments defined 
as position vectors ri,j.  

 

 

 
Figure 1. Typical cells defined for two and three-dimensional cases. 

 
The four position vectors with origin at the node Pij are used to 

form four scalar products, which are squared and summed to control 
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orthogonality, ORij, of the typical cell. The dot products are chosen 
so that their sum is zero if the grid is locally orthogonal. A measure 
quantifying the local smoothness, SMij, is given by the sum of the 
squared values of the differences between the areas of elements 
forming the typical cell. The sum will be zero if all adjacent 
elements have the same area. 

Then, local orthogonality ORij and local smoothness SMij are 
given by:  

 

( ) ( ) ( )
( )

2 2 2

1, , 1 , 1 1, 1, , 1

2

, 1 1,

ij i j i j i j i j i j i j

i j i j
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where Ak is the area of each element k forming the typical cell. The 
cell area control of a typical cell is calculated with the following 
expression:  

 

ij ijW d=  (15)  
 

where Wij is a monitoring function, which gives positive values and 
is evaluated at the node Pij. The choice of the weight function Wij in 
the volume control is a very important aspect, because this 
parameter indicates where the adaptation process will take place. It 
may be observed that greater values of Wij correspond to decreasing 
values of the typical cell area (or volume in a 3-D case) and vice 
versa. 

The global objective function F is obtained by a weighted linear 
combination of local measures of mesh quality (local orthogonality 
and local smoothing) and the local volume control of a typical cell. 
Then, the global objective function to be minimized is given by:  
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with 0 1δ≤ ≤  and 0 1β≤ ≤ , where δ and β are weighting 
parameters, while ORmax and SMmax are the largest values of ORij 
and SMij, respectively, in order to ensure values of the same order in 
Eq. (16); l and m are the number of nodes in directions i and j, 
respectively. In Eq. (16), dij is obtained by the sum of the squared 
values of the edge-based error-estimate hd , given in Eq. (12), for 
all the element edges having Pij as a common end. Experiences 
show that 1.0β =  and 0.5δ =  are suitable values of the weighting 
parameters. The conjugated gradient method, proposed by Fletcher-
Reeves (Press et al., 1992), is used to vary the node positions until 
the non-linear objective function ( ){ }:1 , 1ij i l j m≤ ≤ ≤ ≤F x  is 

minimized. Restrictions are prescribed to the motion of the nodes 
belonging to the boundaries surfaces. 

For the three-dimensional case, orthogonality and smoothness 
measures used by Kennon and Dulikravich (1986) were adopted. 
The corresponding expressions are given by the following 
respective expressions:  
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An ALE description (Löhner, 2001) was used together with the 

adaptive process. The velocity components of the nodes, originated 
by the re-allocation of a specific mesh node from its position at time 
level m to a new position at m+1, are given by i iw x t= ∆ ∆  
( 1,2,3i = ), where ix∆  are the components of node displacement 
and t∆  is the time interval. 

The new nodal coordinates are updated according to the 
expression, 1m m

i i ix x xθ+ = + ∆ , where θ  is a relaxation coefficient 
which varies between 0 and 1. Boundary nodes are free to move on 
the corresponding boundary plane or surface. 

Both, flow solver and mesh adaptation procedures, are placed in 
an interative loop, and the algorithm consists of the following steps: 

 

1) Initialize the field and apply the flow solver using an initial 
mesh; 

2) IF the adaptive process will be applied (it is an option 
determined by the user); 

(a) - Compute H  using Eq. (10); 
(b) - Compute the edge-base error estimate, d,  using Eq. (12) 

and minimize the global objective function, given in Eq. (16); 
(c) - Re-allocate de nodes of the mesh and compute the mesh 

velocity components; 
(d) - Compute the flow variables on the updated mesh using the 

flow solver; 
3) Steps (a) to (d) is repeated NADAP times, where NADAP 

represents the number of application of the adaptation procedure and 
it is given by the user; 

4) Stop if a satisfactory steady state is obtained.  

Numerical Examples 

For all test cases investigated here, the adaptive process was 
applied when the convergence criterion was reached (the tolerance 
adopted for the residue of the specific mass was 10-5). The CPU 
time required by the adaptive process is negligible (less than 1%). 
Finally, it is assumed that γ , given in Eq. (3), is equal to 1.4.  

Analytical Test Case 

A simple analytical test case is used to demonstrate the 
effectiveness of the nodal re-allocation strategy and the relationship 
between the weighting parameters to improve the mesh quality in 
the mesh adaption process. On the unit square 
{ }0 1.0, 0 1.0x y≤ ≤ ≤ ≤ , the monitoring function is defined as:  

 

( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

2 2

2 2

2 2

( , ) 1000 exp 20 0.2 0.2

800 exp 50 0.6 0.7

800 exp 50 0.8 0.2

W x y x y

x y

x y

⎡ ⎤= − − + − +⎣ ⎦

⎡ ⎤+ − − + − +⎣ ⎦

⎡ ⎤+ − − + − +⎣ ⎦

 (19)  

 
An adaptive mesh is expected to concentrate nodes around three 

circles. The domain is discretized using a uniform mesh with 20 x 
20 x 1 elements. Figure 2 shows the relationship between the 
weighting parameters to obtain mesh regularity, local orthogonality 
and mesh adaptation employed in Eq. (16). The following values 
were adopted for the mesh adaptation and mesh quality parameters: 

1.0 0.0β δ = , 1.0 0.5β δ =  and 1.0 1.0β δ = . 
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The mesh obtained with 0.0δ = , Fig. 2(A), shows that the 
variation of the size in neighbor elements is very smooth. When 

1.0δ = , Fig. 2(C), the influence of this parameter in the mesh 
orthogonality can be observed. Note that elements located in a 
region surrounded by the circles are highly distorted and the 
smallest elements are greater than those obtained with 0.0δ = . It is 
interesting to note that 0.50δ =  leads to a significant improvement 
in the adapted mesh. As was mentioned previously, 1.0β =  and 

0.5δ =  are suitable values to control mesh quality.  
 

 
Figure 2. Mesh for different weighting parameters ( )β δ . Cases: A 
(1.0/0.0), B (1.0/0.5) and C (1.0/1.0). 

Supersonic Flow over a Circular Cylinder 

A circular half-cylinder with a dimensionless value of the radius 
equal to 1 is placed into a steady supersonic flow with a Mach 
number equal to 3.0. The domain { }1.50, 3.20AB CD= =  and 
boundary conditions of this problem are shown in Fig. 3. For this 
blunt-body problem a relatively coarse mesh is used, with 4 
elements in the normal direction to the plane x-z and 25 x 25 
elements distributed uniformly in both, radial and circumferential 
directions. Along the inflow surface AD all variables are fixed; zero 
normal velocity is imposed at the cylinder wall (BC) and along CD 
all variables are left free. Finally, symmetry boundary conditions are 
imposed along AB. 

The specific mass distribution along the stagnation line and final 
mesh are presented in Fig. 4, where it is observed the difference 
between the gradients obtained with the initial and final mesh. The 
distribution exhibits smooth behavior without instability in the 
stagnation region. The specific mass distribution on the stagnation 
line and the stand-off distance of the shock are in good agreement 
with numerical results obtained by Le Beau and Tezduyar (1991).  

 

 
Figure 3. Geometric and boundary conditions to simulate the flow around 
a circular cylinder. 

 
 

 
Figure 4. Specific mass distribution on the stagnation line and final mesh 
over a circular cylinder. 

 
The final mesh is obtained after 4 adaptations. It can be 

observed that elements and nodes are concentrated in the region 
where strong shock wave exists. Note that elements located near the 
surface AB preserve their edges in the circumferential and radial 
directions because the mesh topology in this zone follows 
approximately the bow shock. On the other hand, near the outflow 
region (surface CD) elements are distorted, taking the appearance of 
rhombus because the bow shock switches from the circular curves 
family to the radial curves family along a transition region.  

Supersonic Flow over a Bump 

In this example, the current methodology is applied to a steady 
supersonic flow over a bump arc that is well documented in the 
paper of Le Beau et al. (1993). The bump arc is placed on the floor 
of a frictionless wind tunnel and it is describe by:  

 

( )( )20 .04 1 4 1.5y x= − −     with    1 2x≤ ≤  (20)  

 
The bump lies in the center of the bottom boundary of the 

domain, which is extended 1 unit in front and behind the bump, and 
1 unit above. The freestream has a Mach number equal to 1.4 and a 
dimensionless specific mass equal to 1.0. An oblique shock forms at 
the leading edge, as expected, and it is reflected at the upper-
symmetry boundary. This case was computed using a mesh with 
92 x 30 x 4  elements. The final mesh is presented in Fig. 5 and the 
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pressure contours in the neighborhood of the bump for the initial 
mesh and the final mesh is shown in Fig. 6. The final mesh require 6 
levels of adaptation respectively and it may be observed that the 
elements are aligned with the shock wave maintaining a high quality 
mesh. 

 The specific mass distribution along the center of the channel is 
shown in Fig. 7. It can be observed that the solution obtained with 
the initial mesh is close to the results obtained by Hendriana and 
Bathe (2000) with reference to the position of the shock wave as 
well as its intensity. Results obtained by Le Beau et al. (1993) are 
not shown in Fig. 7, but they are similar to those obtained in the 
present work, excepting in the trailing edge region, where some 
small differences were observed. With the adaptation procedure 
proposed in this work, a decrease in the shock thickness and an 
increase in its intensity were obtained with respect to the results 
presented using the initial mesh and with respect to those given by 
the aforementioned references, while the position of the shock wave 
was preserved. Le Beau et al. (1993) used a fine mesh with 
184 x 60  bi-linear quadrilateral elements and Hendriana and Bathe 
(2000) used a mesh with 15 x 46  parabolic quadrilateral elements. 

 

 
Figure 5. Final adaptive mesh over a bump. 

 

 
Figure 6. Initial and final distribution of pressure over a bump. 

 

 
Figure 7. Distribution of specific mass along the center of the channel. 

Supersonic Flow around a Sphere 

A steady supersonic flow past a sphere with a dimensionless 
value of the radius equal to 1 is considered in this example. Only a 
quarter part of the sphere is taken into account because of 
geometrical symmetry. The freestream flow has a Mach number 

3.0M ∞ = . The boundary conditions are the same employed in the 
case of the circular cylinder. The domain is discretized using a mesh 
with 8424 elements containing 9625 nodes. In Fig. 8 the initial and 
final meshes are shown. Only the part of the final mesh 
corresponding to the plane x - y is depicted in this figure. Note that 
near the outflow region, the mesh has the same behavior as the case 
of the circular cylinder.  

 

 
Figure 8. Initial mesh and final mesh contained in the plane x-y. 

 
A plot of the convergence history for the solution using 4 times 

the mesh adaptation procedure is presented in Fig. 9. This figure 
presents the variation of the residue of the specific mass verified in 
the flow field. The jumps in the curve occurs when the mesh is 
adapted, as a consequence of the re-evaluation of the solution of the 
old mesh, this re-evaluated solution is used in the new adapted 
mesh.  

 

 
Figure 9. Convergence history for the supersonic flow around a sphere. 

 
The distributions of the Mach number for both meshes are 

shown in Fig. 10; it is observed that the adaptive method improves 
results in regions with strong gradients, however near the outflow 
region is less accurate because the initial mesh is relatively coarse in 
this region.  
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Figure 10. Comparison of the Mach number for both meshes. 

 
An analytical expression to obtain the value of the pressure at 

the stagnation point ( )sp  is given in the  Report 1135 (1953) of the 
National Advisory Committee for Aeronautics (Ames Research 
Staff). With this expression the corresponding values is 

12,06sp p∞ = , while 12,33sp p∞ =  was obtained with the 
present numerical simulation. 

The pressure and Mach number distributions in the stagnation 
line are presented in Fig. 11. It is clear that the shock computed on 
the adapted mesh is better than those obtained with the initial mesh. 
One also notes the absence of oscillations before and after the 
shock. The stand-off distance D may be calculated analytically by 
the expression given by Ambrosio and Wortman (1962), which is 
referenced in Argyris et al. (1990). The corresponding value is 

0.210D = , while 0.234D =  was obtained with the present 
numerical simulation. 

 

 
Figure 11. Pressure distribution in the stagnation line. 

Conclusions 

The development of a simple and computationally effective 
methodology to adapt finite element meshes to simulate 
compressible flows with strong shock waves was the main objective 
of this work. The nodal re-allocation adaptivity, used in this study, 
starts from an initial mesh and the grids are concentrated in the 
desired region without any grid tangling. The method is 
characterized by the error estimation measured in the element edges 
using a Riemann metric, which is defined employing the Hessian 
matrix. An optimization procedure is used to preserve as well as 
possible mesh orthogonality, smoothness and equidistribution of the 

error. Good results for supersonic flows were found, showing that 
they were improved using the adaptive procedure with respect to 
those obtained with the initial mesh. It is important to highlight that 
meshes with good quality were attained for the four cases studied 
here. 

The effectiveness of this method to improve the solution is 
limited by the number of nodes in the initial mesh. Nevertheless, 
this r-method should ideally complement the h-method. Moving 
mesh methods are better to reduce dispersive errors in the vicinity of 
high gradients, while local refinement methods can, in principle, add 
enough nodes to solve any fine scale structure. We expect that 
combining mesh movement with local refinement generally will not 
only make the global error control possible for the r-method, but 
also avoid the need of excessive local refinements, and produce 
mesh that are better aligned with and closely follow the solution 
features.  

Acknowledgments 

The development of this work has been supported by the agency 
CAPES by means of a master´s fellowship. 

References 
Ait-Ali-Yahia, D., 1996, “A Finite Element Segregated Method for 

Thermo-Chemical Equilibrium and Nonequilibrium Hypersonic Flows using 
Adated Grids”, Ph.D. Thesis, Deparment of Mechanical Engineering, 
Concordia University, Canada, 167 p. 

Ait-Ali-Yahia, D., Habashi, W.G. and Tam, A., 1996, “A Directionally 
Adaptive Methodology Using an Edge-Based Error Estimate on 
Quadrilateral Grids”, International Journal for Numerical Methods in 
Fluids, Vol. 23, pp. 673-690. 

Ait-Ali-Yahia, D. and Habashi, W.G., 1997, “Finite Element Adaptive 
Method for Hypersonic Thermochemical Nonequilibrium Flows”, AIAA 
Journal, Vol. 35, pp. 1294-1302. 

Ames Research Staff, 1953, “Report 1135: Equations, Tables, and 
Charts for Compressible Flow”, National Advisory Committee for 
Aeronautics. 

Argyris, J., Doltsinis, I.S. and Friz, H., 1990, “Studies on Computational 
Reentry Aerodynamics”, Computer Methods in Applied Mechanics and 
Engineering, Vol. 81, pp. 257-289. 

Bono, G., 2004, “Adaptação via Movimento de Malhas em Escoamentos 
Compressíveis” (in Portuguese), M.Sc. Thesis, PROMEC, Universidade 
Federal do Rio Grande do Sul, Brazil, 126 p. 

Bono, G., 2008, “Simulação Numérica de Escoamentos em Diferentes 
Regimes utilizando o Método dos Elementos Finitos” (in Portuguese), 
Doctoral Thesis, PROMEC, Universidade Federal do Rio Grande do Sul, 
Brazil, 183 p. 

Brackbill, J.U. and Saltzman, J.S., 1982, “Adaptive Zoning for Singular 
Problems in Two Dimensions”, Journal of Computational Physics, Vol. 44, 
pp. 342-368. 

Cao, W., Huang, W. and Russell, R.D., 1999, “An r-Adaptive Finite 
Element Method Based Upon Moving Mesh PDEs”, Journal of 
Computational Physics, Vol. 149, pp. 221-244. 

Carcaillet, R., Dulikravich, G.S. and Kennon, S.R., 1986, “Generation of 
Solution-Adaptive Computational Grids Using Optimization”, Computer 
Methods in Applied Mechanics and Engineering, Vol. 57, pp. 279-295. 

Christon, M.A., 1997, “A Domain-Decomposition Message-Passing 
Approach to Transient Viscous Incompressible Flow Using Explicit Time 
Integration”, Computer Methods in Applied Mechanics and Engineering, 
Vol. 148, pp. 329-352. 

Donea, J., 1984, “A Taylor-Galerkin Method for Convective Transport 
Problems”, International Journal for Numerical Methods in Engineering, 
Vol. 20, pp. 101-119. 

Gnoffo, P.A., 1983, “A Finite-Volume , Adaptive Grid Algorithm 
Applied to Planetay Entry Flow Fields”, AIAA Journal, Vol. 21, No. 9, pp. 
1249-1254. 

Hawken, D.F., Gottlieb, J.J. and Hansen, J.S., 1991, “Review of Some 
Adaptive Node-Movement Techniques in Finite-Element and Finite-
Difference Solutions of Partial Differential Equations”, Journal of 
Computational Physics, Vol. 95, pp. 254-302. 



Gustavo Bono and Armando Miguel Awruch 

196 / Vol. XXX, No. 3, July-September 2008 ABCM 

Hendriana, D. and Bathe, K.J., 2000, “On a Parabolic Quadrilateral 
Finite Element for Compressible Flows”, Computer Methods in Applied 
Mechanics and Engineering, Vol. 186, pp. 1-22. 

Kennon, S.R. and Dulikravich, G.S., 1986, “Generation of 
Computational Grids Using Optimization”, AIAA Journal, Vol. 24, pp. 1069-
1073. 

Kessler, M.P. and Awruch, M.A., 2004, “Analysis of Hipersonic Flows 
Using Finite Elements with Taylor-Galerkin Scheme”, International Journal 
for Numerical Methods in Fluids, Vol. 44, pp. 1355-1376. 

Le Beau, G.J., Ray, S.E., Alibadi S.K. and Tezduyar, T.E., 1993, 
“SUPG Finite Element Computation of Compressible Flows with the 
Entropy and Conservation Variables Formulations”, Computer Methods in 
Applied Mechanics and Engineering, Vol. 104, pp. 397-422. 

Le Beau, G.J. and Tezduyar, T.E., 1991, “Finite Element Computation 
of Compressible Flows with the SUPG Formulation”, FED-Advances in 
Finite Element Analysis in Fluid Dynamics, ASME, Vol. 123, pp. 21-27. 

Löhner, R., 2001, “Applied CFD Techniques. An Introduction based on 
Finite Element Methods”, John Wiley & Sons Ltd., England, 366 p. 

Nakahashi, K. and Deiwert, G.S., 1987, “Self-Adaptive Grid Method 
with Application to Airfoil Flow”, AIAA Journal, Vol. 25, No. 4, pp. 513-
520. 

Peraire, J., Vahdati, M., Morgan, K. and Zienkiewicz, O.C., 1987, 
“Adaptive Remeshing for Compressible Flow Computations”, Journal of 
Computational Physics, Vol. 72, pp. 449-466. 

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., 
1992, “Numerical Recipes in Fortran 77”, Cambridge University Press, 
England, pp. 413-417. 

Tam, A., Ait-Ali-Yahia, D., Robichaud, M.P., Moore, M., Kozel, V., 
Habashi, W.G., 2000, “Anisotropic Mesh Adaptation for 3D Flows on 
Structured and Unstructured Grids”, Computer Methods in Applied 
Mechanics and Engineering, Vol. 189, pp. 1205-1230. 

 


