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On the Significance of Higher Order 
Differential Terms in Diffusion 
Processes 
This paper deals with the analysis of diffusion coupled with temporary retention 
motivated by the challenge to solve the problem of population spreading. Retention may 
be associated to colonization of the occupied territory in this case. The discrete 
approach was selected to deal with this problem due to its relative simplicity and 
straightforward mathematical treatment. Two types of problems are analyzed namely: 
symmetric spreading with temporary retention, and propagation with temporary 
retention. It is clearly shown that higher order differential terms must be included in the 
governing equations of diffusion and propagation to represent the temporary retention 
effect. Specifically third and fourth order terms are associated to the retention effect in 
propagation and diffusion processes respectively. Control parameters regulating the 
relative influence of the diffusion and the retention terms in the governing equations 
come up naturally from the analysis. After the appropriated operations the finite 
difference equations reduce to partial differential equations. The control parameters are 
kept in the partial differential equations. These parameters are essential in the 
governing equations to avoid uncontrolled accumulation of particles due to the 
retention effect. The diffusion-retention problem appearing in several physicochemical 
problems are governed by the same equations derived here. The current literature refers 
to several types of diffusion-retention problems, but all solutions assume the classical 
second order equation as the basic reference. A short analysis of the equilibrium 
conditions for diffusion-retention problems with a source helps to show the coherence of 
the theory. In order to explore the potentialities of the discrete approach the problem of 
asymmetric distribution is also analyzed.  
Keywords: discrete mathematics, diffusion, mathematical modeling, temporary retention 
  

 
 

Introduction
1
 

The advance of technological and scientific knowledge 

introduced new and sophisticated physicochemical processes to deal 

with new materials and new design concepts. Phenomena that were 

of little importance for the solution of the usual engineering 

problems cannot be disregarded anymore when dealing with modern 

engineering challenges.  

Some phenomena that would be satisfactorily dealt with the 

continuum mechanics approach need now to be analyzed at 

nanoscales. This new trend fostered the search for the 

correspondence between the responses in terms of macro-variables 

and continuum mechanics on one hand and micro-variables and 

micro-mechanics on the other hand. Multiscale analysis, for 

instance, is a relatively new modeling methodology intended to 

make the bridge between the state variables at microscales and the 

corresponding ones at macroscales.  

The new technological achievements require quick solutions to 

questions that are not yet completely understood. Pushed to solve a 

new problem, which is not seldom, the first approach is to apply the 

closest classical theory with some modification that hopefully would 

introduce the appropriate corrections. Experimental tests are then 

used to estimate the values of the critical parameters. This procedure 

may fail to provide a precise interpretation of the real phenomenon. 

The experimental results turn to be very restricted to specific 

problems and the results cannot be extrapolated to other similar 

cases.  

The retention effect associated to particle diffusion is an 

example of such a case where the classical theory is not adequate. 

To the best of our knowledge, theories appearing in the current 

literature addressing this question assume the well-known second 

order parabolic equation as the basic governing equation of the 
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dispersion process with retention. To solve the problem posed by the 

retention effect either some extra terms are added to the fundamental 

diffusion equation or the diffusion coefficient is expanded to 

introduce higher order terms. It is important to remark that when we 

talk about retention throughout this paper we are referring to 

temporary retention in contrast with permanent retention which may 

be simulated by the introduction of a sink in the governing 

equations. 

This paper shows that a simple discrete approach may provide 

fundamental clues to define a consistent constitutive law adequate to 

take into account the retention effects in the diffusion process. 

Indeed, the finite difference equation modeling the retention-

diffusion process, after taking the appropriate limits when the time 

interval and cell size tend to zero, is reduced to a linear fourth order 

partial differential equation provided that the problem is restricted to 

processes in thermodynamic equilibrium, the medium is 

homogeneous, the material coefficients are constant, and the 

dependent variable is smooth enough with respect to space and time. 

The new governing equation for the retention-diffusion problem 

may indeed be a fundamental reference for the determination of a 

general constitutive equation for the retention-diffusion 

phenomenon. For propagation processes the introduction of 

temporary retention requires a higher order term, a third order 

differential term as will be shown.  

The presence of these new terms are associated with new 

physical constants that have a clear meaning and have to be 

evaluated with the help of experimental results. The theory 

developed here proposes a reliable model and therefore makes the 

experimental approach much more consistent. We have introduced 

also a classical example dealing with diffusion plus advection just to 

show how the discrete approach may be used to derive a large 

spectrum of evolution phenomena. 

It is also very helpful the additional information introduced by 

the discrete approach regarding the control parameters that weights 

the fractions subjected to diffusion or propagation and the 
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complementary fractions subjected to temporary retention. We 

concentrate our attention on the discrete approach motivated by the 

population dynamics problem. The detailed derivation of 

intermediate algebraic expressions is left to the appendix. The main 

text is restricted to the fundamental rules and the respective 

governing equations. 

Nomenclature 

B = source intensity  

k = mass fraction   

K1 = mass transportation speed, wave speed 

K2 = diffusion coefficient 

K3 = retention coefficient for mass propagation 

K4 = retention coefficient for diffusion processes 

L0, L1  = length scale factors   

pn   = mass contents of the nth cell for the discrete approach 

p = mass concentration for the continuum approach 

T0 = time scale factor 

Greek Symbols 

x = differential referring to the space variable 

t = differential referring to the time variable 

   = wave length  

ζ  = wave amplitude 

ω  = frequency 

ρR   = ratio source intensity/retention coefficient for the diffusion 

process 

ρD  = ratio source intensity/ diffusion coefficient 

ρK   = ratio retention coefficient for the diffusion process/ diffusion 

coefficient 

Symmetric Diffusion with Retention 

Consider the process depicted in Fig. 1. The rule governing the 

contents redistribution of each cell indicates that part of the contents 

denoted by kpn is retained in the nth cell and the exceeding part 

denoted by   21
n

pk  is evenly transferred to the neighboring 

cells at each time step. This means that the solution for this type of 

distribution varies slowly in time as compared with the solution of 

the classical diffusion problem. If k = 0 the problem is reduced to 

the classical Gaussian distribution. Translating this rule into 

algebraic expressions we get: 

 

 1 1 1

1 1

1 1
(1 ) 1             

2 2

t t t t

n n n np kp k p k p  
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Clearly, 0 ≤ k ≤ 1. The detailed algebraic operations are shown in 

the appendix B. It is important to notice that the equations must be 

worked out carefully, otherwise we could reach an equation that 

doesn’t reproduce the required solutions for the limits k = 1 and k = 0. 

Therefore, it is necessary to test the intermediate expressions at critical 

steps to make sure that the initial assumptions underlying equations 

(1.a,b) are preserved. This means that for k = 0 corresponding to no 

retention, the classical Gaussian distribution should be recovered and 

for the other limit when k = 1 the solution must be stationary, that is, 

the contents of each cell remain all the time constant. 
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Figure 1. Symmetric distribution with retention, γ = (1-k)/2. 

 

The detailed derivation of all the intermediate steps leading to 

the expression (2) below is presented in the appendix B. Rewriting 

Eq. (B-6) deduced in the appendix B, we have: 
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(2) 

where 
n

p2
 

and 
n

p4  stand for the second and fourth order 

differentials. Let us take:  
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where L0, L1 and T0 are scale factors and mLmLx
10

 ,  and 

2

0
mTt  are the cell size and the time interval respectively. 

Substituting the above relations in Eq. (2) we get:  

 

   
32 2 44

0 1

2 2 4

0 0

1
2

2 2

t t
t t

n n n
k O xp L p pLk

t T x x T x


       

    
       

(3) 

 

The scale factors L0 , L1 and T0 together with the parameter m 

provide very useful clues to define the sizes of space increment and 

time step for numerical integration of the finite difference equation.  

Note that with k = 0, Eq. (3) reduces to the classical diffusion 

problem, that is no retention, and with k = 1, Eq. (3) represents a 

stationary behavior, for the right hand side term of (3) vanishes. 

Consequently, the time rate of the contents variation equals zero for 

all t for all the cells.   

Calling 
0

2

02
2TLK  , 

0

4

14
4TLK  and assuming that p(x,t) is 

a sufficiently smooth function of x and t, we may take the limits as 

Δx→0 and Δt→0 to obtain: 
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The fourth order term with negative sign introduces the effect of 

retention. The coefficients K2 and K4 are generalized constants. It is 

important to keep the parameters (1- k) and k(1-k) explicitly in the 

equation, because they are control parameters expressing the 

balance between diffusion and retention when both are activated 

simultaneously. For k close to zero, diffusion prevails and for k 

close to one, retention prevails. The retention effect reaches its 

maximum for k = 0.5. Clearly, retention cannot be activated without 

diffusion, that is, while diffusion can take place without retention, 

the complementary process, that is, retention without diffusion is not 

possible. The generalization of the Eq. (4) to non-homogeneous 

media, where K2 and K4 are functions of x should keep the control 

parameters explicitly in the governing equation to take into account 

possible variations of the relative fractions of the diffusing particles 

and the temporarily trapped particles. That is, it is not advisable to 

incorporate (1-k) and k(1-k) in the coefficients K2 and K4.  

According to the derivation above, the effect of temporary 

retention cannot be consistently modeled without the presence of the 

fourth order differential term. It is also remarkable that the discrete 

approach shows that non-linear terms are not required to represent 

temporary retention at least for the very simple case of 

homogeneous media and constant control parameters. This means, 

as it should be expected, that temporary retention belongs to the 

class of primary phenomena and, in general, is not a secondary 

perturbation on the diffusion process. 

Asymmetric Diffusion without Retention 

Now let us assume that the contents inside a given cell migrate 

to the neighboring cells according to a non-symmetric rule. We 

assume in this case that there is no retention. That is: 
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where –1 < k < 1. For k = 0 the problem reduces to the classical 

diffusion formulation. After carrying out careful algebraic 

operations, as shown in the appendix C, the following expression is 

obtained (C-4):   
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 Let us take: 
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where L0, L1 and T0 are scale factors and mLmLx
10

 ,  

and mTt
0

  are the cell size and the time interval respectively. 

Introducing these expressions in Eq. (6) and taking the limit when 

0,0  tx , we get: 

 

 
x

p
k

T

L

x

p
k

T

L

t

p















0

0

2

2
2

0

2
1 1

2
 

 

Call 
0

2

12
2TLK   and 

001
TLK  to obtain: 
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The equation above reproduces the classical equation of 

diffusion with advection as it should be from the contents 

distribution rules introduced for the discrete approach. The finite 

difference formulation induces also here, as in the previous case, the 

preservation of the control parameter k explicitly in the governing 

equation. The parameter k controls the particle redistribution rate 

keeping the original meaning of the relative intensity of diffusion 

and propagation. For 1k  propagation prevails to the right or to 

the left, and for  0k  symmetric diffusion dominates. For the case 

presented here the flow velocity superposed to the diffusion process 

is equal to k, the unbalance factor in the redistribution process.  

Transport Phenomena with Retention  

Consider now the distribution law that combines partial 

retention with contents transfer to a single cell located on the right 

or on the left. That is, the exceeding fraction of the contents of a 

given cell n, left after retention, is transferred either to the cell n+1or 

to the cell n−1. This means that the motion has a preferred direction 

as indicated by the arrows in the Fig. 2.  

The analytical expressions of this law are easily written: 
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Figure 2. Evolution of the contents profile for one-sided propagation with 
partial retention. 
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where 0 ≤ k ≤ 1. 
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In order to keep the correct response for the intermediate steps for 

all values of the parameter k, it is necessary to take double time step 

(t+1) and (t−1) for the calculation of the difference in time, that is, the 

calculations will be executed with the difference  11   t

n

t

n
pp . After a 

sequence of algebraic operations as shown in the appendix D we 

arrive at the following equation (D-5): 
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Again this expression satisfies the conditions required for k = 0 

and k = 1. Now let us define: 
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where L0, L1 and T0 are scale factors, 
31

10
mLmLx   and 

mTt
0

  are element size and time interval respectively. 

Substituting the above relations in the finite difference equation and 

taking the limits 0,0  tx  we get: 

 

 
3 3

01

3

0 0

1
2

LLp p p
k k k

t T x T x

  
  

  
 

 

Calling 
001

TLK  and 3

3 1 02K L T  we finally get: 
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Clearly, Eq. (9) satisfies the phenomenological requirements 

imposed by the parameter k. For k = 0 the solution is stationary, and 

for k = 1 the solution falls in the category of a travelling wave. As in 

the previous problems, keeping the control parameters explicitly in 

the equation is helpful even for a continuum formulation.  

It is remarkable the presence of the third order derivative in the 

equation of propagation with temporary retention. This term is 

required if temporary retention is to be taken into account. The 

derivation of a constitutive law for this kind of phenomenon starting 

from the generalized analysis of a continuum is a difficult task. The 

clue given by the discrete approach is fundamental to develop a 

consistent constitutive law.       

Stability Analysis of the Diffusion-Retention Problem in the 

Presence of a Source 

In this section the main focus is the stability condition of the 

solutions of the symmetric retention-diffusion problem coupled with 

an external source. Consider the problem of symmetric diffusion 

with retention.  Let us assume that a certain amount 
t

n
g  is added 

to each cell after the contents redistribution is concluded at each 

time step. With this simplified approach Eq. (B-5) in the appendix B 

may be rewritten to give: 
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Carrying out the necessary operations to transform Eq. (10) into 

a corresponding partial differential equation, as shown in the 

appendix, we have: 
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 Now if the filling rate is proportional to pn that is: 
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n
t

Bptg 
 0

lim  

 

Expression (11) after taking the limit as Δx→0 and Δt→0 provided 

that the concentration p(x,t) is sufficiently smooth  reads: 
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Equation (12) leads to a more complete modeling of population 

dynamics problems. The fourth order derivative was shown to be 

associated to a temporary retention of the cell contents and the 

source term Bp represents the added population proportional to the 

actual population. Therefore, Eq. (12) is a very good approximation 

to describe the expansion of living species. The coefficient B 

represents the birth rate and K4 is proportional to the time needed for 

the offspring to mature till be ready to migrate. This approach is 

probably more realistic to represent population expansion than the 

classical second order diffusion equation.  

The stability condition can be obtained from the time variation 

of the solution of Eq. (12) as a function of the relative values of the 

coefficients K2, K4 and B. Suppose a perturbation in the 

neighborhood of an equilibrium state defined as: 
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Substituting this expression into Eq. (12) we have: 
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If the solution given by (13) grows beyond any limit, it will be 

called unstable. Clearly, the sufficient condition for an unstable 

solution is ω > 0. Then:  
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which leads to the following condition for λ real and positive: 
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where 
4

KB
R
  and 

2
KB

D
  represent respectively the 

influence of the retention and diffusion coefficients in the generalized 

diffusion equation for a given value of the source B. Introducing the 

new parameter 
24

KK
K
 , Eq. (14.a) reads: 
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For a given wave length λ, the solution will grow without any 

limit if the condition (14) is satisfied. Or alternatively, for the 

solution to be stable the wave length must fall within the interval 

given by:  
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Figure 3. Variation of the characteristic control parameters for Eqs. (4) and (9). 

 

Figure 3 shows the variations of the control parameters (1-k) and 

k(1-k) as a function of k, the relative fraction of the temporarily 

trapped particles. For k close to 1, that is, high retention levels, the 

diffusion and retention multiplying parameters of the respective 

differential terms in the governing equation are small. For k close to 

zero, retention is small and diffusion prevails. In this case, the 

parameters multiplying the diffusion differential term in the 

governing equation are not affected by the retention effect and the 

parameters multiplying the retention differential term are small. 

The stability conditions for the limiting cases of high retention 

activity k ≈ (1-ε), on one hand, and of low retention activity k ≈ ε, on 

the other hand, may be derived from Eq. (14.b). For the second case, 

k ≈ ε, the solution will be unstable if 1/ falls within the range given 

by the inequality (16) below: 
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Since ε is small the stability range depends mainly on the 

ratio
D

 . Large values of 
D

 tend to destabilize the process, since 

the stability range decreases. In other words, large values of the 

external source and small values of the diffusion coefficient make 

the system unstable. Note that the stability of the solution may be 

considered as independent of the retention coefficient K4 in the 

presence of the other coefficients.  

Now for processes with high retention activity we have k ≈ (1-ε). 

The wave length range that keeps the solution unstable can be 

determined with the help of Eq. (14.b):  
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Since ε is small, 1/λ is very large and the instability range for the 

wave length is very big. Stability will be reached only for very short 

wave lengths. Now a process with high retention rate reduces the 

diffusion flow. This is reflected on the control parameter 

multiplying the diffusion coefficient in the governing equation. But 

low diffusion also reduces the retention activity as shown by the 

variation of the respective control parameter in Fig. 3. Therefore the 

perturbation introduced by the retention of a high fraction of 

particles in the system turns the process highly unstable 

independently of the values of
R

 ,
D

 or
K

 . The particles coming 

from the continuous feeding by the source tends to accumulate 

creating a positive feedback process, since the source intensity is 

proportional to the concentration level.  

The maximum value of the control parameter multiplying the 

retention differential term in the governing equation is reached for 

k = 1/2. The system will be unstable if: 
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For small values of 
K

 the inequality (18) may be reduced to 

the approximate relation: 

  

1 1
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A similar analysis for the case of diffusion without retention 

leads to  

 

D
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The highest value of the perturbation wave length  
sup  that 

keeps the system stable in the presence of retention effect is 

approximately 70% of the highest wave length corresponding to 

stability for diffusion without retention, provided that 
K

 is small 

and the other coefficients are the same for both cases. This means 

that, if 
K

 is small, diffusion with retention effect is more sensitive 

to external perturbation with respect to stability conditions. 

Conversely, diffusion without retention effects is more robust, since 

the range of λ for which the system remains stable is larger for this 

case. This result may be useful in experimental observations and for 

detection of blocking effects in the diffusion process.  
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Conclusion 

The theory developed above has introduced new results for 

diffusion and propagation. Although population dynamics was the 

motivation to solve the diffusion-retention problem, the most 

important problems are related to technological applications in 

engineering, biology chemistry and physics. Some of the problems 

belonging to these fields can be found in Atsumi (2002), D’Angelo 

et al. (2003), Brandani et al. (2000), Eon et al. (1997), Huang et al. 

(1982), Kirkland et al. (1990), Liu et al. (2002), Mota et al. (2004), 

Muhammed (2004), Nicholson et al. (1998). All the authors try to 

model the retention effect through some proper expansion of the 

diffusion coefficient or by adding some correction term in the 

equation. But since a general theory that couples diffusion and 

retention was missing each particular problem requires a different 

treatment.  

This paper shows that a consistent theory including the 

phenomenon of temporary retention can be carried on with the help 

of a relatively simple discrete approach. The first argument that 

supports this statement is the straightforward derivation of the 

governing equation without any artificial manipulation or 

inappropriate theoretical corrections or additions. A second 

argument is the coherence with the expected results and the 

reduction of the diffusion coefficient intensity due to the retention 

effect. It is important to separate the meaning of the parameter k 

seen as a measure of the trapped particles and the role of k in the 

parameters (1−k) and k(1−k) controlling the phenomenological 

effectiveness of diffusion and retention respectively. For large 

fractions of trapped particles k≈1−ε the control parameter 

multiplying the diffusion term is very small, reducing the diffusion 

current. This conclusion can also be found in the literature, but what 

is peculiar for our approach is that the diffusion is reduced due to a 

parallel phenomenon originated by the interactions particle-

supporting medium whose effect is controlled by (1−k), leaving the 

material properties of the diffusion coefficient K2 unchanged. We 

don’t modify the actual material properties, retention is something 

in itself. The temporary retention effect in diffusion like processes, 

and propagation processes as well, introduces new differential terms 

in the classical equations.  

As far as retention is concerned, the derivation of the governing 

equations shows very clearly how the term   44

4
1 xpKkk  , for 

the symmetric diffusion case corresponding to the retention effect, 

comes into play. The multiplying parameter k(1−k) serves as control 

parameter weighing the influence of the retention term. This 

parameter avoids unrestrained growth of retention, that is, retention 

is only possible if diffusion is activated.  

The present analysis holds for k constant assuming any value in 

the interval [0,1] depending on the physics of the problem. The 

retention effect reaches a maximum for k = 0.5. For the general case, 

however, it is plausible to assume k = k(p), which makes the 

solution more complex. In this case, the medium may have a 

saturation limit for the temporary retention activity given by a 

particular level of concentration, say p*, such that for k = k(p*) 

retention ceases. The present derivation, however, doesn’t apply for 

this more general hypothesis.  

The equations obtained here serve as references for the 

investigation of more complex phenomena, where the coefficients 

K1, K2, K3 and K4 are space and time dependent as well as the 

relative fraction k of trapped particle.   

The relative roles of the terms in Eq. (12) on the growth process 

and on the stability conditions are also particularly important for 

modeling and simulation of social phenomena (Cavalli-Sforzza et 

al., 1993; Bettencourt et al., 2004; Gabay, 2007). Diffusion with 

retention incorporating the contribution of some external source, 

representing the addition of new ideas, may model satisfactorily the 

knowledge dynamics in a production chain (Bevilacqua et al., 

2005).  

We would like to recall that the fourth order term has been used to 

model several physical and biological phenomena (Barabási et al., 

1995; Myers et al., 1998; Mullins, 1957; Rubinstein et al., 1989; 

Schwartz et al., 2004). But to the best of our knowledge there is no 

reference of fourth order differential terms representing the temporary 

retention effect in the governing equations of an expanding 

population. It is possible to introduce fourth order terms by expanding 

Fick’s law (Cohen et al., 1981), but this approach requires the 

presence of non-linear terms in the differential equation, which is not 

necessary in the present theory, and furthermore doesn’t allow for the 

straightforward interpretation clearly shown here.  

When a new theory is proposed the question of validation 

always comes into play. Certainly, the theory needs to be tested 

against appropriated experimental results. But it is equally important 

to have in hands a plausible theoretical development such that the 

experiments can be better planned. We believe that the present paper 

may serve as a guideline to new experiments. The material constants 

have to be determined to fit the corresponding coefficients in the 

equations developed here. Since the present approach introduces 

retention coefficient as an independent parameter characterizing 

explicitly the retention effect, it is expected that it represents a 

generalized interaction coefficient. That is, this new material 

constant should apply for a rather large spectrum of similar 

phenomena where diffusing particles interacts with the supporting 

medium, independently of the ongoing underlying phenomenon at 

microscales.    

The mass transport in the positive x-direction leads also to very 

interesting result. Indeed the third order differential term makes the 

governing equation very similar to the famous Korteveg-deVries 

equation. Although the sign of this term entering the equation 

introduced here is negative, it is possible that the scattering effects 

are similar.  

A final word now about the importance of multidisciplinary 

interaction among scientists and engineers coming from different 

knowledge background. Here a problem motivated by population 

dynamics could develop into a very rich conjecture about a set of 

very important questions raised by the developing technologies. 

Certainly, the problem of symmetric diffusion with retention under 

continuous feeding supplied by an external source as given by Eq. 

(12) represents much better the real evolution of living species on a 

substratum, considering reproduction and the maturation period of 

the infant population. But the relatively simple solution of the 

expanding population raised much more complex questions dealing 

with physicochemical phenomena. Nevertheless, the most 

fundamental concepts suggested by the population dynamics must 

be sustained in developing a more elaborated theory. This is another 

example that multidisciplinary collaboration usually converges for 

surprisingly good achievements.    
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Appendix 

A. Definitions and elementary relations of finite difference 

mathematics 

A.1. Definitons 

Let f(x) be a function mapping the set of real numbers onto 

itself, that is 
RR :f

. All mapping considered in this paper is an 

isomorphism, that is, a one to one correspondence between points 

on the domain D(x) and on the image I(f(x)).  

The following notation will be used throughout this paper: 

   
kkk

xfxff 
   

The mth order difference of f(x) centered at a point xk is written 

as m

kf . The mth order difference is the finite difference 

approximation of the mth derivative,  m mf x x  , of f(x).  

We denote by O(Δx)    

j algebraic expressions multiplied by terms 

of order (Δx) 

j or higher*. For instance:      433
xbxax  , a 

and b finite. 

A function f(x) is said to belong to the class 
jC  –

jCxf )(
–

where j is either zero or an integer, if f(x) and all the derivatives 

  rr xxf 
, r = 1,2… j, are continuous. By definition 

   xfxxf  00

. 

 

A.2. Some important relations to be used in the finite 

difference approach 
 

1.  The difference of order m > 1 is given by: 
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The function {wmod2} returns the remainder of w divided by 2. 

The above expression for m

kf  holds if   mf x C , that is, that f(x) 

is continuous and all the derivatives up the order m as well. We also 

denote f(x) as sufficiently smooth to indicate that condition.  
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2. The Taylor expansion for sufficiently smooth functions is: 
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Similarly we have: 
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Now, for sufficiently smooth f(x) a similar expansion for the 

derivatives holds: 

 

 

 
2

21

2
                                      (A-3)k k kf f f

x x
x x x

  
    

  
 

 

Subtracting (A-1) from (A-2) and with (A-3) we have: 

 

                                                           
*
 Usually the expression O(Δx)

j
 denotes terms of the order (Δx)

j+1
 or higher. 
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Now, since the function f(x) is sufficiently smooth, the second 

derivative is finite and we may write: 
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Therefore, the differences centered at two neighboring points 

differ by terms of order (Δx)2. In general we have: 
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3. Another simple relation that will be helpful for the analysis is 

easily obtained with the help of the expressions deduced above: 
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B. Symmetric distribution with retention 

The fundamental rule of contents redistribution reads: 

 

 

 

1 1 1

1 1

1

1 1

(B-1a)

(B-1b)

1 1
(1 ) 1                     

2 2

1 1
 (1 ) 1                    

2 2

t t t t

n n n n

t t t t

n n n n

p kp k p k p

p kp k p k p

  

 



 

    

    

 

 

Reduction of the right hand side of equation (B-1b) to time t-1 

leads successively to: 

 

   

     

                           1
2

1
1

2

1
1

2

1

1
2

1
1

2

1
1

2

1

1
2

1
1

2

1

1

2

11

1

11

2

1

1

1

1

1

1

11

























































t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

pkpkkpk

pkpkkpk

pkpkkpkp

 
 

 

 

     1
4

1

)1(

1

2

111

2

2

1

1

1

1

121























t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

ppppk

ppkkpkp

 
 

Subtracting 
t

n
p

 given by (B-1a) we get successively: 
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Note that the left hand side of Eq. (B-3) represents the 

difference in time for the same cell n. In general, the time associated 

to the term t+k corresponds to t+k∆t, where ∆t is the time increment. 

All terms on the right hand side are referred to the same time t-1 and 

involve sum and difference operations of cell’s contents belonging 

to the interval n-2, n+2.  

The term 
t

n

t

n
pp 1

 on the left hand side is the first order 

difference with respect to the variable t. We denote this difference, 

as explained in the appendix A, with the notation: 
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There are two terms on the right hand side of Eq. (B-3) of the 

form 
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. These expressions are the 

second and fourth order differences respectively with respect to the 

space variable, centered at the cell K. As introduced in appendix A 

we denote those differences with the notations: 
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Equation (B-3) can now be written in terms of the first, second 

and fourth order differentials: 
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With the result (A-4) from the appendix A, the above expression 

reduces to: 
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Clearly, Eq. (B-5) satisfies the physical requirements imposed 

by the limits of k, namely, k = 0 classical diffusion and k = 1 

stationary solution. Rewriting (B-5) in terms of the appropriate 

ratios we get:   
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  C. Asymmetric distribution with no retention 

Let us examine the case of asymmetric distribution without the 

retention term. This case is introduced just for the sake of testing the 

method. For this case it is expected the presence of a transportation 

term. It is diffusion with advection. The basic redistribution rule 

reads: 
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Now, reducing the right hand side of equation (C-1b) to the time 

t-1 we get: 
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Proceeding as before – appendix B – to find the difference in the 

contents of a general cell n, following the rules (C-1a) and (C-1b) 

corresponding to the time step {t+1,t} we get successively: 
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Now, it is always convenient to test if the results obtained at 

each step reproduce the expected behavior according to (C-1a) and 

(C-1b). For this case, if k = 0 the solution should represent the 

classical diffusion equation, and for k = 1 the solution should 

reproduce a propagation towards the right and for k = –1 a 

propagation towards the left side. The following expressions 

confirm the expected behavior.  

For k = 0 the previous equation reduces to: 
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Taking the limit of the finite difference expression above, the 

classical diffusion equation is obtained as expected. For k = 1 we get:  
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Noting that the left hand side of this equation represents 

variation with respect to time and the right hand side variation with 

respect to space; we may say that the above expression stands for 

the equation of propagation. Recalling the relations deduced in the 

appendix A further manipulation of equation (C-3) leads to: 
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Now, introducing the notation defined above and rearranging the 

terms we get:  
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Or after introducing the appropriate ratios in the above expression 

with respect to ,x t  , we get: 
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D. One-dimensional propagation with retention 

 The rule to be followed for this particular case reads: 
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for 10  k . Using the same procedure as before, and performing 

the tests for the critical values of k, the following results are 

obtained successively:  
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Recall that according to A(4) we may write:  

 

       211111 2 tpppppppp t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n
 

 
  

Introduce this expression in (D-2) and rearrange the terms to 

obtain: 
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or 
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Clearly, for k = 0,  1 0t t

n np p   , except for terms of higher 

order, that is, we arrive at a stationary solution matching the results 

obtained with equations (C-1a,b,c). For k = 1 the right hand side 

term reads 
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. Now, according to the appendix A, relations 

(A-4) and (A-5), we have: 
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Therefore, for k = 1 we have: 
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The left hand side term means variation with respect to t and the 

right hand side term means variation with respect to x. Therefore 

except for terms of higher order the above expression indicates 

propagation exactly as required. Continuing with the algebraic 

manipulation we get: 
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Noting that: 
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and introducing this expression in (D-3) we get successively: 
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Performing again the test for k, we obtain: for k = 0, 

 1 0t t

n np p    stationary solution as required, and for k_=_1, 
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propagation solution 

as required. Rearranging the terms of (D-4) we get: 
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Recalling that 
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we may write: 
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Again, this expression satisfies the conditions required for k = 0 and 

k = 1. The differential form is then obtained: 
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