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Abstract— In this paper, a novel hybrid algorithm on beam pattern
synthesis of sparse arrays is proposed，which aims at minimizing
the peak sidelobe level (PSLL). Sparse arrays can provide higher
spatial resolution and relatively lower sidelobe than general arrays,
but it is necessary to solve the multi-constraint problem of
nonconvex nonlinear. Thus, we propose a Convex Improved
Genetic Algorithm (CIGA) that can adjust the positions and the
excitation coefficients of arrays to achieve the minimum PSLL. The
CIGA is an effective two-step approach to the synthesis of sparse
array. Firstly, Improved Genetic Algorithm is proposed, which is
suitable for beam pattern synthesis of sparse arrays. The Improved
Genetic Algorithm is adopted to adjust the positions of arrays to
achieve the local optimum PSLL, and then convex optimization
method is used to calculate the excitation coefficients in expectation
of reaching the minimum PSLL. Simulation results show that the
PSLL obtained by CIGA is about 5dB better than the published
methods in sparse linear arrays and prove that the CIGA is
superior to the published methods.

Index Terms— Sparse arrays, beam pattern synthesis, peak sidelobe level (PSLL),
convex optimization.

I. INTRODUCTION

Nowadays, antenna arrays can be widely applied to a system including radar, radio astronomy and

satellite communication system. Synthesis of antenna arrays has been researched for several decades.

Different from synthesis of single-antenna, synthesis of antenna arrays can be considered as a multi-

constraint optimization problem, which requires more advanced optimization methods [1]. In many

practical applications, antenna arrays often require low sidelobe. For example, the PSLL of uniform

Substrate Integrated Waveguide slot antenna arrays is close to 13.60- dB, but in common radar

system, the lower PSLL is often required [2]. Therefore, it is necessary to research an effective

method to depress the PSLL of antenna arrays.

Analyzing the expression of the array factor, we find that the element positions and amplitude and

phase of the excitation coefficients are the main factors affecting the radiation pattern of antenna

arrays. Generally, there are two categories of array layouts for unequally spaced arrays: Thinned

Arrays, where selecting the appropriate array elements from the equally spaced arrays [3]; sparse

arrays, where the array elements can be arranged arbitrarily within the array aperture [4]. It is clear

that the former reduce the degree of freedom of the optimization process, and cannot get the minimum
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PSLL, so the former is limited in scope of application. The latter can make the PSLL as low as

possible, but algorithm is relatively complex [5].

In the past few years, many synthesis methods of antenna arrays have been developed. The methods

of antenna arrays synthesis based on stochastic optimization algorithm are proved effectively, such as

genetic algorithm (GA) [6,7], differential evolution (DE) [8], particle swarm optimization (PSO) [9],

invasive weed optimization [10] and cuckoo search algorithm[11], dynamic parameters differential

evolution algorithm (DPDE) [12], improved chicken swarm optimization [13]. Such methods are

effective for optimizing amplitude and phase of the excitation coefficients of the equally spaced

arrays or optimizing the element positions with the uniform excitation coefficients, but it cannot

achieve the truly minimum PSLL when both the excitation coefficients and the element positions are

considered. An effective method has been proposed in [14], which can consider both the excitation

coefficients and the element positions simultaneously, but only the intelligent optimization algorithm

is used, which leads to the result without good stability. Some other synthesis techniques are much

more efficient than the stochastic optimization algorithms, such as compressive sensing based

synthesis approaches in [15] and [16], bayesian compressive sensing based synthesis approaches in

[17] and [18], the matrix pencil methods in [19] and [20], two step approach (TSA) [21]. However,

these methods reduce the degree of freedom of antenna arrays, leading to a local optimal solution

eventually. Recently, a better arrays synthesis method can be achieved while improving the

computational efficiency, utilizing a global optimization algorithm that applies the density tapper

technology [22].

In this paper, inspired by the idea that presented in [22], the novel convex improved genetic

algorithm (CIGA) is proposed for the non-uniform excitation coefficients arrays that the array

elements can be arranged arbitrarily within the array aperture. Firstly, the uniform excitation

coefficients are set under the condition of unchanged aperture of the array to obtain the optimal array

layout. Then, this problem is transformed into a convex optimization problem that can be processed

by Interior Point Method, Gradient Descent Method, or the like. Finally, the minimum PSLL can be

obtained and experimental results verify the effectiveness and outperformance of the proposed

method.

II. PROBLEM FORMULATION

A. Array factor
In the following discussion, we will consider the case of planar arrays because linear arrays can be

regarded as a special planar array. For example, there is an array of N radiation elements and the array

factor AF of planar arrays can be mathematically formulated as follows [23]:

( )

1
( , ) n n

N
j x u y v

n
n

AF u v w e b +

=

=å (1)

where ( , )n nx y is the coordinate of the nth array element, nw is a complex variable that represents the
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excitation coefficient of the nth array element. = 2b p l is the free space wavenumber, l is the

wavelength. 0 0sin cos sin cosu q f q f= - and 0 0sin sin sin sinv q f q f= - ( (0, ), (0,2 ))q p f pÎ Î . 0q

an 0f are the main beam pointing direction. The geometry and notation of planar arrays are

demonstrated in Fig. 1.

.
. .. . .

..... . . . .
...

.
.
.

..
. .
( , )n nx y

q

f

x

y

z

( , )N Nx y
xL

yL

Fig. 1. geometry and notation of planar arrays.

The radiation pattern of planar arrays can be expressed as [24]:

1, 2

2( , ) ( , )P u v AF u vW W = (2)

where 1W and 2W represent the main lobe region and sidelobe region, respectively.

B. Formulation description, NP-Hardness and convex optimization

1) Problem description
The purpose of this paper is to find an optimal set of the positions and amplitude and phase of the

excitation coefficients, so that the PSLL is as low as possible. Thus, this optimization problem can be

described as:

2

1

( , )

( , )

max ( , )
min  ( , , )=10lg

max ( , )
P u v
P u v

q f

q f

ÎW

ÎW
¡ w x y (3a)

. .   0 1ns t w< £ (3b)

0 0( , ) 1P u v = (3c)
,  N x N yx L y L= = (3d)

0 ,0  1,2, , 1n x n yx L y L n N£ < £ < = -， (3e)

where ( , )q f represents the visible area, [ ]1 2, , , Nw w w=w  is the excitation coefficients vector,

[ ]1 2, , , T
Nx x x=x  and [ ]1 2, , , T

Ny y y=y  are the coordinate vectors. Constraint (3b) gives the

ranges of excitation coefficient of the nth element. Constraint (3d) and (3e) indicate the size of the

array aperture. Constraint (3c) 0 0 0 0 0 0 0 0 1( sin cos , sin sin  ( , ) )u vq f q f q f= = ÎW represents normalized

main beam pointing and it is actually the maximum value of the main lobe level, so the denominator

of Eq. (3a) can be regard as fixed value 1.
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2) NP-Hardness and convex optimization
To prove that this optimization problem is a NP-hard, we first simplify the continuous optimization

problem to the discrete optimization problem. Take a 10-element linear arrays as an example and set

=1l . The set of array elements spacing is {0.51,0.52,0.53,0.54,0.55,0.56,0.57,0.58,0.59}S = , the set

of excitation coefficient of the antenna elements is {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,  0.9, 1.0}C = .

The coordinates of each array elements can obtained by the set of array elements spacing S, each array

elements could have an excitation coefficient from the set C , so this problem is a combinatorial

optimization problem. In general, the combinatorial optimization problem can be represented by three

parameters (D, F, f), where D represents the domain of the decision variable, it is actually the

Constraint (3b) and (3d). F represents the cost function, which is the Eq. (3a). f represents the region

of feasible solution. Thus, the formulated problem in Eqs. (3a) - (3e) is NP-hard. When the element

positions is fixed, we can convert cost function ( , , )¡ w x y into ( )¡ w . ( )¡ w is obviously a convex

function. So the optimization problem is transformed into a convex optimization problem when the

element positions are determined.

III. PROBLEM SOLUTION

The proposed algorithm is divided into two steps, the details will be described in this section.

Step A. optimal positions
Under the condition of the uniform excitation coefficients, the problem is transformed into

a single objective optimization problem for finding the optimal positions. Since the problem

of finding the optimal positions is non-linear and non-convex, an intelligent optimization

algorithm is usually used. In this paper, the optimal array element positions are solved by the

IGA. The optimization model can be expressed as:

2

1

( , )

( , )

max ( , )
min  ( , )=10lg

max ( , )
P u v
P u v

q f

q f

ÎW

ÎW
¡ x y (4a)

0 0. .    ( , ) 1s t P u v = (4b)
 N x N yx L y L= =， (4c)

0 , 0  1, 2, 1n x n yy L y L n N£ < £ < = -， (4d)
The process of the IGA is as follows:

1) Initialization parameters: The population size is set as NP, iteration number is set as G and the

number of elements of the array is set to N. Each individual is represented

as , ,( , )i g i gx y 1,2,..., , 1,2,...i NP g G= = , ,i gx and ,i gy are random numbers that satisfy the constraint

(4d).

2) Selection: The traditional roulette method is adopted, and the possibility of the children

reservation are determined by size of the individual fitness. The fitness of the ith is if , the probability

of selection SP can be expressed as:
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3) Crossover: Firstly, the population is divided into a set of odd number of individuals and a set of

even number of individuals. The integers in [1, N] are randomly selected as the intersection points,

and then the crossover is carried out according to the crossover probability, and the respective partial

genes are exchanged at the intersection point of the paired individuals and forming a pair of new

individuals. To achieve a better optimizing performance than the traditional GA, we introduce

adaptive crossover probability cP :

max 1
1

arcsin( )
2

ave
c

f fP k x
p

-
= ´ (6)

where avef and maxf represent the average fitness and the maximum fitness, respectively. In this way,

cP can change dynamically during optimization process. In order to preserve the characteristics of

genetic algorithm and prevent it from becoming the general stochastic search algorithm, the constants

1k and 1x are introduced. According to experience, 1k is 1.9 and 1x is 0.5.

4) Mutation: The mutation probability mP of an individual is a parameter as important as the

crossover probability cP . A smaller fitness leads to a higher mutation probability. mP is computed by

max 2
2

arcsin( )1
2

ave
m

f fP k x
p

æ ö-
= ´ -ç ÷

è ø
(7)

where the constants 2k and 2x are introduced to prevent the maximum mutation probability mP from

exceeding 0.1, according to experience, we set 2 0.18k = and 2 =0.4x .

Step B. optimal excitation coefficients
After the optimal positions of the array elements are obtained, the problem can be transformed into

a convex optimization problem, and the optimal excitation coefficients are obtained by using the

traditional convex optimization methods (Interior Point Method, Newton-Decline Method and so on).

The optimization model can be expressed as:

2

1

( , )

( , )

max ( , )
min  ( )=10lg

max ( , )
P u v
P u v

q f

q f

ÎW

ÎW
¡ w (8a)

. .   0 1ns t w< £ (8b)

0 0( , ) 1P u v = (8c)

IV. SIMULATION RESULTS

In this part, some simulation experiments are carried out to verify the effectiveness and the

advantages of the CIGA. The proposed CIGA algorithm is evaluated by Matlab. The CPU used for

simulation is CORE i7, the RAM is 4G and the operation system is Windows 10. First, by comparing

with GA, the effectiveness of the algorithm proposed in the step A is explained. Second, the PSLL of
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the power patterns of the linear array antennas scenario and the planar array antennas scenario are

optimized by CIGA.

A. Linear array antennas scenario
We consider a N-element linear sparse arrays, shown in Fig. 2.

q

1x 2x 3x 4x 5x  1Nx - Nx

x

y

L

Fig. 2. N-element linear sparse arrays.

To explain the effectiveness of the algorithm proposed in the step A, we compare the performance

of the IGA with that of GA. We consider a linear sparse arrays with =98.5L l and 152N = . Table Ⅰ

summarizes the comparative results between GA and the IGA, after 50 independent runs, the worst-

case PSLL, the best-case PSLL and the average PSLL obtained by the IGA are better than that of GA.

In addition, the CPU running time obtained by the IGA are shorter than that of GA. Fig. 3 shows the

convergence during the optimization process obtained by GA and the IGA.

It can be seen that the accuracy, the convergence and the CPU running time can be effectively

improved by using IGA. Note that the IGA is the first step of CIGA, the IGA is used to achieve the

optimum array geometry that must meet the minimum spacing constraint. Once the optimum array

geometry has been defined, we could calculate their excitation coefficients by means of convex

programming, such as the CVX and SeDumi.

TABLE I. COMPARATIVE RESULTS

N 152
Method GA IGA

Population size 50 30
Number of generations 100 100
Worst-case PSLL(dB) 16.20- 16.27-
Best-case PSLL(dB) 17.23- 17.50-
Average PSLL(dB) 16.66- 16.80-

Runtime(s) 91.32 55.20
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Fig. 3. Convergence during the optimization process obtained by GA and IGA.

In order to illustrate the superiority of the proposed algorithm in this paper, the CIGA is compared

with Dynamic parameters differential evolution algorithm (DPDE) [12], Two Step Approach (TSA)

[21] and Improved Genetic Algorithm [14]. The minimum elements spacing cd is 0.5l , which is the

same as that of the reference algorithms. The element coordinate vector [ ]1 2, , , T
Nx x x=x  can be

divided into two vectors.
= +x v m (9)

where [0, ,2 , ,( 1) ]Tc c cd d N d= -m  represents the minimum elements spacing vector and v represents

the positions information of the array elements that need to be optimized.

Example A: In order to make comparison with the literature, the CIGA is set the same array

parameters as provided in [12], =98.5L l and 152N = . Fig. 4 (a) shows the normalized radiation

pattern of the best solution obtained by the CIGA. Fig. 4 (b) depicts the PSLL after that the proposed

method runs 50 times. The best PSLL is 29.02- dB and the mean PSLL is 28.55- dB, as Table Ⅱ

shows, which is about 5dB better than the PSLL obtained by these algorithms mentioned in [12].

TABLE Ⅱ. THE PSLL OBTAINED BY DIFFERENT ALGORITHMS FOR 152-ELEMENT ARRAYS

Algorithm Best-case PSLL(dB) Average PSLL(dB)
CIGA 29.02- 28.55-

DPDE[12] 24.14- 23.76-
NBDE 21.15- 20.78-

Boolean PSO 20.86- 20.20-
BGA 19.08- 18.17-
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(a)

(b)

Fig. 4. (a) Normalized radiation pattern. (b) The PSLL of runs 50 times.

Example B: In order to make fair comparison with the TSA [21], further researches of linear sparse

arrays (LSA) with =9.7440L l , =17N and =21.9960L l , =37N are carried out to examine the

performance of the CIGA. In 100 independent tests, the optimal positions and the optimal excitation

coefficients of 17-element linear sparse arrays are depicted in Table Ⅳ, Table Ⅴ. The CIGA has

achieved a best PSLL of 23.14- dB for the 17-element arrays and 24.76- dB for the 37-element

arrays, as Table Ⅲ depicts, which are better than those algorithms mentioned by [21]. The pattern of

17-element arrays and 37-element arrays are plotted in Fig. 5 (a) and Fig. 5 (b).

TABLE Ⅲ. THE PSLL OBTAINED BY DIFFERENT ALGORITHMS FOR 17-ELEMENT AND 37-ELEMENT ARRAYS

Algorithm PSLL(dB)
17-element 37-element

CIGA 23.14- 24.76-
MGA 19.80- 20.56-
SaDE 19.90- 20.94-

TSA [21] 19.90- 21.03-
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(a)

(b)

Fig. 5. (a) 17-element arrays radiation pattern. (b) 37-element arrays radiation pattern.

TABLE Ⅳ. 17-ELEMENT POSITIONS ( )l OBTAINED BY THE CIGA

17-element
n Position n Position
1 0 10 5.3235
2 0.5552 11 5.8614
3 1.5334 12 6.3805
4 2.1536 13 6.9213
5 2.7358 14 7.4869
6 3.2788 15 8.1790
7 3.7794 16 9.0014
8 4.2862 17 9.7440
9 4.8068
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TABLE V. OPTIMAL EXCITATION COEFFICIENTS OF 17-ELEMENT ARRAYS

17-element
n Excit n Excit n Excit
1 0.0358+0.0010i 7 0.0605+0.0016i 13 0.0587+0.0016i
2 0.0474+0.0013i 8 0.0691+0.0019i 14 0.0591+0.0016i
3 0.0616+0.0017i 9 0.0653+0.0018i 15 0.0616+0.0017i
4 0.0512+0.0014i 10 0.0723+0.0020i 16 0.0612+0.0016i
5 0.0639+0.0017i 11 0.0656+0.0018i 17 0.0424+0.0011i
6 0.0590+0.0016i 12 0.0649+0.0018i

Example C: In this example, we consider a linear sparse arrays with 25L l= and =37N and the

selected parameters are the same as those in [14]. Fig. 6 (a) and Fig. 6 (b) display the optimal

positions and amplitude of the normalized excitation coefficients. As exhibited in Fig. 7, the best

PSLL of the CIGA is 23.68- dB, which is about 1.2 dB better than the best result of the method in

[14].

(a)

(b)

Fig. 6. (a) Positions obtained using the CIGA. (b) Normalized amplitude obtained using the CIGA.

Fig. 7. 37-element arrays radiation pattern from the CIGA.
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B. Planar array antennas scenario
We consider a sparse planar array with 100 radiation elements in the range of 10 10l l´ .The optimal

array layout obtained by the CIGA is shown in Fig. 8. Fig. 9 (a) clearly shows the radiation pattern of

the planar antenna arrays obtained by the CIGA, for a more intuitive view of the PSLL of the array

pattern, power mask is drawn at the PSLL. It is clearly shows that the CIGA has achieved the best

PSLL of 13.30- dB, which is better than that of improved chicken swarm optimization [13]. Fig. 9 (b)

shows the top view of radiation pattern of the planar antenna arrays.

Fig. 8. Planar array layout obtained by the CIGA. ( 100)N = .

(a) (b)

Fig. 9. (a) Radiation pattern of planar antenna arrays. (b) The top view of radiation pattern. ( 100)N = .

In some special applications, more antenna elements are often required to obtain the desired the

radiation pattern. Thus, planar antenna arrays with 400 radiation elements are applied to validate the
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performance of the proposed CIGA for the large-scale arrays. In Fig. 10 (a), the results show that the

PSLL is 14.65- dB, which is lower than that of the improved chicken swarm optimization proposed in

[13]. Fig. 10 (b) shows the top view of radiation pattern of the planar antenna arrays. Obviously, the

energy is more concentrated than that of the 100 elements planar antenna arrays.

(a) (b)

Fig. 10. (a) Radiation pattern of planar antenna arrays. (b) The top view of radiation pattern. ( 400)N = .

V. CONCLUSION

To solve the nonconvex nonlinear problem in the synthesis of sparse arrays, a novel hybrid

algorithm is proposed in this paper. The proposed algorithm has the advantages of the IGA and the

convex optimization method. The PSLL obtained by the CIGA can get 20% reduction of that of the

swarm intelligent optimization algorithms [12]-[14], [21] in sparse linear arrays. In sparse planar

arrays, the PSLL obtained by the CIGA can get 7% reduction of these methods mentioned in [13]. In

addition, it can be seen from the results of multiple independent runs that the proposed algorithm has

good stability. Whether a linear arrays with a small number of elements or a large-scale planar arrays,

the proposed CIGA provides better performance than the other published methods.
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