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The use of piezoelectric stress stiffening to enhance buckling
of laminated plates

Abstract

A technique for enhancement of buckling loads of composite

plates is proposed. The technique relies on using stress stiff-

ening to create a non-zero tensile force acting along the plate

plane which ultimately permits the application of higher ex-

ternal compressive forces that lead to traditional buckling

instabilities. The idea is to completely restrain the plate

movements in its plane direction, at all edges, and to ap-

ply voltages to pairs of symmetrically bonded piezoelectric

patches. This voltage is applied such that the piezoelectric

patches contract resulting in a uniform tensile force over the

plate plane.
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1 INTRODUCTION

Buckling of laminated plates caused by several types of loadings (mechanical, thermal, etc.)

is one of the most relevant problems encountered in the area of composite structures. One

technique available to increase buckling loads of this type of structure is to incorporate active

elements, sensors and actuators, and control systems to such structures. Hence, these systems

composed of host composite structure, active elements and control may have their buckling

load increased with respect to the buckling load of the host structure if isolatedly considered.

A number of materials and devices are available to implement active control. However,

piezoelectric materials are again gaining popularity since their boom in the eighties [4] and

nineties [10, 14]. Several investigations using the electromechanical properties of these mate-

rials are concerned with active control of vibrations, noise suppression, flutter control, shape

control and buckling load optimization.

Chandrashenkhara and Bathia [3] presented a finite element formulation to study the stabil-

ity of laminated plates with integrated piezoelectric sensors and actuators. The finite element

model is based on the theory of Reissner-Mindlin.

Meressi and Paden [10] derived the linearized equation of motion of a simply supported

flexible beam with piezoelectric actuators and subjected to several conditions of axial loading.
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They concluded that the buckling load of this beam could be greater than the buckling load

of the same beam without the action of the elements piezoelectric. Refined plate theories that

account for piezoeletric effects are available in Refs. [2, 8]. A survey of such theories can

be found in Ref. [7]. These refined theories address specially the kinematic relations in the

displacement and electric fields. However, for the present work, a thin composite plate suited

for aerospace applications is modeled and investigated. Hence, the theoretical formulation of

laminated plates with layers of piezoelectric actuators and sensors using the Reissner-Mindlin

plate theory contained in Ref. [12] shall be adopted.

Donadon et al. [6] investigated the efficiency of the use of piezoelectric elements in the

enhancement of natural frequencies of laminated plates. A finite element formulation was pro-

posed for the analysis of laminated plates with an arbitrary number of piezoelectric actuators

and sensors. Nonlinear strain × displacement von Karman relations were used and a linear be-

havior was assumed for the electric degrees of freedom. Different configurations were analyzed

both numerically and experimentally. The piezoelectric stress stiffening effect, also considered

in the present work, is used to increase natural frequencies of composite plates.

de Faria [5] proposed the use of piezoelectric stiffening stresses to create a nonzero traction

force acting along the axis of a laminated beam, allowing the application of an external com-

pressive force greater than the buckling load of this beam without the presence of piezoelectric

actuators. It was shown that the actuators’ length interfere with the intensity of the traction

force piezoelectrically induced. However, the position of these actuators along the length of

the beam does not alter the intensity of the traction force.

Kundun et al. [9] used the theory of nonlinear large deformations to study post-buckling of

piezoelectric laminated shells with double curvature through the finite element method. Batra

and Geng [1] and Shariyat [13] present proposals to enhance dynamic buckling of flexible plates.

The prebuckling enhancement of composite plates equipped with piezoelectric actuators is

the subject of this paper. Piezoelectric actuators are used to induce in-plane traction stiffening

stresses in a composite plate, thereby counteracting external compressive stresses that render

the structure unstable. The objective is to create in-plane piezoelectric stiffening stresses

to enhance buckling loads of laminated plates. The idea is to completely restrain in-plane

displacements on its boundary and to apply voltage to piezoelectric actuators symmetrically

bonded to the top and bottom surfaces. This voltage is applied such that the piezoelectric

actuators shrink generating traction stresses in the plate plane. Therefore, if external com-

pressive stresses destabilize the structure the stiffening piezoelectric traction stresses will act,

re-stabilizing the structure. Analytical approximations and the finite element method are used

to compute the piezoelectric stiffening stresses whereas the finite element method is used to

solve the buckling problem. The results presented consider bifurcation buckling, although the

formulation proposed is general enough to be applicable for nonlinear analysis and critical

point type of buckling.
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2 PROBLEM FORMULATION

The equations that describe the electromechanical behavior of a plate containing layers of the

piezoelectric actuators bonded on its top and bottom surfaces are presented. The buckling

analysis of the laminated plate is based on the Mindlin plate theory and the electric potential

is assumed constant over the surface of the piezoelectric layers and varying linearly along the

thickness of these layers.

The basic configuration of the host structure consists of a rectangular plate equipped

with patches of piezoelectric actuators symmetrically bonded to the top and bottom surfaces.

Figure 1 shows three situations where there are pairs of piezoelectric actuators bonded to

the bottom and top plate surface. In the prebuckling phase, only in-plane displacements and

stresses arise. When nonzero voltages are equally applied to the top and bottom piezoelectric

patches displacements u and v result. In this phase the boundary conditions assumed are that

of completely constrained edges with u = v = 0. If the plate’s edges were free to move then

there would be no piezoelectric stiffening stresses. Once the piezoelectric patches are energized

traditional mechanical forces uniformly distributed along the edges and usually denoted by

Nxx0, Nyy0, Nxy0 are slowly applied causing compressive and shear stresses that eventually

buckle the plate. In a testing facility forces Nxx0, Nyy0, Nxy0 would possibly be the result of

prescribed displacements.

Figure 1 Basic configurations

The constitutive equations can be written as in Eq. (1) where it is assumed that the

piezoelectric layers are polarized along the z direction (perpendicular to the plate).

σ =Qϵ − eTE, τ =QSγ, d = eϵ + ξE, (1)

where Q is the ply in-plane stiffness matrix in the structural coordinate system, QS is the ply

out-of-plane shear stiffness matrix in the structural coordinate system, σ are in-plane stresses,

τ are out-of-plane shear stresses, ϵ are the in-plane strains including nonlinear components, ϵ
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are the out-of-plane shear srains, d is the electric displacement, E is the electric field, e is the

electro-mechanical coupling matrix and ξ is the permitivitty matrix. Notice that τ is free of

piezoelectric effects [8]. Equation (1) is valid in general for both composite and piezoelectric

material. In the case of a composite layer matrices e and ξ would vanish.

The system is conservative such that the total potential energy is given by:

Π = 1

2
∫
V
σT ϵdV + 1

2
∫
V
τTγdV − 1

2
∫
V
dTEdV −W, (2)

where W is the work of external forces Nxx0, Nyy0, Nxy0.

The Mindlin plate displacement field is now introduced:

ũ(x, y, z) = u(x, y) + zψx(x, y),
ṽ(x, y, z) = v(x, y) + zψy(x, y),
w̃(x, y, z) = w(x, y), (3)

where ũ, ṽ, w̃ are the displacements of an arbitrary point in the plate, u, v, w are the mid

plane displacements (z = 0) and ψx, ψy are the mid plane rotations. The strains ϵ can now

be split into three components: membrane strains ϵ0, curvature κ and nonlinear von Karman

strains ϵN such that

ϵ = ϵ0 + zκ + ϵN =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

u,x
v,y

u,y + v,x

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ z
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ψx,x

ψy,y

ψx,y + ψy,x

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ 1

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

w2
,x

w2
,y

2w,xw,y

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

γ = { w,x + ψx

w,y + ψy
} . (4)

In order to facilitate manipulation of Eq. (2) matrices A, B, D and AS, and vec-

tors N = { Nxx Nyy Nxy }T , M = { Mxx Myy Mxy }T , Q = { Qxx Qyy }T and F =
{ Fxx Fyy Fxy }T are defined as

(A,B,D) = ∫
h/2

−h/2
(1, z, z2)Qdz

AS = ∫
h/2

−h/2
QSdz

F = ∫
h/2

−h/2
eTEdz

{ N

M
} = [ A B

B D
]{ ϵ0 + ϵN

κ
}

Q = ASγ, (5)
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where h is the total thickness. Following conventional terminology, the components of N are

the in-plane forces per unit length, the components of Q are the out-of-plane shear forces

per unit length, the components of F are the piezoelectric in-plane forces per unit length

and the components of M are bending moments per unit length. From this point on these

will be simply referred to as forces or moments. Notice that the piezoelectric layers make a

contribution to the laminate stiffness matrices A, B, D and AS. On the other hand, vector F

is nonzero only if there are piezoelectric layers present in the laminate. F can be interpreted

as the piezoelectric force. If the electric field Ez is replaced by ϕ/t where ϕ is voltage and t is

thickness then Eq. (5c) can be specialized to become [11]

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Fxx

Fyy

Fxy

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e31(ϕT + ϕB)
e32(ϕT + ϕB)

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (6)

where ϕT and ϕB are the voltages applied to the top and bottom surfaces of the plate. In

practical applications e32 = e31 what leads to Fxx = Fyy.

Taking the first variation of Eq. (2), assuming that the voltages are prescribed and inte-

grating through the thickness yields

δΠ = ∫
Ω
(NT δϵ0 +NT δϵN +MT δκ +QT δγ −FT δϵ0 −FT δϵN)dΩ−

∫
Γ
(Nxx0,Nxy0) ⋅ n⃗ δudΓ − ∫

Γ
(Nxy0,Nyy0) ⋅ n⃗ δvdΓ = 0, (7)

where Ω is the in-plane plate domain, Nxx0, Nyy0, Nxy0 are membrane forces applied along

the plate edge Γ (the boundary of Ω), n⃗ is the unit vector normal to Γ and the term containing

zFT δκ was abandoned since full symmetry (ϕT = ϕB) has been admitted. Notice that if

ϕT ≠ ϕB then the prebuckling problem would result in nonzero out-of-plane displacements

(w ≠ 0) and no bifurcation type buckling would occur.

Substitution of Eqs. (4) into Eq. (7) and integration by parts in two dimensions allows

one to obtain the governing equations

(Nxx − Fxx),x + (Nxy − Fxy),y = 0

(Nxy − Fxy),x + (Nyy − Fyy),y = 0

Mxx,x +Mxy,y = Qxx

Myy,y +Mxy,x = Qyy

Qxx,x +Qyy,y + (Nxx − Fxx)w,xx + (Nyy − Fyy)w,yy + 2(Nxy − Fxy)w,xy = 0 (8)

and in-plane boundary conditions valid on the plate’s edges:

(Nxx − Fxx,Nxy − Fxy) ⋅ n⃗ δu = (Nxx0,Nxy0) ⋅ n⃗ δu
(Nxy − Fxy,Nyy − Fyy) ⋅ n⃗ δv = (Nxy0,Nyy0) ⋅ n⃗ δv. (9)
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Notice that there are three more boundary conditions related to δw, δψx, δψy that, although

indispensable to solve the buckling eigenproblem, are not given in Eq. (9).

Terms (Nxx − Fxx), (Nxy − Fxy) and (Nyy − Fyy) present in Eqs. (8) and (9) correspond

to the piezoelectric stiffening stress resultants. Hence, if there are no piezoelectric stiffening

stresses then buckling cannot occur due to the piezoelectric effect. There are two possibilities

for buckling to occur: (i) external mechanical forces Nxx0, Nyy0 or Nxy0 must be present (this

is the traditional buckling problem) and (ii) nonzero piezoelectric stiffening stresses must exist.

Situation (ii) is the subject of next section.

3 PIEZOELECTRIC STIFFENING STRESSES

In order to obtain the piezoelectric stiffening stress distribution it is necessary to solve the

prebuckling Eqs. (8a) and (8b) along with their boundary conditions in Eq. (9). Unfortunately,

this problem does not admit an exact analytical solution mainly because of the discontinuity

caused by the presence of piezoelectric patches bonded to the plate surfaces. The patches are

source of two kinds of discontinuity: stiffness and piezoelectric force. It is clear that adding

piezoelectric layers to the laminate increases the in-plane stiffness matrixA. It is also clear that

the piezoelectric forces Fxx, Fyy, Fxy are nonzero only when piezoelectric patches are attached,

that is, over the regions of the plate where there are no actuators Fxx = Fyy = Fxy = 0.
The bifurcation type buckling is the subject of this paper. The objective is to enhance the

critical buckling load of plates that exhibit such type of buckling by appropriately tailoring the

piezoelectric stiffening stresses. Therefore, this study is concerned with cases where there are

no out-of-plane displacements w in the prebuckling regime. This can only be achieved when

there is full symmetry on the actuators part (ϕT = ϕB) and when the laminate is symmetric

(B = 0 and tT = tB). If these conditions apply and the nonlinear strain components are

neglected in the prebuckling regime then Eq. (7) can be simplified to:

δΠ = ∫
Ω

⎧⎪⎪⎪⎨⎪⎪⎪⎩

δu,x
δv,y

δu,y + δv,x

⎫⎪⎪⎪⎬⎪⎪⎪⎭

T

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u,x
v,y

u,y + v,x

⎫⎪⎪⎪⎬⎪⎪⎪⎭
−
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Fxx

Fyy

Fxy

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟
⎠
dΩ = 0. (10)

Analytical solution of Eq. (10) is not possible. However, it is possible to gain insight into

the problem if a symmetric configuration is investigated. Assume that only one rectangular

piezoelectric patch is placed in the center of the plate such as depicted in Fig. 2. Taking

u(x, y) as the displacements along x and v(x, y) as the displacements along y the symmetry

and boundary conditions are:

• Edge y = 0: v(x,0) = v,x(x,0) = v,xx(x,0) = ... = 0, u,y(x,0) = 0;

• Edge x = 0: u(0, y) = u,y(0, y) = u,yy(0, y) = ... = 0, v,x(0, y) = 0;

• Edge y = Ly: v(x,Ly) = v,x(x,Ly) = v,xx(x,Ly) = ... = 0, u,y(x,Ly) = 0;

• Edge x = Lx: u(Lx, y) = u,y(Lx, y) = u,yy(Lx, y) = ... = 0, v,x(Lx, y) = 0.
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Figure 2 Basic dimensions

Conditions v(x,0) = 0, u(0, y) = 0, u,y(x,0) = 0, v,x(0, y) = 0 follow from the symmetry of

the problem. v(x,Ly) = 0 and u(Lx, y) = 0 are enforced boundary conditions. u,y(x,Ly) = 0
and v,x(Lx, y) = 0 result from the requirements that Nxy(x,Ly) = Nxy(Lx, y) = 0 for a balanced

laminate (A16 = A26 = 0) as given in Eq. (9). The boundary condition in Eq. (9) also imposes

that continuity on Nxx − Fxx and Nxy − Fxy along any line of constant y must be satisfied

as well as continuity on Nxy − Fxy and Nyy − Fyy along any line of constant x. Moreover,

continuity of displacements u and v throughout must be observed.

Considering the lines y = 0, x = 0 and a balanced laminate, the continuity conditions on

Nxx − Fxx for point A and Nyy − Fyy for point B read, respectively,

A∗11u
∗
,x(lx,0) +A∗12v∗,y(lx,0) − Fxx = A11u,x(lx,0) +A12v,y(lx,0),

A∗12u
∗
,x(0, ly) +A∗22v∗,y(0, ly) − Fyy = A12u,x(0, ly) +A22v,y(0, ly). (11)

where the terms with a superscript star (∗) refer to domain where there are both plate and

piezoelectric materials. From Eqs. (11) it can be seen that there must be discontinuity on

u,x(x,0) and v,y(0, y). A finite element that enforces continuity on the first derivatives of u

and v, such as the one based on the classical plate theory, would not be a good choice in this

case. A better suited element for this task is the one based on Mindlin assumptions that are

able to capture discontinuities on the first derivatives of u and v, whose description is in the

next section.

Since exact solutions to Eq. (10) cannot be obtained it remains to find analytical approx-

imations or numerical solutions. One approach to obtain approximations is to consider that

the plate shown in Fig. 2 behaves similarly to a beam, at least along the lines y = 0, x = 0.
Notice that this assumption implies ignoring Poisson effects that may be relevant in plate
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problems. Therefore, the governing differential equations can be simplified to u,xx(x,0) = 0

and v,yy(0, y) = 0. Moreover, Eqs. (11) reduce to

A∗11u
∗
,x(lx,0) − Fxx = A11u,x(lx,0),

A∗22v
∗
,y(0, ly) − Fyy = A22v,y(0, ly). (12)

Considering the boundary conditions u(0,0) = u(Lx,0) = 0 and v(0,0) = v(0, Ly) = 0, and
the jump conditions in Eq. (12), the differential equations u,xx(x,0) = 0 and v,yy(0, y) = 0 are

solved to yield:

u∗(x,0) =
( 1
Lx
− 1

lx
)xFxx

[A∗11 (
1
Lx
− 1

lx
) −A11

1
Lx
]

, u(x,0) =
( x
Lx
− 1)Fxx

[A∗11 (
1
Lx
− 1

lx
) −A11

1
Lx
]
,

v∗(0, y) =
( 1
Ly
− 1

ly
) yFyy

[A∗22 (
1
Ly
− 1

ly
) −A22

1
Ly
]

, v(0, y) =
( y
B
− 1)Fyy

[A∗22 (
1
Ly
− 1

ly
) −A22

1
Ly
]
. (13)

The piezoelectric stiffening stress resultants are given by:

Txx = A∗11u∗,x(x,0) − Fxx = A11u,x(x,0) =
Fxx

A∗11
A11
(1 − Lx

lx
) − 1

,

Tyy = A∗22v∗,y(0, y) − Fyy = A22v,y(0, y) =
Fyy

A∗22
A22
(1 − Ly

ly
) − 1

. (14)

A numerical example requires physical properties given in Tab. 1 and geometric param-

eters. The plate is assumed to have semi-length Lx = 0.2 m, semi-width Ly = 0.15 m. The

piezoelectric actuator has semi-length lx = 0.15 m and semi-width ly = 0.05 m. A cross-ply

laminate [0/90]S is used with each layer 0.15 mm thick. The thickness of the piezoelectric

actuators (top and bottom) is 0.05 mm. A voltage of ϕT = ϕB = 50 V is applied which

corresponds exactly to the depoling field in Tab. 1.

Figures 3 and 4 present a comparison between the analytical solutions given in Eq. (13)

and the FE numerical solution, where ξ = x/Lx and η = y/Ly. It is clear that the analytical

solution along y = 0 is a very good approximation to the actual displacements. Both u and

u,x agree well. However, the same is not true for analytical solution along x = 0. It can be

observed that, although the patterns for v and v,y are similar in shape, their magnitudes are

completely dispair. The conclusion is that, in this particular configuration, the plate behaves

much like a beam in the x direction but not in the y direction.

Closer observation of Eq. (14) reveals that the piezoelectric stiffening stress resultants

depend basically on two parameters: the relative stiffness a = A∗11/A11 and the nondimensional

actuator length lx/Lx. In the particular example selected a = 1.14 and lx/Lx = 0.75. Figure
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Table 1 Physical properties

Property G1195N T300/5208

Young modulus E11 (GPa) 63.0 154.5

Young modulus E22 (GPa) 63.0 11.13

Poisson ratio ν12 0.3 0.304

Shear modulus G12 = G13 (GPa) 24.2 6.98

Shear modulus G23 (GPa) 24.2 3.36

Piezoelectric constant e31 (N/V m) 17.6 -

Piezoelectric constant e32 (N/V m) 17.6 -

Depoling field EMAX (V/mm) 1000 -

ξ

u ,x

-1.0 -0.5 0.0 0.5 1.0
-3.0E-05

-2.0E-05

-1.0E-05

0.0E+00

1.0E-05

FEM
analytic

ξ

u/
L

x

-1.0 -0.5 0.0 0.5 1.0
-8.0E-06

-6.0E-06

-4.0E-06

-2.0E-06

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

FEM
analytic

Figure 3 Comparison FEM vs. analytical solutions along y = 0

η

v/
L

y

-1.0 -0.5 0.0 0.5 1.0
-8.0E-05

-6.0E-05

-4.0E-05

-2.0E-05

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

FEM
analytic

η

v ,y

-1.0 -0.5 0.0 0.5 1.0
-1.5E-04

-1.0E-04

-5.0E-05

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

FEM
analytic

Figure 4 Comparison FEM vs. analytical solutions along x = 0
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5 shows that, the smaller a, the greater is the efficiency to generate piezoelectric stiffening

stresses. Fortunately, in aerospace applications, thin piezoelectric actuators are used leading

to practical situations where 1.0 < a ≤ 1.2.

lx/Lx

T
xx

/F
xx

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a= 1.0
a= 1.1
a= 1.5
a= 2.0
a= 5.0
a=10.0

Figure 5 Stress stiffening efficiency varying with relative stiffness

The stiffening stress resultants Nxx and Nyy are shown in Fig. 6 where the boundary of the

piezoelectric actuator is highlighted in black. Notice that Nxx is highly discontinuous along

x = 0 and so is Nyy along y = 0. The discontinuities observed numerically are consistent with

Eq. (12). Additionally, the region where there is compression in the x direction (Nxx < 0)

is mostly limited to the region underneath the actuators. However, the same cannot be said

about Nyy. This suggests that long piezoelectric film strips with large aspect ratios are able

to orient stiffening stresses more efficiently than those with aspect ratios close to unity.

4 PIEZOELECTRIC STRESS STIFFENING AND BUCKLING

Considering that the membrane prebuckling problem given in Eq. (10) is satisfied, the FEM

buckling equations can be derived from Eq. (7) to yield

δΠ = ∫
Ω
(MT δκ +QT δγ)dΩ + ∫

Ω
(N −F)T δϵNdΩ. (15)

The finite element method is used to solve the governing buckling problem Eq. (15). The

element used is biquadratic depicted in Fig. 7 whose interpolation functions are:

N1(ξ, η) = 1
4
ξ(ξ − 1)η(η − 1) N2(ξ, η) = 1

2
(1 − ξ2)η(η − 1) N3(ξ, η) = 1

4
ξ(ξ + 1)η(η − 1)

N4(ξ, η) = 1
2
ξ(ξ − 1)(1 − η2) N5(ξ, η) = (1 − ξ2)(1 − η2) N6(ξ, η) = 1

2
ξ(ξ + 1)(1 − η2)

N7(ξ, η) = 1
4
ξ(ξ − 1)η(η + 1) N8(ξ, η) = 1

2
(1 − ξ2)η(η + 1) N9(ξ, η) = 1

4
ξ(ξ + 1)η(η + 1)

(16)
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Figure 6 Stiffening stress distribution in terms of resultant forces
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Figure 7 Biquadratic element

The interpolation functions given in Eq. (16) are used to interpolate five degrees of freedom

per node: u, v, w, ψx and ψy. Hence the element contains a total of 45 degrees of freedom per

element. When Eqs. (4), (5) and (16) are introduced into the first integral of Eq. (15) the

finite element stiffness matrix K arises. The biquadratic element is less prone to shear locking

than the traditional bilinear element. However, the reduced selective integration scheme is

used to compute matrix K. The second integral in Eq. (15) contains the membrane forces

N and corresponds to a stiffening term (observe that it involves the nonlinear strains δϵN ).

There are two types of contributions to N: (i) the traditional mechanical stresses N0 due to

Nxx0, Nyy0, Nxy0, and (ii) piezoelectric stiffening stresses Np computed through solution of

Eq. (10), such that N =N0 +Np. Therefore, two geometric stiffness matrices arise: KP
G from

∫ (Np −F)T δϵNdΩ and KG from ∫ NT
0 δϵNdΩ. Therefore, the complete FE buckling equation

becomes
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(K +
p

∑
i=1
ϕiK

P
Gi − λKG)q = 0, (17)

where K is the stiffness matrix, KP
Gi is the piezoelectric geometric stiffness matrix that incor-

porates the piezoelectric stiffening stresses and is associated with piezoelectric pair i, KG is

the geometric stiffness matrix, λ is the buckling load and q is the buckling mode. Notice that

the formulation presented in Eq. (17) assumes that voltages of ϕi = 1 V are applied in order

to form matrix KP
Gi.

In order to obtain numerical results for buckling in the presence of piezoelectric stiffening

stresses consider the plate used in the previous section (Lx = 0.2 m and Ly = 0.15 m) and one

rectangular actuator with lx = 4 cm and ly = 3 cm placed in the center of the plate whose sides

are parallel to the sides of the plate. Two types of traditional loadings are applied: (i) uniform

compressive loading along the x direction (λxx) and uniform shear (λxy). The actuator voltage

is varied within the limits of the depoling field, i.e., -50 V ≤ ϕ ≤ +50 V. Figure 8 presents the

curves obtained for the [0/90]S and [±45]S laminates. Points on those curves are obtained

through solution of Eq. (17) for different values of ϕ. Buckling occurs under no mechanical

loading (eitherNxx0 = 0 orNxy0 = 0) for some value of ϕ >+50 V for both types of loading. This

conclusion agrees with the expectation that, when positive voltages are applied, compressive

stiffening stresses, as those illustrated in Fig. 6, arise, impairing buckling behavior. The first

buckling modes for the [0/90]S laminate subject to λxx are presented in Fig. 9 for different

values of voltage. The differences between the mode shapes are not significant but the buckling

load dramatically changes as seen in Fig. 8. However, the peaks of the normalized buckling

modes, given in terms of transverse displacements w, become increasingly higher as the voltage

is varied from -50 V to +50 V. The maximum λxx = 660 N/m and λxy = 870 N/m are associated

with ϕ = -50 V. It can be observed that the [±45]S laminate is less sensitive to variations in

ϕ. This is evidence that sensitivity to ϕ is associated with the laminate lay-up. The [±45]S
laminate will suffer from buckling due to stiffening stresses only for value of ϕ substantially

above +50 V.

A better understanding of Fig. 8 is gained if a perturbation analysis of the buckling

eigenproblem is performed. Assume that the voltage of pair i is slightly perturbed by δϕi such

that the new eigenproblem derived from Eq. (17) becomes

[K +
p

∑
i=1
(ϕi + δϕi)KP

Gi − (λ + δλ + δ2λ + ...)KG] (q + δq + δ2q + ...) = 0, (18)

The zero-, first- and second-order problems derived from Eq. (18) are respectively

(K +
p

∑
i=1
ϕiK

P
Gi − λKG)q = 0

(
p

∑
i=1
δϕiK

P
Gi − δλKG)q + (K +

p

∑
i=1
ϕiK

P
Gi − λKG) δq = 0
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Figure 8 Buckling load vs. voltage: one patch parallel to plate’s edges
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Figure 9 Buckling modes: [0/90]S laminate and λxx loading
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(
p

∑
i=1
δ2ϕiK

P
Gi − δ2λKG)q + (

p

∑
i=1
δϕiK

P
Gi − δλKG) δq + (K +

p

∑
i=1
ϕiK

P
Gi − λKG) δ2q = 0. (19)

Multiplication of Eq. (19b) by qT and using Eq. (19a) yields

δλ =
p

∑
i=1

qTKP
Giq

qTKGq
δϕi. (20)

Equation (20) shows that the sign of ∂λ/∂ϕi is related to the the positive-definiteness of

KP
Gi, KG and the buckling mode q. In the case of uniform compressive forces matrix KG is

positive-definite. However, the same cannot be said about KP
Gi. In fact, Fig. 6 indicates that

the term Nxx −Fxx is positive in some regions over the plate and negative over others. Hence,

the sign of qTKP
Giq depends ultimately on q. Figure 8 just confirms this finding.

Multiplication of Eq. (19c) by qT and using Eqs. (19a) and Eqs. (19b) yields

δ2λ = −
δqT (K +∑p

i=1 ϕiK
P
Gi − λKG) δq

qTKGq
. (21)

Matrix (K+∑ϕiKP
Gi−λKG) is positive-definite provided buckling has not occurred. There-

fore, the sign of δ2λ given in Eq. (21) is certainly negative if KG is positive-definite. Notice

that this may not be the case when shear loadings are applied but it is true for the case where

Nxx0 ≠ 0 and Nxy0 = Nyy0 = 0. Figure 8 confirms that the concavity of the λ vs. ϕ curve is

negative.

A network of piezoelectric actuators may be used to try to induce more favorable piezoelec-

tric stiffening stresses. Figure 1b shows a possibility where the only patch shown in Fig. 1a is

split into four smaller patches such that the total area is maintained constant. This procedure

guarantees that, provided the same voltage is applied, the electric energy required is also the

same. Figure 10 presents the λ vs. ϕ curves obtained assuming that equal voltages are applied

to the four patches. Comparison to Fig. 8 leads one to conclude that the normal and shear

buckling loads were decreased for both the [0/90]S and [±45]S laminates. Therefore, this

particular procedure did not bring any improvement to the buckling loads. However, this sim-

ulation suggests that the piezoelectric actuators should be placed as far from the boundaries

as possible in order to boost the potential benefits of the piezoelectric stiffening stresses.

Figure 1c presents another possibility for placement of the actuators, i.e., patches with

arbitrary orientation. In Fig. 1c the same rectangular patch of Figure 1a is used but it

is oriented parallel to the plate diagonal. Figure 11 presents the λ vs. ϕ curves obtained.

Comparison against Figs. 8 and 10 demonstrates that this configuration is the best one for

both laminates whenever ϕ < 0 V and it has good performance for ϕ > 0 V except for extreme

values of ϕ very close to +50 V. Hence, if permitted, the best strategy is to orient the patches

along the diagonals, at least for the [0/90]S and [±45]S laminates.
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Figure 10 Buckling load × voltage: four patches parallel to plate’s edges
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Figure 11 Buckling load × voltage: one patch parallel to plate’s diagonal

5 CONCLUSIONS

This paper proposes the use of piezoelectric actuators to enhance buckling of composite plates

through stress stiffening effects. An analytical approach to the prebuckling problem is pursued

showing that discontinuities in the first derivative of displacements are expected to occur in

the boundary of the plate separating domains with and without patches attached. This type

of discontinuity can be effectively captured by plate or shell finite elements whose formulations

are based on Mindlin assumptions. A tapered patch would certainly alleviate the discontinuity
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jump but it consists in an impractical alternative from the experimental point of view.

The analytical solution obtained for the prebuckling regime is reasonable in the direction

along which the piezoelectric patch is longer but yields unreasonable results in the shorter

direction. Therefore, numerical procedures must be employed in order to obtain the pre-

cise distribution of piezoelectric stiffening stresses. Although not suitable for exact solution,

Eq. (8e) contains a very important message: buckling cannot occur if there are no stiffening

stresses Nxx −Fxx, Nyy −Fyy or Nxy −Fxy. Therefore, it proves that free-free structures, even

when equipped with piezoelectric actuators, will not buckle. The condition for the loss of sta-

bility is that either external mechanical loadings are applied or piezoelectric stiffening stresses

arise as a result of boundary constraints.

Numerical simulations considered two symmetric laminates: [0/90]S and [±45]S . These

were selected because the former is a typical lay-up in aeronautical construction and the later

is the optimal lay-up against buckling in the normal direction (λxx). All the results show that

buckling behavior is improved for negative voltages and is impaired for positive voltages. This

is obviously a result of piezoelectric stiffening stresses over the composite plate. As a practical

recommendation piezoelectric actuators should have their orientations carefully chosen, but

the most important finding is that they should be placed as far as possible from the edges in

order to maximize the beneficial effects of the piezoelectric stiffening stresses.
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