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Abstract: Causal approaches to explanation often assume that a model explains 

by describing features  that make a difference regarding the phenomenon. 

Chirimuuta claims that this idea can be also used to understand non-causal 

explanation in computational neuroscience. She argues that mathematical 

principles that figure in efficient coding explanations are non-causal difference-

makers. Although these principles cannot be causally altered, efficient coding 

models can be used to show how would the phenomenon change if the 

principles  were modified in counterpossible situations. The problem is that  

efficient coding models also involve difference-makers that, prima facie, cannot 

be characterized as non-causal in this sense. Mathematical principles  always  

involve variables  which  have counterfactual  (instead of counterpossible)  
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relations between them. However, we cannot simply assume that these 

difference-makers are causal.  They can also be found in paradigmatic non-causal 

explanations and therefore they must be characterized as non-causal in some 

sense. I argue that, despite appearances, Chirimuuta's view can  be applied to  

these cases. The mentioned counterfactual relations presuppose the 

counterpossible conditionals that describe the modification of a relevant  

mathematical principle.  If these conditionals are the hallmark of non-causal 

relations, then  Chirimuuta’s criterion has  the desired implication that variables in  

mathematical principles are non-causal difference-makers. 

 
 

1. INTRODUCTION 
 
The mechanistic approach to explanation or ‘new-mechanism’ 

(hereafter, ‘mechanism’) is currently a dominant perspective in the 
philosophy of neuroscience. Part of this success can be attributed to the 
fact it provides a unified framework to account for the explanatory 
power of very diverse models that can be found within the field. It has 
proven to be useful to characterize models ranging from molecular to 
behavioral neuroscience 1. However, there are good reasons to believe 
that it cannot be employed to understand relevant abstract models. 
According to some authors, mechanism implies that abstract models are 
not fully explanatory. For example, Chirimuuta (2014) claims that 
mechanism is committed to a requirement she calls “the More Details 
the Better” (MDB). MDB implies that models which omit some 
information about the target mechanism (e.g. models that describe only 
“high level” properties), are less explanatory than more detailed 
descriptions. In response to interpretations of this sort, mechanistic 
criteria for building abstract models have been proposed (e.g. Levy & 
Bechtel 2013, Boone & Piccinini 2016). The problem is that although 
mechanism is compatible with some abstractions, there are features that 

                                                                 
1 For example, Machamer et al. (2000), Craver & Darden (2001), Craver (2007),  

Bechtel (2008), Kaplan & Craver (2011) 



  Abel Wajnerman Paz  93 

Manuscrito – Rev. Int. Fil. Campinas, v. 42, n. 1, pp. 91-119, Jan-Mar. 2019. 

cannot be omitted from a model without making it non-mechanistic.  
Mechanistic explanation requires some information about the causal 
properties or relations of its target system (Levy and Bechtel 2013).  

Batterman (2010), Rice (2012, 2015) and Batterman & Rice (2014) 
have argued that some minimal models in physics and biology (that is, 
models which abstract away from many details of a system in order to 
highlight dominant and general features) are non-causal. The presence of 
non-causal models in cognitive neuroscience would imply that 
mechanism cannot provide a general account and therefore, we should 
endorse some form of pluralism about neurocognitive explanation. 
Chirimuuta (2017) claims that efficient coding models in computational 
neuroscience are a non-causal variety of minimal model. Furthermore, 
Chirimuuta undermines the strategy of saying that these models are non-
explanatory by showing that they satisfy a criterion for explanatory 
relevance accepted by many mechanists. Efficient coding models are able 
to answer relevant what-if-things-had-been-different questions, or “w-
questions”, regarding their explananda. These are questions about how 
the explanandum would change in the counter-factual situation in which 
the explanans is different in some specific way. An explanatory model 
implies counterfactual conditionals that answer such w-questions.  

The ability of a model to address these w-questions is supposed to 
account for its explanatory power because it implies that the model 
describes features that are ‘difference-makers’ for its explanandum. 
Usually, these difference-makers are causal in the sense that the 
counterfactual situation to which a w-question refers results from an 
intervention on a relevant aspect of the explanans. However, Chirimuuta 
points out that some w-questions refer to scenarios that are mathematically 
different from the actual world and therefore cannot result from an 
intervention (that is, they refer to counterpossible situations). The 
answers to these w-questions are counterpossible conditionals which 
involve non-causal difference-makers. These define a non-causal 
explanation. Chirimuuta claims that efficient coding explanations are 
non-causal in this sense.  

Chirimuuta’s proposal widens the scope of neurocognitive 
explanatory models (by including non-causal models) and, at the same 
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time, vindicates the mechanistic idea that explaining is a matter of 
identifying difference-makers. This means that, if we abandon the 
requirement that explanation must be causal, we can use part of a 
mechanistic framework to provide a unified characterization of 
explanation in cognitive neuroscience. In this respect, her proposal is 
similar to the one advanced by Jansson & Saatsi (2017). They also argue 
that the explanatory power of both causal and non-causal models can be 
accounted for by the difference-makers they describe. Chirimuuta’s 
distinctive insight is that non-causal models describe a special kind of 
difference-maker. This idea conciliates pluralist and monist intuitions 
about explanation in neuroscience. Her approach contributes both to 
understanding what is common to different neurocognitive explanations 
and to characterizing the differences between them. Nevertheless, I will 
argue that this proposal has a significant shortcoming.  

The explanatory power of efficient coding models depends on 
difference-makers that, prima facie, cannot be characterized as non-causal 
in Chirimuuta’s sense. Mathematical principles always involve variables 
which have counterfactual (instead of counterpossible) relations between 
them. However, we cannot simply assume that these difference-makers 
are causal because they can also be found in paradigmatic cases of 
distinctively mathematical explanations described by Pincock (2007) and 
Lange (2013). They must be characterized as non-causal in some sense. 
The goal of this paper is not merely to point out this problem but also to 
suggest a possible solution. I propose to characterize the problematic 
difference-makers by combining Chirimuuta’s approach with some 
neglected aspects of Woodward’s proposal.  

His interventionist view implies that the difference-making relation 
between the variables of a system always presupposes an ‘invariance’. 
This is simply the generalization in which these variables figure, which 
remains unchanged in the counterfactual situations required to 
characterize the mentioned relation. I will argue that if we follow 
Chirimuuta’s idea that not only variables but also invariances must be 
understood as difference-makers, then an explanation involves two kinds 
of conditionals which are closely related. Specifically, I will claim that the 
counterfactual conditionals that describe the relation between the 
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variables of a system presuppose (either counterfactual or 
counterpossible) conditionals that describe the modification or 
‘modulation’ of the relevant generalization. This implies that when the 
generalization is a necessary mathematical principle, the characterization 
of the difference-making relation between its variables presupposes 
counterpossible conditionals. If these conditionals are the hallmark of 
non-causal relations, then Chirimuuta’s criterion now has the implication 
that variables in mathematical principles are non-causal difference-
makers.  

The paper is structured as follows. In section 2, I describe two 
efficient coding models: Sarpeshkar (1998) hybrid neural computation 
model and Laughlin & Attwell (2001) sparse neural coding model. I 
present Chirimuuta’s proposal and claim that these models refer to 
difference-makers which apparently cannot be characterized as non-
causal in her sense. In section 3.1, I show why these difference-makers 
are problematic and I argue that an adequate approach to non-causal 
explanation must characterize them as non-causal. Finally, in section 3.2 
I suggest how we can apply Chirimuuta’s criterion to these cases.  

 
 

2. EFFICIENT CODING EXPLANATIONS AND TWO KINDS OF W-
QUESTIONS  

 
Efficient coding models provide computational or information-

theoretic explanations of why neurons, neural circuits or neural systems 
behave in the ways they do. Chirimuuta (2014) pointed out that they are 
similar to optimality models in biology. Based on this idea, I will 
characterize efficient coding explanations by borrowing some concepts 
from the optimality framework (see Rice 2015)2.  

An efficient coding model explains the efficiency of a given brain 
structure in the performance of a given task by considering different 

                                                                 
2 I do not claim that efficient coding models are a kind  of optimality model. My 

aim is only to  exploit  some rough similarities  between them in order to  

characterize efficient coding explanations. 
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computational or informational strategies for that task. In the first place, 
the model describes a set of alternative computational and/or 
information-theoretic strategies for the relevant task. For instance, 
Atwell and Laughlin (2001) present a set of alternative coding regimes 
that a neural population could employ for representing a given number 
of conditions. In the second place, the model shows that one of these 
strategies is the most efficient by determining that, given certain 
constraints, it optimizes some ‘design variables’. These variables 
represent parameters of information transmission which are relevant for 
the task. The model also specifies an optimization criterion for each 
design variable, that is, it determines whether it needs to be minimized or 
maximized. That a given strategy optimizes a given set of design 
variables only means these would have less optimal values (lower or 
higher, depending on the optimization criterion) if an alternative strategy 
was implemented. For instance, Attwell and Laughlin (2001) show that 
sparse coding is an optimal strategy because given a specific number of 
conditions that a system needs to represent (a constraint imposed by the 
information processing task), it minimizes (optimization criterion) energy 
consumption (the design variable) better than local coding (the relevant 
alternative strategy). In the third place, we must assess whether the 
optimal strategy and the one actually employed by the target neural 
structure line up. If there are enough similarities, we have an explanation 
of how the relevant brain structure manages to optimize the design 
variables that characterize the relevant task. 

It is important to point out that there can be some significant 
variations within this general framework. For instance, as we will see 
briefly, in some models the different strategies are not correlated with 
different values of design variables but rather with equations that relate 
these variables in different ways. Also, sometimes design variables are in 
conflict with each other. In this case, we say that there is a trade-off 
between them. But this is not necessarily so. Some models refer to a 
single design variable whose optimization is only limited by the available 
strategies and environmental constrains. What I take to be the essential 
feature of efficient coding models is defining a strategy set and showing 
how each strategy in that set modifies the behavior of design variables 
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(their values or relation to each other) in a way that is relevant to their 
optimization. This is all that is required to show that a given 
computational or informational strategy is the most efficient for a given 
task.    

 
 

2.1 Hybrid computation  
 
Chirimuuta presents an efficient coding model proposed by 

Sarpeshkar (1998) to explain neural computation. To this end, neural 
computation is compared with other known computational systems (i.e., 
with alternative computational strategies). Sarpeshkar examines how 
digital and analog computational systems differ regarding resources 
consumption and precision.  The main idea is that digital systems are 
much more expensive than analog systems to process the same amount 
of information but are also more precise, that is, they have a higher 
signal to noise ratio. Analog and digital systems fail to optimize resource 
consumption and precision at the same time. Sarpeshkar shows that 
hybrid computation, the strategy that is likely implemented by the brain, 
can optimize both parameters.  

A component of an analog system can represent many bits of 
information at a given time. This is because it produces signals that vary 
continuously. Any number of conditions can be represented by different 
physical states of this signal. In contrast, digital signals can only represent 
1 bit of information at any given time because they are all-or-nothing 
events. This means that a digital system would need as many 
components as bits of information it needs to transmit, whereas those 
bits could be transmitted by a single wire in an analogic system. 

 Despite this advantage, analog systems have the problem that their 
signals are much more susceptible of being corrupted by noise than 
digital systems. The more one increases the amount of information that 
one wants to transmit by employing a single wire the noisier will be the 
signal. This is because in order to increase its informational capacity (i.e., 
represent more conditions with a single wire) the difference between the 
physical magnitudes that codify different signals must decrease. To 
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maintain or increase precision in an analog system one needs to 
represent the same information by employing more components. 
However, this will also increase the resources required by the system.    

Sarpeshkar offers a mathematical explanation of the fact that the 
growth in resources consumption required to obtain high precision in 
analog computation is significant enough to undermine its efficiency. 
This will constitute the main part of the mathematical framework of his 
efficient coding explanation. Different strategies are represented by 
different kinds of components (digital, analog or hybrid). Sarpeshkar 
estimates power consumption, area consumption and precision (the 
design variables) for each kind of system by considering the different 
(information-theoretic) properties of the components that they employ. 
The optimization criterion for these variables is minimizing area and 
energy consumption and maximizing reliability or precision.  

In this model, strategies (i.e., component types) are not correlated 
with specific values of design variables but rather with equations that 
relate these variables in different ways. Each component type is related 
to a pair of equations, which Sarpeshkar calls “resource/precision 
equations.” One of the equations represents the trade-off between space 
consumption and precision and the other represents the trade-off 
between power consumption and precision. The optimal strategy is the 
one whose associated equations enable a system to reach the optimal 
values, that is, the maximum precision at lowest power and area cost. For 
brevity´s sake, I will just consider the trade-off between power 
consumption and precision (signal to noise ratio).   

The equations that define this trade-off3 determine a power/precision 
curve for each kind of system (Figure 1). 

                                                                 
3 See Sarpeshkar (1998), pp. 1613-1616 for the detailed characterization of the 

equations.  
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Figure 1. From Sarpeshkar (1998), the graph represents the 
behavior of power/precision equations for analog and 
digital computation. 

 
The graph in Figure 1 shows that precision in digital systems can be 

enhanced without significant power growth. However, the power 
baseline for digital systems is too high. On the other hand, analog 
systems have a low baseline of power consumption but increasing 
precision very quickly rises power levels above digital computation. 
Hybrid computation would be the solution to this trade-off between 
precision and resource consumption. Hybrid components are constituted 
by analog/digital converters which make possible to alternate between 
phases of analog and digital processing. Sarpeshkar does not offer, as 
one would expect, a power/precision equation for hybrid computation 
to show that it can achieve high precision values at low power values. 
However, this follows from the fact that hybrid links (the components of 
hybrid computation) can enhance the precision of analog processing 
stages without adding new analog components (that is, without 
significantly increasing power and area consumption) but rather by 
adding small steps of digital processing within each component.   
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Sarpeshkar explains the efficiency of neural information processing 
by arguing that it is likely that the brain implements this optimal 
computational strategy: 

 
 “Action potentials are all-or-none discrete events that 
usually occur at or near the soma or axon hillock. In 
contrast, dendritic processing usually involves graded 
synaptic computation and graded nonlinear spatiotemporal 
processing. The inputs to the dendrites are caused by 
discrete events. Thus, in neuronal information processing, 
there is a constant alternation between spiking and non-
spiking representations of information. This alternation is 
reminiscent of the constant alternation between discrete 
and continuous representations of information. Thus, it is 
tempting to view a single neuron as a D/A/D” (Sarpeshkar, 
1998, 1630).  
 

Now we can move to the discussion about how this model explains. 
As mentioned above, causal approaches often maintain that a model 
explains only if it can be used to determine how the explanandum 
changes in the counterfactual situation in which the explanans is 
different in some specific way (e.g., Woodward 2003, Kaplan 2011, 
Kaplan and Craver 2011, Levy and Bechtel 2013). That is, the 
explanatory power of a model is determined by its ability to address w-
questions. This implies that an explanatory model describes features that 
are ‘difference-makers’ for its explanandum. Usually, the relation 
between a difference-maker and a phenomenon is considered causal 
because the counterfactual situation to which the relevant w-question 
refers results from an intervention on some aspect of the explanans. An 
intervention is “an idealized, unconfounded experimental manipulation 
of one variable which causally affects a second variable only via the 
causal path running between these two variables” (Woodward 2013, p. 
46).  

However, Chirimuuta (2017) claims that Woodward’s approach can 
be generalized beyond causal explanation. Elaborating on a suggestion 
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advanced by Woodward (2003, p. 221), she affirms that properties which 
cannot be causally modified (i.e., which cannot be affected by an 
intervention) can make a difference regarding a phenomenon. One of 
the examples mentioned by Woodward is the hypothesis that the stability 
of the planets’ orbits depends mathematically on the four-dimensional 
structure of space-time. Such orbits are stable in a four-dimensional 
space-time but would be unstable in a five-dimensional space-time. 
There seems to be no possible (idealized or otherwise) intervention that 
could result in the modification of the structure of space-time. The 
question about this counterfactual situation is a non-causal w-question 
which refers to a non-causal difference-maker. Another example of a 
non-causal difference-maker is how the truth of some mathematical 
theorem counterfactually depends on the assumptions from which the 
theorem is proved (Woodward 2003, p. 220). The mathematical 
properties or facts to which these assumptions refer constitute non-
causal difference-makers regarding the properties or facts to which the 
theorem refers. A purely non-causal model explains by describing only 
this kind of difference- maker.  

Although these examples provide a rough idea of what a non-causal 
difference-maker (and a non-causal w-question) is, a more explicit 
characterization can be provided. In Woodward’s view, the class of 
counterfactual situations that can be the result of an intervention is quite 
wide. He affirms that these counterfactuals do not need to be nomologically 
or physically possible but rather only logically possible. The only 
situations that cannot be the result of an intervention are those that are 
inconsistent or incoherent. (Woodward 2013, pp. 132, 133; 2016). This means 
that, according to this approach, even contingent laws which are modally 
robust (such as basic laws of physics) can count as causal difference-
makers. In turn, purely mathematical principles can be considered non-
causal difference-makers. These principles are necessary, which means 
that alternative principles (i.e., principles that result from modifying in 
some way the actual ones) are not true in any possible world. We know 
that these alternative principles are impossible because they involve some 
kind of inconsistency or contradiction. Mathematical principles cannot 
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be modified by interventions because the relevant modifications only 
occur in counter-possible situations.  

Chirimuuta applies this notion of a non-causal difference-maker to 
Sarpeshkar’s proposal. As we saw, Sarpeshkar explains the 
implementation of hybrid computation by describing its relation to the 
trade-off between resource consumption and reliability. This trade-off is 
a crucial part of the explanans of hybrid computation and, as such, it is 
also its difference-maker. The resource/precision equations that describe 
this trade-off imply that hybrid computation can achieve optimal values 
for resource consumption and reliability (in comparison to those 
achievable by analog and digital systems). This relation between the 
trade-off and hybrid computation can be used to address a relevant w-
question about the explanandum (i.e., hybrid neural computation): If this 
trade-off did not occur then hybrid computation would not achieve 
these optimal values and therefore there would be no reason to 
implement this strategy, that is, the brain could have been a purely 
analog or a purely digital system. Chirimuuta claims that this scenario 
cannot be interpreted as the result of an intervention because the 
existence of the trade-off is not an empirical fact about the properties of 
actual objects but the result of our information-theoretic definitions of 
digital and analog coding. Given any physical system and given a fixed 
quantity of information that it needs to transmit, resource investment 
has a trade-off with the susceptibility of the signal to be corrupted by 
noise. The information-theoretic explanation of the efficiency of the 
brain informs us, according to Chirimuuta, about counterfactual 
scenarios in which the laws of information theory are different. 
Tinkering with information theory and determining its implications for 
coding systems cannot be understood as a causal intervention. Therefore, 
Chirimuuta concludes, efficient coding explanations describe non-causal 
difference-makers.  

I agree with Chirimuuta that the ability to address w-questions about 
the trade-off is relevant for understanding why Sarpeshkar’s model is 
explanatory. However, this is not sufficient to show that it provides a 
purely non-causal explanation. The model is also required to address a 
different kind of w-questions. We saw that it explains the efficiency of 
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neural information processing by showing that it implements the optimal 
strategy. I also mentioned that being optimal only means that the actual 
strategy makes the values of design variables closer to the optimal than 
any relevant alternative strategy. Therefore, determining a crucial aspect 
of the explanans (i.e., that the actual strategy is optimal) requires showing 
what values the design variables can acquire in the counterfactual 
situations in which alternative strategies are employed by the brain.  

These w-questions about alternative strategies do not involve non-
causal difference-makers in Chirimuuta’s sense. They do not refer to 
situations in which the relevant mathematical principles are different 
from the actual ones. On the contrary, what determines how design 
variables respond to an alternative strategy are the actual mathematical 
equations. An alternative computational strategy would generate less 
than optimal values in counterfactual situations in which the actual 
resource/precision equations for that strategy are true. The existence of 
less than optimal computational systems and their corresponding 
resource/precision equations is not a mathematical impossibility. Human-
made digital computers constitute a common instance of these non-
optimal information processing systems.  

In section 3, will argue that the ability to address these w-questions 
does not make an explanation causal. But before getting to this point, I 
would like to show that these questions can also be addressed by an 
efficient coding model that has a very different mathematical structure. 
This will support the idea that this is a general feature of efficient coding 
models. I will consider a model proposed by Attwell and Laughlin to 
explain the widespread implementation of distributed or sparse neural 
coding.  

 
 

2.2 Sparse coding  
 
Attwell and Laughlin (2001) explain the efficiency of neural 

information processing by developing some ideas from Levy and Baxter 
(1996), constraining them through a detailed energy budget for brain 
signaling. In order to determine the impact of different coding strategies 
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on neural energy consumption, the authors consider a system that must 
represent 100 different sensory or motor conditions. A purely local 
coding strategy is to represent each of the 100 conditions by 1 different 
active cell to denote each condition (i.e., using 100 neurons to represent 
100 conditions). Attwell and Laughlin estimate the energy expenditure of 
this coding regime by taking R to be the ATP (adenosine triphosphate, 
the molecule that carries the energy needed for neural signaling) usage 
per cell on the resting potential, and A the extra ATP usage per cell on 
active signaling (action potentials and glutamate-mediated signaling). 
This implies that the total ATP used by the system to signal 1 of 100 
conditions under this local coding regime would be 100R + A. As soon 
as we begin to depart from this local coding regime towards a sparse one, 
an increase in energy efficiency is patent. If a condition is represented by 
the simultaneous firing of 2 cells (at the same rate, with the others not 
firing), only 15 neurons are needed to represent 100 conditions. This is 
given by the equation (which I will call the “capacity/code/components 
equation” or “3C equation”) that relates representational capacity or 
number of conditions represented (R) with the number of cells or 
components of the system (n) and number of cells active to represent a 
condition (np): 

 

 

 
In our case, 3C implies that 15!/(13! 2!) = 105. When we use this 

code, the energy expenditure is 15R + 2A. If R and A are equal (the 
energy budget proposed by the authors suggests this is the case for 
neurons firing at 0.62 Hz), then this distributed representation gives a 6-
fold reduction in energy usage for transmitting the same information. 
Similarly, if a condition is represented by 3 cells firing, 3C implies that 
only 10 cells are needed to represent 100 conditions (given that 10!/(7! 
3!) = 120), and the energy expenditure is 10R + 3A, which (for R=A) is a 
further improvement of energy efficiency.  

In this model, the different values of the variable np (the number of 
active cells encoding a condition) constitute different coding strategies. 
The number of conditions represented is a constraint determined by the 
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relevant informational task. The amount of ATP invested in the 
representation of a condition at a given time is the design variable to be 
optimized. The model shows which is the optimal strategy by relating the 
strategies with the design variable. Attwell and Laughlin affirm that the 
energy used to encode a condition (R + A) is a function of n + np. As we 
saw, the 3C equation shows how these variables can be modified by 
switching the coding strategy.  Sparse coding is efficient because it can 
produce a significant reduction of n (in comparison with local coding) by 
minimally increasing np.  

We can now apply Chirimuuta’s criterion to characterize Attwell and 
Laughlin’s proposal. Although their assessment of the efficiency of 
sparse coding depends on empirical measurements of neural energy 
consumption (e.g. ATP consumption by a cell firing at a given rate and 
at resting potential) their reasoning is based on the mathematical fact 
implied by the 3C equation, namely, that the number of components 
required for encoding a given number of conditions dramatically 
decreases if we use more than one active component to encode each of 
those conditions.  Energy consumption (the design variable) depends on 
the number of components of the system, which in turn depends on the 
coding regime in the way specified by 3C. We can say that if 3C were 
false, then local codes could be optimal for systems that, for example, 
encode 100 conditions. Given that 3C is a mathematical fact, if Attwell 
and Laughlin`s model implies this conditional then it also addresses w-
questions that refer to non-causal difference-makers.   

However, this model must also address the other kind of w-questions 
(i.e., the ones about alternative strategies). Attwell and Laughlin’s model 
determines which specific values the design variable (energy usage) has in 
the counterfactual situations in which an alternative strategy (a different 
coding regime) is employed. This is precisely what Figure 2 below shows. 
The graph shows that energy usage under sparse coding is lower than in 
the counterfactual situation in which local coding is implemented. The 
model explains the metabolic efficiency of neural representations by 
showing the optimality of sparse coding, which in turn is implied by 
what happens in these counterfactual situations.  
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Figure 2. From Attwell and Laughlin (2001), the graph 
represents the relation between coding regime and energy 
usage for neurons that represent 100 conditions firing at 
0,62, 4 and 40 Hz. 

 
These w-questions concerning alternative sub-optimal strategies do 

not involve non-causal difference-makers in Chirimuuta’s sense because 
they do not refer to situations in which the relevant mathematical 
relations are different from the actual ones. On the contrary, only if we 
presuppose that 3C obtains it follows that in the counterfactual situation 
in which a neural system employs a local code it will need much more 
components to represent the same conditions (and therefore energy 
consumption will rise to less than optimal levels). In order to address 
these w-questions we need to presuppose that the actual mathematical 
relations are not altered in the relevant counterfactual situations. In what  
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follows I will assess what implications these w-questions have for the 
characterization of non-causal explanation.    

 
 

3. NON-CAUSAL DIFFERENCE-MAKERS AND COUNTERFACTUAL 

SITUATIONS 
 
In section 3.1 I explain why w-questions about alternative strategies 

are problematic for characterizing non-causal difference-makers.  
Although it seems that Chirimuuta’s criterion does not apply to strategies, 
we cannot affirm that they are causal difference-makers. In section 3.2 I 
suggest that, despite appearances, Chirimuuta’s proposal can be applied 
to these problematic cases.  

 
 

3.1 Mathematical explanation and questions about possible situations   
 
It is not obvious why the fact that efficient coding models address the 

w-questions mentioned in the previous section is problematic for 
Chirimuuta’s proposal. She affirms that causal and non-causal 
explanations are often complementary when they have closely related 
explanantia. For instance, a non-causal model can describe the optimal 
character of hybrid computation, whereas an etiological model can 
describe the selective pressures in the evolution of the brain that 
determined it to be efficient and reliable. The explanations are 
complementary because one can predict that the selective demand for 
efficiency and reliability would be optimally satisfied by hybrid 
processing. However, she maintains that this relation is not problematic 
because it is clear that the two explanantia are different and therefore, a 
purely mathematical or non-causal explanation can be isolated.  

Moreover, Chirimuuta (2017) claims that even if the non-causal 
explanation could not stand alone, we could still isolate a non-causal part 
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of an explanation4. Perhaps efficient coding models become explanatory 
only when they include information about the etiological processes that 
lead a system to the optimal strategy. Nonetheless, Chirimuuta insists 
that this would only imply a division of labor within the construction of 
a model. The causal part of the model is that concerned with etiology 
and the non-causal part is concerned with optimality or efficient 
information transmission.  

The problem is that, as we saw, the purely efficient coding part of a 
model (one that does not include any information about etiology) needs 
to describe difference-makers that, prima facie, cannot be characterized as 
non-causal. As I mentioned, efficient coding explanation requires 
determining that the actual strategy is optimal and this can only be done 
by showing how the design variables would respond to alternative 
strategies. The set of w-questions about sub-optimal alternative strategies 
is the question about the optimality of the actual strategy. That is, that a 
strategy is optimal means that alternative strategies have sub-optimal 
values. If these w-questions do not refer to non-causal difference-makers 
then a non-causal part of the explanation cannot be isolated. 

However, although strategies cannot be characterized as non-causal 
according to Chirimuuta’s criterion, they must be non-causal in some 
other sense. This is simply because very similar difference-makers 
described by Jansson & Saatsi (2017) can be found in paradigmatic cases 
of non-causal models. They argue that typical mathematical models 
explain in the same way as causal models do. They discuss proposals 
(such as the ones advanced by Lange 2013 and Pincock 2007) according 
to which mathematical models provide sui generis explanations. Their 
strategy is similar to Chirimuuta’s. They argue that Woodward’s proposal 
can be extended to mathematical explanation. They claim that the 
explanatory power of these models is determined by the fact that they 
describe difference-makers. However, the difference-makers they 
consider do not involve mathematically impossible situations. This is not 
a problem for them because they are not concerned with what makes an 

                                                                 
4 This was a point also made by Lange (2013) regarding the explanation of the 

hexagonal shape of honeycombs (Lange 2013, pp. 499–500). 
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explanation non-causal but rather with what makes abstract models 
explanatory. This is why they do not offer a criterion to distinguish 
between causal and non-causal difference-makers. However, we do need 
this criterion if we accept that the mathematical difference-makers they 
describe play an explanatory role and that mathematical explanation is 
non-causal.  

A simple example of a mathematical explanation (provided by Lange 
2013) is the explanation of why a mother fails to distribute her 
strawberries evenly among her children without cutting any. This fact 
can be mathematically explained by the facts that she has three children 
and twenty-three strawberries, and that twenty-three cannot be divided 
evenly by three. Of course, in a genuine mathematical explanation this 
last fact depends in turn on more general mathematical principles. Here 
the relevant principles are that (1) b is a multiple of a if b = na for some 
integer n, that (2) when a and b are both integers, and b is a multiple of a, 
then a is divisor of b and (3) and a is a divisor of b only if dividing b by a 
leaves no remainder. These principles explain the failure of the mother in 
the actual situation because there is no integer that could be multiplied 
by 3 to obtain 23. Lange claims that an explanation of this kind is non-
causal because the relevant mathematical principles have a stronger 
modal force than any physical law. That is, they are true even in worlds 
where all the physical laws are not. When a phenomenon is explained 
only by this kind of principles we have a purely mathematical explanation.  

 Chirimuuta (2017) claims that her proposal is a way to understand 
Lange’s idea in terms of difference-makers. For instance, the explanation 
I mentioned above would answer the question of what would happen if 
the relevant mathematical principles were false. If this were the case, 
twenty-three could be evenly divisible by three and the mother could 
distribute her strawberries evenly among her children without cutting any. 
This w-question refers to worlds which are farther from the actual one 
than those mentioned by causal w-questions. This is consistent with 
Lange’s idea that the modal strength of mathematical principles is 
relevant to understanding how non-causal models explain.   

Jansson and Saatsi (2017) agree that mathematical models refer to 
principles that are modally stronger than physical laws, but they consider 
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that this does not determine their explanatory power. They claim that 
mathematical models explain by addressing w-questions that, like the 
ones I mentioned in the previous section, do not refer to counterpossible 
situations. For instance, the mentioned explanation answers the question 
of what would happen if the mother had twenty-one strawberries. This 
alternative fact and the mentioned mathematical principles imply that the 
mother would be able to distribute the strawberries evenly among her 
children without cutting any. This is because there is an integer 7 that 
can be multiplied by 3 to obtain 21 and 3 and 21 are integers. From this 
it follows that 3 is a divisor of 21 and therefore dividing 21 by 3 leaves 
no reminder. This w-question shows that the number of strawberries is a 
difference-maker for the fact that the mother cannot distribute them 
evenly among her children. Jansson & Saatsi (2017) claim that difference-
makers of this kind account for the explanatory power of mathematical 
models.  

The same idea can be applied to other of the examples discussed by 
Lange (2013) and introduced by Pincock (2007). The explanation of the 
fact that no one has ever managed to cross all of the bridges in the city 
of Königsberg just once, without ever doubling back over a bridge, 
depends on the characterization of the set of bridges as a network of 
nodes and edges in graph theory. Here the relevant mathematical 
principle is that a necessary and sufficient condition for a Eulerian path 
(that is, the kind of path which allows one to pass through each node 
only once) is that the graph is connected (that is, there is a path between 
every pair of vertices) and that is has exactly zero or two nodes of odd 
degree (where the degree of a node is the number of edges incident to it). 
The impossibility of passing through all bridges by crossing them only 
once is explained by this principle and the fact that each of the four 
nodes in the graph that represents the configuration of the bridges is 
touched by an odd number of edges.  

Euler´s principle is modally stronger than any physical principle and 
therefore provides a non-causal explanation in Lange’s sense. Also, this 
explanation has the implication that one could cross all the bridges just 
once if Euler’s principle were false. The explanation answers 
Chirimuuta’s w-questions about mathematically impossible situations. 
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However, as Jansson and Saatsi (2017) point out, it also can be used to 
address the question of what would happen in the (mathematically 
possible) situation in which each of the four nodes was not touched by 
an odd number of edges. Euler’s principle implies that in this 
counterfactual situation if would be possible to pass through each bridge 
only once.  

More generally, mathematical explanations always employ principles 
which include variables that can be modified in alternative but possible 
situations. Given that these hypothetical modifications affect the 
explanandum in some way, the actual values of these variables can be 
considered genuine difference-makers. However, it is clear that these 
difference-makers do not make these explanations causal. The 
mentioned examples are paradigmatic cases in which the explanans only 
describes mathematical relations. This means any adequate criterion must 
imply that these difference-makers are non-causal. In the next section I 
will suggest how Chirimuuta’s proposal can be applied to these cases.  

 
 

3.2 A possible solution: Invariances and modulation  
 
The key to understanding non-causal difference-makers lies in the 

close relation that variables and principles or generalizations have within 
Woodward`s proposal. The difference-making relations that constitute 
an explanation are characterized in terms of variables related by 
generalizations. An explanandum M is the statement that some variable Y 
takes the particular value y. In turn, the explanans E is constituted by the 
statement that some variable X takes a particular value x and also by a 
generalization G that relates the values of X and Y.  

The condition that Woodward proposes for E to be minimally 
explanatory (besides the fact that x and y must be the actual values of X 
and Y, respectively) is that it must be the case that G determines what 
the value of Y is when X takes the value x and G correctly describes the 
value y' (where y' ≠ y) that Y would acquire if some intervention changes 
the value of X from x to x' (where x ≠ x') (Woodward 2003, pp. 202 and 



 Varieties of difference-makers  112 

Manuscrito – Rev. Int. Fil. Campinas, v. 42, n. 1, pp. 91-119, Jan-Mar. 2019. 

203). That is, G must correctly describe the shape of the difference 
making relation between X and Y. 

Woodward mentions that the generalization G that figures in an 
explanation has some degree of ‘invariance’ (Woodward 2003, ch. 6). 
Difference-making relations are about variations: they are constituted by 
the fact that a dependent variable (or set of variables) would change if 
the independent variable (or set of variables) is modified. However, these 
variations would not contribute to the control of the target system unless 
the relations themselves are stable or invariant (p. 253). The 
generalization G which specifies how the dependent variable is modified 
by the independent one must remain the same at least for some sub-set 
of counterfactual situations in which the independent variable is 
intervened on.   

These considerations imply that the value of an output variable Y is 
determined both by the value of an input variable X and by a 
generalization G that shapes the relation between X and Y. One could 
wonder how G’s influence on the target system should be understood. A 
parsimonious answer to this question is implied by Chirimuuta`s 
proposal: not only the contribution of X but also the contribution if G is 
determined by non-actual (either counterfactual or counterpossible) 
situations. Invariances can also be understood in terms of variations. 
These two complementary contributions can be characterized by using 
the distinction, often found in neuroscience, between driving (or 
triggering) and modulating a response.  

The response V1 of, for instance, a neuron (e.g. variations in its spike 
rate) can be said to be driven by a given variable V2 (e.g., the spike rate 
of another neuron or the charge of an electrode) according to a 
generalization G when changing the value of V2 causes the specific 
variations in V1 determined by G. In contrast, when variations in V1 are 
not caused by variations in a variable V2 but rather by changing G, we 
can say that the relation between V1 and its driving variable V2 is 
modulated (e.g., Silver 2010). Following this terminology, we can say that 
the value of an output variable Y is explained by two kinds of 
(counterfactual or counterpossible) conditionals: those that describe how 
Y is driven by modifying the input variable X and those that describe 
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how the relation between X and Y can be modulated by modifying a 
generalization G. 

A crucial aspect of these difference-makers is that although they can 
be modified independently, they are very closely related. We saw that the 
counterfactual conditionals that describe the difference-making relation 
between two variables also involve the generalization or invariance that 
relates them. It is G which determines that Y would have a non-actual 
value y' if the value of X was x'. Following the idea that invariances are 
simply difference-makers, we can understand this determination of Y by 
G as referring to the (counterfactual or counterpossible) conditional that 
if the generalization was G' (where G' ≠ G), then the value of Y would 
be y'' (y''≠ y') even if X was x'. This means that conditionals describing 
G’s modulation are presupposed by those that describe the driving 
relation between X and Y. That is, the driving relation implies a role for 
G which can be articulated in terms of a modulation process.  

This characterization of the relation between driving and modulation 
can be used to understand how the problematic difference-makers 
characterized in the previous sections are, after all, non-causal in 
Chirimuuta`s sense. I argued that the conditionals that describe G’s 
modulation are part of the characterization of the difference-making 
relation between two variables X and Y that appear in G.  When G is a 
mathematical principle, these conditionals refer to counterpossible 
situations. If counterpossible conditionals are the hallmark of non-causal 
relations, variables in mathematical principles can be said have relations 
of this kind.  Their full characterization involves the variation of 
elements that cannot be manipulated.  

The input-output relation between the spike rates R1 and R2 of two 
neurons in glutamatergic signaling is causal not only because R2 can be 
manipulated by manipulating R1, but also because the shape of this 
relation (a generalization G) can be manipulated, for instance, by means 
of dopaminergic stimulation.  Dopamine modulates this relation by 
changing the state of a post-synaptic receptor. The neurotransmitters 
required to drive (as opposed to modulate) the response of a neuron is 
either glutamate (often when the input is excitatory) or gamma-
aminobutyric acid or GABA (usually, when the input is inhibitory). The 
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N-methyl-D-aspartate (or NMDA) receptor is a glutamate receptor 
found in nerve cells. When the dopamine D1 receptors are activated in a 
neuron, its responses mediated by activation of NMDA receptors are 
often potentiated. That is, the same pre-synaptic input causes a stronger 
post-synaptic response. In other words, the shape of the input-output 
relation (i.e., a generalization G) is modified (Konradi et al. 2002, pp. 124, 
125). As I mentioned, this modulatory process is a constitutive part of 
the driving relation between R1 and R2. Given that in this case the 
modulation can result from the manipulation of the target system, we 
can say that the driving relation is purely causal.  

In contrast, mathematical variables are non-causal difference-makers 
because their driving relations are constituted by non-manipulable 
generalizations. This idea can be applied to efficient coding explanations. 
The mathematical principles that relate a set of strategies to design 
variables cannot be manipulatively modulated. As we saw, In Attwell and 
Laughlin’s model 3C is an equation that determines how changes in 
coding strategy modify the number of components in the system. Given 
that 3C is purely mathematical, coding strategies are non-causal 
difference-makers. Their influence on the system is not only 
characterized by the counterfactual conditionals describing the relation 
between the variables in 3C, but also by the counterpossible conditionals 
describing the modulation of 3C. The later conditionals are presupposed 
by the former.   

In Sarpeshkar’s model the idea is applied in a slightly different way. 
We saw that different computational strategies (different kinds of 
components) do not modify the values but rather the mathematical 
relation between design variables. That is, they determine different 
power/precision and area/precision equations. As I mentioned, the fact 
that the brain satisfies a given equation is not a mathematical necessity. If 
its components were purely digital it would satisfy the power/precision 
equation for digital computation. However, the fact that a given 
component type (digital, analog or hybrid) determines the instantiation 
of a given equation does depend on (necessary) information-theoretic 
definitions. For instance, the fact that digital systems have a 
power/precision equation with the form Pt = Lplog2 (1 + SN), depends in 
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part on the definition of a digital component as one that only represents 
1 bit of information at a given time, Shannon’s definition of information 
as - logb (p) and the Shannon-Hartley theorem C = Blog2(1+ SN), which 
determines the maximum rate at which information can be transmitted 
over a communications channel of a specified bandwidth B. Given that 
in Sarpeshkar’s equation the relevant parameter is not bandwidth but 
power, B is replaced by Lp, which is determined by the definition of power 
consumption in a digital system as NfCVDD2, where N is number of 
devices switching per clock cycle, f is the clock frequency, C is the 
average load capacitance and VDD is power supply voltage. By modifying 
these kinds of theoretical definitions one can non-causally modulate the 
relation between computational strategies and resource/precision 
equations. These strategies are non-causal difference-makers because the 
way in which they determine the implementation of an equation must be 
partly characterized by a non-causal ‘modulation’ of relevant 
mathematical definitions.  

More generally, strategies in efficient coding models are non-causal 
difference-makers because their driving relations are constituted by non-
manipulable generalizations. That is, the must be characterized by 
counter-possible conditionals. This means that, following Chirimuuta, we 
can say that efficient coding models provide non-causal explanations. 

 
 

4. CONCLUSION 
 
Chirimuuta (2017) proposes an interesting middle ground between 

pluralism and monism about explanation (and specifically, about 
neurocomputational explanation). On the one side, (unlike Lange’s and 
Pincock’s proposals) she claims that there is a common element which 
makes both causal and non-causal models explanatory (i.e., difference-
makers). On the other side, (unlike Jannson and Saatsi’s approach) she 
affirms that these models can be distinguished by the kind of difference-
maker they describe. I argued that efficient coding models describe 
difference-makers that prima facie cannot be characterized as non-causal 
in her sense. However, given that (as Jansson and Saatsi point out) these 
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figure in paradigmatic mathematical models, they must be characterized 
as non-causal in some sense.  

I argued that, despite appearances, Chirimuuta’s view can be applied 
to these cases if it is complemented with some neglected aspects of 
Woodward’s proposal. Specifically, I proposed that the difference-
making relations between variables presuppose the counterfactual or 
counterpossible conditionals required to characterize the role of the 
relevant invariances. This means that we can follow Chirimuuta in the 
idea that counterpossible conditionals are the hallmark of non-causal 
relations. There is no difference-making relation in a mathematical 
explanation which does not presuppose them in some way.  
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