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Grain growth theories normally describe a grain using the concept of ‘grain radius’. However, this assumption 
bypasses all topological information relating to the grain, viz., the number of its faces, edges, etc. This study, by 
contrast, introduces a new methodology, treating normal and abnormal grain growth in three dimensions in terms 
of both metrical and topological properties of the grains.
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1. Introduction

The relationship between grain topology and boundary curvature 
in polycrystalline networks was recognized early on in research con-
ducted on grain growth and soap bubble. Curvature driven boundary 
migration obeys the well-known fundamental kinetic equation

G = –MgH	 (1)

where G is the boundary velocity, γ is the boundary free energy per 
unit of area, M is the boundary mobility, and H is the boundary’s 
mean curvature. The minus sign is included in Equation 1 because 
the boundary always moves towards its center of curvature.

Unfortunately, a simple and exact topological expression relating 
the curvature to the number of faces does not exist for grain growth 
in three dimensions. Therefore, grain growth theories generally are 
based on the metrical concept of the equivalent ‘grain radius’. The 
‘grain radius’ equals the radius of a sphere with its volume equal to 
the volume of the polyhedral grain. Theories based on grain radius 
were developed and provide valuable insights into the evolution of 
polycrystals1. An obvious limitation of this metrical approach is that 
it overlooks topological information, notably, the number of faces 
comprising a grain.

Recently, one of the authors (MEG) devised an exact analytic 
method to represent irregular 3-dimensional networks using an infi-
nite set of regular polyhedra with uniformly curved identical faces. 
These regular polyhedra define the ‘average N-hedra’ or ANHs2. 
Every irregular polyhedron with a given number of faces, N, may 
be represented topologically by a unique highly-symmetrical 
polyhedron selected from the set of ANHs. ANHs are constructed 
in such a manner that they satisfy exactly the average topological 
constraints imposed by a space-filling network in three dimensions. 
This approach greatly simplifies the analysis of materials configured 
as real irregular networks, such as polycrystals, as all the geometric 
properties of ANHs can be calculated exactly. ANHs may, therefore, 
be used as ‘proxies’ for analyzing real irregular network grains, al-
lowing the rigorous treatment of related problems pertaining to such 
network structures2-7. 

The representation of grains with ANHs (See Equations  2-4 
below) suggests that a grain may shrink or grow by two distinct 

processes, illustrated in Figure 1: topological and metrical. In the 
topological process the grain shrinks or grows solely by losing or 
gaining faces, respectively, and the vertex-to-vertex distance, λ, 
remains constant. By contrast, during the metrical process the grain 
shrinks or grows solely by changing its gauge, λ, without losing or 
gaining faces. In Figure 1 one starts with a 6-hedron with a vertex-to-
vertex distance equal to λ + ∆λ, shown in the upper right of Figure 1. 
This grain can decrease its volume by losing faces to become, say, 
the 4-hedron on the top left of Figure 1 exhibiting the same vertex-
to-vertex distance, λ + ∆λ. This is indicated by the arrow labeled ‘T’ 
for topological process. Another possibility is that the 6-hedron may 
decrease its volume by just decreasing its vertex-to-vertex distance 
from its original value, λ + ∆λ, to a smaller value, λ. In the metrical 
process the 6-hedron merely becomes a smaller 6-hedron as shown 
on lower right-hand side of Figure 1. This process is indicated by 
an arrow labeled “M” for metrical process. Finally, the grain might 
shrink by a combination of the two processes: losing faces and also 
decreasing its vertex-to-vertex distance. This combined process is 
indicated by the arrow labeled ‘T + M’ in Figure 1. 

In this paper we introduce a new methodology to treat normal 
and abnormal grain growth. We use the ANH formalism instead of 
the assumption of equivalent grain radius. The ANHs are employed 
here as proxies, or topological representatives, in lieu of the actual 
space-filling irregular polyhedral grains. Application of ANHs leads 
to a deeper quantitative understanding of the topological and metrical 
changes that occur during normal and abnormal grain growth. 

2. Construction and Properties of ANHs

The construction of ANHs has been described in detail in earlier 
publications2-7. Two ANHs, one with four faces, the 4-hedron, and 
another with six faces, the 6-hedron, are illustrated in Figure 1. 

The curvature, H, area, A, and volume, V, of ANHs may be 
expressed as a product of a topological factor and a metrical scale 
factor, or gauge, viz.,

H(N, l) = h(N)l–1	 (2)
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A(N, l) = a(N)l2	 (3)

V(N, l) = v(N)l3	 (4)

The scale factor or linear gauge, λ, appearing in Equations 2-4 
is chosen here as the distance between nearest neighbor vertices on 
these regular polyhedra. 

Equation 4 shows that the volume of an ANH is a product func-
tion of two single valued functions, v(N) and λ3. These functions and 
their correspondent independent variables N and λ are independent of 
each other. In other words, a variation in the volume can be brought 
about by independently varying either N or λ.

Expressions for topological factors corresponding to the (di-
mensionless) curvature, h, area, a, and volume, v, are not given here 
for space reasons. But full details of the structure and mathematical 
properties of ANHs may be found elsewhere2-5.

It is important to mention that the mean curvature, H, is found 
to be positive for N ≤ 13, and negative for N ≥ 14. The exact non-
integer value of N at which H changes sign is N

C
 = 13.397332571… 

We define the ‘N
C
-hedron’ or ‘critical ANH’, as the ANH exhibiting 

the critical number, N
C
, of flat faces, for which H = 0. Thus, all ANHs 

with N ≤ 13 have convex faces and tend to shrink, whereas all ANHs 
with N ≥ 14 have concave faces and tend to grow. Another property 
of the critical ANH that will be used in what follows is its volume, 
V

C
 = v

C
λ3, where v

C
 = 9.8703795….

3. Topological and Metrical Components  
of Grain Growth

Two main assumptions are needed in the analysis. The first is 
that a polycrystal can be represented by ANHs. The second is that 

the linear gauge of each ANH is, to a first approximation, equal to 
the average linear gauge of the grain network, λ. 

The implied rate of change in grain volume may be expressed 
as a total differential of the independent metric and topological vari-
ables, namely,

	 (5)

Inserting Equation 4 into Equation 5 one obtains:

	 (6)

where τ = Mγt, is taken as time. The first term on the right-hand side 
of Equation 6 is the topological contribution to grain growth, whereas 
the second term is the metrical contribution.

We assume that during grain growth the boundary motion is gov-
erned by Equation 1. For our purposes it is convenient to find the rate 
of volume change from Equation 1 using the well-known Cahn-Hagel 
equation, G = (dV / dt) / A, one obtains for normal grain growth

	 (7)

It is assumed that abnormal grains can be represented by ANHs. 
For abnormal growth in a pinned matrix, matrix grains are pinned by a 
positive interaction force, F > 0, per unit boundary area, which may be 
written as F = γZ > 0. Here Z represents some reciprocal length scale, 
allowing F to be considered as a ‘back pressure’ opposing the pressure 
exerted by the boundary curvature itself. The pinning force, of course, 
always resists boundary motion, and arises naturally in polycrystals, 
often as a result of the presence of a fine particle dispersion8. The 
pinning force is normally reported with the total boundary curvature 
(κ

1
 + κ

2
) whereas in this paper we use the boundary curvature defined 

as half of this value, 1/2(κ
1
 + κ

2
). For this reason, in what follows we 

use Z/2, instead of Z, for the pinning force to insure consistency with 
published papers on this subject. The resultant grain boundary velocity, 
G, when pinning is present, may be expressed as

G = gM(– H – Z/2)	 (8)

One may solve Equation 8 for the rate of change of abnormal 
grain volume, V

A

	 (9)

where H
A
 and A

A
 are the grain boundary curvature and area of the 

abnormal grain, respectively.
This rate laws, Equations 7 and 9 imply that boundary migra-

tion remains unhindered by the ensuing series of topological events. 
In other words, the topological processes are not the controlling, 
or slow kinetic steps. Topological changes on a grain, such as face 
creation, switching, and face disappearance, occur as often as the 
network requires, so that rate of change in volume conforms to the 
predictions of Equations 7 or 9. This kinetic assumption is implicit 
in the equivalent grain radius model. 

Combining Equations 7 and 9 with Equation 6 allows to obtain 
differential equations for the change in number of grain faces as a 
function of time.

For normal grain growth

	 (10)

Figure 1. The 6-hedron with a vertex-to-vertex distance equal to λ + ∆λ, 
shown in the upper right can decrease its volume by losing faces to become the 
4-hedron on the top left exhibiting the same vertex-to-vertex distance, λ + ∆λ. 
This is indicated by the arrow labeled ‘T’ for topological process. Another 
possibility is that the 6-hedron may decrease its volume by just decreasing its 
vertex-to-vertex distance from its original value, λ + ∆λ, to a smaller value, λ. 
In the metrical process the 6-hedron merely becomes a smaller 6-hedron as 
shown on lower right-hand side. This process is indicated by an arrow labeled 
‘M’ for metrical process. Finally, 6-hedron might shrink by a combination of 
the two processes: losing faces and also decreasing its vertex-to-vertex distance. 
This combined process is indicated by the arrow labeled ‘T + M’.

T

M



Vol. 10, No. 4, 2007 Topological and Metrical Aspects of Normal and Abnormal Grain Growth 373

where instead of time λ that is a function of time for normal grain 
growth has been used. The metrical rate remains a constant during 
self-similar normal grain growth, via the well-known parabolic law, 
dλ2 / dτ = constant > 0.

During abnormal grain growth in a fully pinned matrix, the matrix 
grains are immobilized by pinning. Therefore the vertex-to-vertex 
distance between neighboring matrix grains remains fixed during 
abnormal grain growth, and equal to the length scale, λ. The metrical 
rate therefore is equal to zero for abnormal grain growth in pinned 
matrix, dλ2 / dτ = 0. This means that only the topological contribution 
remains. In other words, in a fully pinned matrix an abnormal grain 
can only grow by gaining faces. Such a seemingly obvious result has 
never to our knowledge been pointed out before. 

The corresponding differential equation for abnormal grain 
growth in a fully pinned matrix becomes

	 (11)

where τ
A
 = (Mγ / λ2)t. The subscript “A” will be dropped from τ

A
 in 

what follows, for simplicity.

4. Quantitative Analysis of Topological and 
Metrical Components of Grain Growth 

In order to separate the two types of contributions to volume 
change: metrical and topological one must know the value of dλ2 / dτ. 
Rios and Glicksman7 have shown that dλ2 / dτ = 0.229. Using this one 
may return to Equation 6 and segregate the topological and metric 
contributions to grain volume change. The topological contribution 
is given by

	 (12)

and the metric contribution is given by

	 (13)

The total grain volume change is the sum of both contributions, 
namely, Equation 6.

Each factor is plotted as a function of the number of faces in 
Figure 2 for λ = 1. 

Figure 2 shows that the total grain volume change (See  ‘T + 
M  -  curve’ in Figure 2), as expected from our ANH studies, de-
creases for grains with positive curvature, i.e., grains with less than 
N

C
 = 13.397 faces, and increases for grains with a greater number 

of faces. The metric contribution(See ‘M - curve’ in Figure 2) is 
always positive. It increases with an increase in the number of grain 
faces. Grains with a large number of faces tend to have a large metric 
contribution whereas grains with a small number of faces tend to 
have a small metric contribution. The topological contribution (See 
‘T - curve’ in Figure 2) behaves in the opposite way, it is always nega-
tive and its absolute value decreases with an increase in the number 
of grain faces. Close to the cut-off grain, grains grow almost only 
by an increase in their vertex-to-vertex distance. Conversely, at the 
lowest number of faces grains tend to decrease their volume almost 
exclusively by losing faces. 

Finally, the trajectory of a certain grain in (N, V) space can be 
obtained first, integrating Equation 10 

	 (14)

where N
0
 is the number of faces of a certain grain at λ = λ

0
. Equa-

tion 13 is plotted in Figure 3 for N
0
 = 10, 20 and 30. As expected the 

number of faces decrease with λ irrespective of the grain having N 
larger or smaller than N

C
.

Inserting Equation 13 into Equation 4 one obtains the grain 
volume as a function of its number of faces

	 (15)
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Figure 2. The total grain volume change ‘T + M - curve’ decreases for grains 
with positive curvature, i.e., grains with less than N

C
 = 13.397 faces, and 

increases for grains with a greater number of faces. The metric contribution, 
‘M - curve’ is always positive. It increases with an increase in the number of 
grain faces. Grains with a large number of faces tend to have a large metric 
contribution whereas grains with a small number of faces tend to have a small 
metric contribution. The topological contribution, ‘T - curve’ behaves in the 
opposite way, it is always negative and it decreases with an increase in the 
number of grain faces.
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Figure 3. Number of faces of a grain, N, as a function of vertex-to-vertex 
distance, λ, for different values of the initial number of faces, N

0
. Grains with 

initially larger number of faces take a much longer time, i.e., larger increase 
in λ, to disappear. 
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Equation 15 represents the trajectory of a grain, initially with 
N

0
 faces, with in (N,V) space. The trajectories calculated from 

Equation 15 for N
0 
= 20 and N

0 
= 30 are shown in Figures 4a and b, 

respectively. The grains initially increase their volumes because their 
boundary curvature is negative, N > N

C 
= 13.397…, but lose faces. 

Their volumes eventually reach a maximum as N tends to N
C
. From 

then on their boundary curvature changes sign and they start to shrink. 
Notice that since dV > 0 for N > N

C
 and dV < 0 for N < N

C
, dV = 0 for 

N = N
C
 and therefore the maximum volume always occurs at N = N

C
. 

However the magnitude of the maximum volume depends strongly 
on N

0
. As shown in Figures 4a and b, the grain with N

0 
= 30 reaches 

a much larger maximum volume before it reaches N = 13.397 than 
the grain with N

0 
= 20. In this way, even grain with initially concave 

faces may eventually disappear as required by an overall decrease in 
number of grains per unit of volume.

5. Abnormal Grain Growth Kinetics  
in a Pinned Matrix 

Equation 11 allows the determination of N
A
 as a function of the 

dimensionless time, τ = (Mγ / λ2)t. Separating the variables in Equa-
tion 11, and integrating from τ = 0, when N = N

A0
, to an AGG time, 

τ, when N = N
A
, yields the relationship between the number of faces 

added to the abnormal grain at time τ,

	 (16)

In order to illustrate this topological aspect of abnormal grain 
growth we choose as the abnormal grains one initially with N

A0
 = 41, 

and another with N
A0

 = 100 faces. The pinning coefficient is selected to 
be –Zλ/2 = h(40), so that abnormal grain growth initiates if N

A0
 > 40. 

Note that the value for the mean curvature, H, for a 40-sided ANH 
with λ = 1 is h(40)= –0.274—a value obtained from Equation 2. 

Figure 5 shows the increase in the number of faces, N
A
, of an 

abnormal grain as a function of dimensionless time, τ, for different 
initial values of the number of faces on the candidate abnormal grain. 
The ratio of the spherically equivalent grain radius of the abnormal 

grain, R
A
, to the spherically equivalent mean grain radius, R

M
, is also 

plotted as the right-hand ordinate, for comparison.

6. Conclusions

A new methodology was introduced to treat normal grain growth. 
Normal grain growth was analyzed in terms of coupled topological 
and metrical processes with the help of ANH formalism. We found 
that for normal grain growth large grains, N > N

C
 = 13.397…, increase 

their volume by increasing their metric component even though they 
lose faces. On the other hand, smaller grains, N < N

C
 = 13.397…, 

tend to decrease their volume by losing faces even though their metric 
component increases. For abnormal grain growth in a pinned matrix 
the metric process is not possible and the abnormal grain grows 
exclusively by gaining faces, a topological process.

Figure 5. Increase in the number of grain faces, N
A
, as a function of dimen-

sionless growth time, τ, for abnormal grains with different initial number of 
faces, N

A0
 = 41 and N

A0
 = 100. Predictions based on Equation 15.
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0
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 = 30. Grains with initially larger number of faces reach much higher volumes before they 

start to shrink.
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Thus, by considering the topological details of polyhedral grains, 
important information is added to our understanding of the princi-
ples of normal and abnormal grain growth not provided by previous 
methodology that often approximated polyhedral grains by a sphere 
with equivalent volume.
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