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This study deals with estimation of fatigue lives of bituminous mixtures using artificial neural 
networks. Different types of fly ash were used as filler replacing agents in a dense bituminous mixture. 
Fatigue tests were performed using repeated load indirect tensile test apparatus under controlled stress 
conditions. For determination of fatigue life, the initiation of macro crack was accepted as the main 
criteria to terminate the test. The full-scale tests on asphalt pavement sections are very expensive 
and these tests require many years in order to be completed and sometimes do not end up with solid 
conclusions. Therefore, the determination of fatigue lives of bituminous mixtures in the laboratory 
environment is very important. This study used the experimental data as training set and, with proposed 
neural network architecture, very reasonable estimates of fatigue lives of bituminous mixtures have 
been obtained. The proposed approach provides real economy, time saving and allows observing the 
effect of fly ash replacement and composition on the mechanical properties of mixtures such as fatigue 
lives and their estimations without carrying out destructive tests.
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1.	 Introduction
Fatigue in asphalt concrete pavements appears as 

cracking on the surface of the pavement. Whether it is a 
highway or an airport pavement, flexible pavements should 
be designed in such a manner that the amounts of distress 
or deterioration during the service life are to be minimized. 
Flexible highway pavements, which are subjected to various 
types of axle loads and environmental conditions, should 
be designed adequately in order to be able to achieve the 
desired performance.

There are numerous models of varying sophistication, 
which have been developed in order to predict the fatigue 
behaviour of asphalt concrete including elastic, viscoelastic, 
elastoplastic, viscoplastic and crack models1. One of the keys 
to obtaining appropriate asphalt mixture properties for use 
in one model is to use testing modes which induce stress 
states that are similar to those experienced by the asphalt 
concrete layer.

The common testing modes used in the laboratory for 
fatigue evaluation are mainly investigated in a detailed 
manner in the paper written by Matthews et al. which can 
be listed below2

a)	repeated flexure test;
b)	direct tension test;
c)	diametral repeated load test;
d)	dissipated energy method;
e)	fracture mechanics test;
f)	repeated tension or tension and compression test;
g)	triaxial repeated tension and compression test;
h)	repeated flexure test on elastic foundation;

i)	wheel track test (laboratory); and
j)	wheel track test (field).
A fatigue model has also been developed for asphalt 

mixtures using the elastic-viscoelastic correspondence 
principle and continuum damage mechanics3. Comprehensive 
field and laboratory studies were carried out in order to 
characterize the crack growth rate of asphalt mixtures 
using the Superpave indirect tension tests4. Recently, a new 
method in order to determine the failure of the repeated 
flexure test was proposed based on the dissipated energy5. 
In addition to the traditional fatigue approach and fracture 
mechanics approach, damage mechanics is also applied to 
asphalt mixtures to characterize their fatigue behaviour6.

The service life of flexible pavements can be improved 
by modifying the asphalt mixtures by polymer modifiers. 
Although application of polymer modifiers is a very 
effective method to reduce the fatigue cracking, considerable 
reduction of rut depths and thermal cracking, this solution 
brings an extra cost in the overall design. In the relevant 
literature, it was reported that application of fly ash improves 
the mechanical properties of dense bituminous mixtures7-18. 
Therefore using this waste material in order to improve the 
mechanical properties of the bituminous mixture provides 
real economy when compared with polymer modifiers.

Fly ash is finely divided residue of the combustion 
of pulverized coal. Considerable amounts of fly ash are 
generated by coal-fired electric and steam generating plants. 
This waste stream creates a big environmental problem 
related to handling and storage of this material. Fly ash has 
been extensively utilized in cement and concrete. There are 
some other applications of fly ash in highway engineering 
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such as soil and road base stabilization, flowable fill, 
grouts, structural fill and asphalt filler. This study is mainly 
concerned with application of fly ash as an asphalt filler and 
prediction of the fatigue life of the asphalt mixtures. The 
unique spherical shape and particle size distribution of fly 
ash makes it an effective mineral filler in hot mix asphalt 
applications. The usage of fly ash as an asphalt filler is still 
very limited and comprises approximately 0.5% of overall 
fly ash application in the construction industry19. Use of fly 
ash in asphalt provides significant advantage over polymer 
modifiers. Asphalt modification by using polymers is an 
expensive process and needs skilled workmanship and 
special equipment. Also, for developing countries, asphalt 
modification with polymers means more dependence 
on developed countries for the transfer of technology, 
know-how, and, most importantly, importation of patented 
modifiers. The importance of using waste materials, such 
as fly ash, in the modification of asphalt-aggregate mixtures 
comes into the scene at this point. Together with the 
economic considerations, using fly ash in asphalt mixtures 
alters the mixture behaviour in a very beneficial way17. 
Also, this approach results in a considerable reduction of the 
volume of coal combustion products that must be disposed 
in landfills and, at the same time, results in conservation of 
other natural resources.

There are numerous apparatuses for determination of 
fatigue life of asphalt2,20. The repeated load indirect tensile 
test is a commonly used tensile test1,17. Most of early tests 
have been reported for concrete or mortar. Currently, this test 
is applied to cement-treated gravel, lime-soil mixtures and 
asphalt-stabilized materials. The test involves the loading of 
a cylindrical specimen with a compressive load applied to 
two opposite sides. This results in a relatively uniform tensile 
stress acting perpendicular to and along the diametral plane 
of the applied load17. Finally, a splitting failure is generally 
occurring along the diametral plane21. Under the applied 
force, perpendicular and horizontal stresses, elastic modulus 
and strain values can be easily calculated. The reason lying 
behind the fact of choosing standard Marshall specimens is; 
these types of specimens can be fabricated in a very easy 
manner in any pavement laboratory environment through 
the world. Also these 102 mm diameter and approximately 
63.5 mm long specimens are very suitable and can be easily 
tested in any universal testing machine and because of the 
easiness of the preparation of these specimens, it is possible 
to test many of them in a reasonable amount of time to arrive 
at solid conclusions.

The fatigue life can be determined from the reduction 
of the elastic modulus value to a limiting value, defined 
as a fraction of the initial value (generally 50%) or as a 
number of load repetitions that cause the first crack to 
arise in the specimen22. In this study, the UMATTA tester 
has been utilized23. UMATTA is a testing system that is 
used to find the elastic modulus, permanent and elastic 
deformations of Marshall specimens. The system operates 
automatically and is controlled with the help of a personal 
computer and software called UMAT. The parameters 
such as the applied load level, load repetition, the time to 
reach maximum loading level are given as an input before 
starting the test. While the test is being carried out, with 

predefined intervals, the elastic and plastic deformations 
are recorded and tensile stress, resilient strain, and elastic 
modulus values are calculated. The experiment is conducted 
in a temperature-controlled unit and the interior and surface 
temperature of the specimen is continuously recorded. Based 
on these experimental results, the fatigue life of asphalt 
pavements has been modelled in laboratory conditions 
and extensive tests have been conducted to investigate the 
effect of fly ash replacement on mixture properties. The aim 
of these experiments was to model the fatigue or alligator 
cracking on the pavement structure. With the help of the 
UMATTA tester, fatigue lives of Marshall specimens have 
been obtained23. The fatigue lives were used as output values 
and some of the deterministic physical properties of the 
asphalt mixtures were used as input parameters. By utilizing 
artificial neural network techniques, the fatigue lives of 
Marshall specimens were estimated and these values were 
compared to the actual test results.

2.	 Architecture of Artificial Neural 
Networks
An artificial neural network is an interconnected 

group of artificial neurons that uses a mathematical or 
computational model for information processing based on 
a connectionist computation approach24. In most cases, the 
artificial neural network is an adaptive system that changes 
its structure based on external or internal information that 
flows through the network. In practical terms, the neural 
networks are non-linear statistical data modelling tools. 
They can be used to model complex relationships between 
the inputs and outputs or to find the patterns of data24. The 
power of artificial neural networks in modelling complex 
relationships between the inputs and outputs is useful for 
the modelling of the fatigue behaviour of asphalt concrete. 
Predicting the fatigue life of asphalt concrete based on 
experimental data is a very important problem. Artificial 
neural networks can filter out the noise in the experimental 
data set yet enabling to derive complex relationships and 
associations. So, this advantage of artificial neural networks 
has been used in the reported study.

3.	 Developing the Artificial Neural Network 
Model
In order to develop the artificial neural network model, 

a very precise and sound data set is required. The artificial 
neural network modelling consists of two main steps. First, 
the network has to be trained with the sufficient amount of 
data obtained in the experiments. There are some important 
rules that must be followed in the training process24. The 
next step involves the testing of the network with a new 
data set that was not used in the training process to verify 
the model. Finally, with developed model, the estimation of 
asphalt fatigue lives can be performed without carrying out 
actual laboratory tests. Artificial neural network applications 
are treated as black-box applications in general. However 
the studies carried by the author and colleagues in the recent 
years open this black box and introduces the artificial neural 
network applications in closed form solutions25-27.
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The input variables of the artificial neural network 
model are some of the deterministic physical properties 
of the asphalt concrete obtained by the Marshall design. 
These are bitumen content, specimen height, unit weight 
of the mixture, the theoretical unit weight of the mixture 
and total air void values. The reason behind choosing 
these 5 very “basic” parameters can be explained further 
as follows. For example, voids in mineral aggregate values 
(V.M.A.) are scattered in such a limited range that, when 
further neural network analyses are being carried out, they 
negatively affect the training performance of the neural 
network architecture. The same argument is also valid for 
voids filled with asphalt (Vf) values. Also, because of their 
underperformance effects, it is not suitable to use Vf values 
as an input parameter especially for analyses regarding fly 
ash replacement. The only output variable is the fatigue 
life data (cycles to failure) of the Marshall specimens 
obtained from the repeated load indirect tensile tests. As 
repeated load indirect tensile test has been chosen as the test 
method to be applied during the laboratory studies from its 
applicability and easiness in the simulation of the fatigue 
cracking in the asphalt layers on site, the above parameters 
were deemed to be enough for fatigue life estimation. The 
testing conditions were kept as constant so there was no 
need to include the temperature, pulse period, loading 
time, rest period and applied load as input parameters to 
the neural network architecture. The material properties 
of the prepared Marshall specimens, which are referring 
to the geometric and volumetric properties which can very 
easily be obtained in any laboratory environment, were well 
enough to characterize the problem inputs. The stiffness or 
rather any other actual measured parameter is not deemed 
to be relevant in the neural network analyses as these 
parameters are “obtained” parameters of the universal testing 
machine (here UMATTA tester) and if anyone utilizes them 
in the training and testing procedure of the artificial neural 
network architecture, the idea lying behind the fatigue life 
estimation of the asphalt specimens by simple physical 
material properties fails. The architecture of the proposed 
artificial neural network model is shown in Figure 1.

In order to prepare the standard asphalt specimens with 
a diameter of 101.6 mm and a height of 63.5 mm, Marshall 
method was utilized by applying 50 blows on each face 
(which resembles medium traffic conditions). The material 
properties of these specimens used as the input parameters 
in the neural network analyses are reported in Figure  1. 
Before starting the fatigue testing, four different types of 
fillers (namely 3 different types of fly ash and calcareous 
filler as reference) were utilized in preparing the sets of 
Marshall specimens with bitumen contents varying between 
2.5% to 7% in 0.5% increments. Therefore, a total of 120 
specimens was tested in order to find the optimum bitumen 
content for different types of filler17. Using calculated 
optimum bitumen contents, new Marshall specimens were 
prepared with bitumen contents varying between 4.5% to 
6.5% in 0.5% increments. Three specimens were prepared 
for each bitumen content. Therefore, a total of 15 specimens 
was prepared for each type of fillers. The fatigue lives of 
these specimens were determined by the UMATTA tester 
with macro crack initiation criteria as depicted in Figures 2 

and 3. As can be visualised in Figure 2, when the control 
specimen’s fail, the fatigue crack is visible to the naked 
eye. But from Figure 3, the cracks in the specimen’s body 
are in a hairline crack situation (for Soma fly ash modified 
specimens) and it is very easy to distinguish between the 
control and fly ash modified specimens. This is an indication 
of the very positive effect of fly ash modification from 
pavement engineering point of view. Also in order to be sure 
whether these cracks are occurring on the visible side of the 
setup, the back sides of these specimens were also checked 
by the aid of a simple mirror. These cracks were occurring 

Figure 1. Artificial neural network architecture proposed in the 
study.

Figure 2. The general view of the control specimen after failure at 
the end of the carried out repeated load indirect tensile test.

Figure 3. The general view of the Soma fly ash (F type) modified 
specimen after failure at the end of the carried out repeated load 
indirect tensile test.
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on both sides approximately at the same pulse counts. The 
obtained values were used as a training set in the neural 
network analyses. With the same bitumen content, another 
similar set of specimens was prepared and tested. The data 
obtained (cycles to failure, namely fatigue lives) from these 
60 specimens were used in the testing of the neural network 
in order to carry out the simulations in the of neural network 
toolbox of MATLAB28.

4.	 Material Properties
The aggregate gradation used in this study is selected 

according to the acting standards29. Calcareous aggregate 
was obtained from a native quarry and 60/70 penetration 
bitumen was obtained from a nearby refinery. The physical 
properties of these materials are stated in Table 1, 2 and 
3. The specimens were prepared in such a way that the 
filler portion (passing ASTM No.200 sieve) of the selected 
gradation, given in Figure 4 was replaced by the different 
types of fly ash in each specimen set. The reason of choosing 
only single gradation is to analyse the effect of the different 
types of fly ashes on the mechanical properties of the “dense 
bituminous mixtures” and to enable a deeper insight to the 
fatigue life estimation via artificial neural networks. In the 
asphalt mixtures, three types of fly ash namely Soma (F 
type), Çayırhan (F type), Kangal (C type) and calcareous 
filler (used as reference) were utilized. Such replacement 
was made solely on a weight basis for practical purposes. 
Some of the major physical properties of the coarse 
aggregate and fine aggregate are stated in Tables 2 and 3.

In the reported study, three different types of fly ash were 
used as replacement for calcareous filler. Representative 
specimens of fly ash were obtained from Soma, Çayırhan 
and Kangal thermal power plants, which are located in 
different regions of Turkey. The aim of using different 
types of fly ash is to determine the most suitable type for 
filler applications in asphalt. This objective was realized 
by determining the optimum bitumen content (Marshall 
mix design procedure) and by analysing the fatigue lives 
of the asphalt specimens with various amounts of bitumen. 
The oxide compositions (provided by the laboratories of 
the relevant thermal power plants) of different types of fly 
ashes are given in Table 4. The physical properties of these 
fillers are given in Table 5.

The particle size distribution of the filler materials was 
carried out by Malvern Mastersizer using the dry method30. 
All of the tests were carried at the same laboratory with the 
same test conditions. The particle size distributions of the 
fillers are presented in Figure 5.

Figure 4. Gradation of the calcareous aggregate.

Table 1. Physical properties of the bitumen.

Property
Test 

Value
Standard

Penetration at 25 °C, 1/10 mm 62.0 ASTM D 5-97
Penetration Index + 1.0 -

Ductility at 25 °C, cm > 100 ASTM D 113-99

Loss on heating, % 0.053 ASTM D 6-80

Specific gravity at 25 °C, kg/m3 1033 ASTM D 70-76

Softening point, °C 57 ASTM D 36-95

Flash point, °C 257 ASTM D 92-02

Fire point, °C 295 ASTM D 92-02

Table 2. Physical properties of the coarse aggregate.

Property
Test 

Value
Standard

Bulk specific gravity, kg/m3 2754 ASTM C 127-04
Apparent specific gravity, kg/m3 2821 ASTM C 127-04

Water absorption, % 0.26 ASTM C 127-04

Table 3. Physical properties of the fine aggregate.

Property
Test 

Value
Standard

Bulk specific gravity, kg/m3 2741 ASTM C 128-04
Apparent specific gravity, kg/m3 2766 ASTM C 128-04

Water absorption, % 1.43 ASTM C 128-04

Table  4. Chemical composition of fly ash (FA) samples. (LoI, 
loss on ignition).

Oxide (%)
FA Soma 
(F Type)

FA Çayırhan 
(F Type )

FA Kangal 
(C Type )

SiO2 50.48 49.74 27.92
Al2O3 27.64 14.70 11.96
Fe2O3 4.80 9.04 5.14

SiO2 + Al2O3 + Fe2O3 82.92 73.48 45.02
CaO 13.08 13.64 37.86
MgO 1.30 5.10 2.60
SO3 0.97 3.64 12.10

Na2O 0.30 2.10 0.40
K2O 2.00 1.20 0.80

Na2Oeq 1.62 2.89 0.93
LoI 1.07 2.44 3.15
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5.	 Asphalt Mixture Design Using Marshall 
Test Method
For determination of optimum bitumen content, it 

is required to perform the Marshall tests and carry out 
necessary analysis on these test results. Standard Marshall 
specimens were prepared by applying 50 blows on each 
face that represents medium traffic conditions. The optimum 
bitumen content as obtained for different types of filler 
materials using Marshall designs are given in Figure 6. The 
optimum bitumen contents were set to provide the maximum 
stabilities, maximum unit weights, 4% air voids and 70% 
voids filled with asphalt29. Besides, all of the Marshall 
specimens used throughout the fatigue testing have been 
prepared by utilising 5.0% bitumen content for the sake of 
experimental necessities and to obtain a sort of “standard” 
mixture for comparability purposes (the optimum bitumen 
content for calcareous filler specimens). The previous 
studies that have been carried out by the author necessitates 
this fact in order to be able to work on a sound data basis in 
order to investigate the fly ash filer replacement’s effect on 
the fatigue life estimation of dense bituminous mixtures17.

As it can be seen from Table 5, all three fly ash has 
approximately equal specific surface area values. The 
highest specific surface area is off to Kangal fly ash. 
The highest optimum bitumen content (highest bitumen 
absorption capacity) value can be expected for this type 
of fly ash and the test results confirm this fact. As can 
be seen from Figure  6, the optimum bitumen content 
of Kangal fly ash is 6.28%, which is the largest of four 
types of fillers17.

6.	 Fatigue Life Analysis of Marshall 
Specimens
There are various approaches for determination of the 

fatigue life of dense bituminous mixtures1. Kim  et  al.31 
used 0.25 cm horizontal deformation as failure criterion. 
The fatigue life can be determined as the reduction of 
the elastic modulus value to a limiting value defined as a 
fraction of the initial value (generally 50%) or as the number 
of load repetitions that cause the first crack to arise in the 
specimen22. The criterion used in the proposed study is the 
macro crack initiation criterion. That means the fatigue 
testing was terminated when the crack inititaion has been 
visible to the naked eye.

Table 5. Physical properties of mineral fillers.

Physical property Calcareous filler Soma fly ash Çayırhan fly ash Kangal fly ash Standard

Apparent specific gravity, kg/m3 2632 2105 2194 2525 ASTM D854-83
Specific Surface Area, m2/kg 322.9 249.4 242.7 277.0 ASTM C204-00

Figure 5. Particle size distributions of fillers.

Figure 6. Optimum bitumen contents for different types of mineral 
fillers.
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The fatigue life analyses of Marshall specimens were 
carried out with UMATTA tester23. Constant stress indirect 
tensile fatigue test was carried out at in a temperature 
controlled cabinet. Test temperature was 40 °C in order 
to resemble the in-situ conditions which initiate fatigue 
cracking in the test carried out in the laboratory environment 
with UMATTA tester17. Although it is known that fatigue 
cracking occurs at lower temperatures on site, extensive 
tests were carried out by the researcher in order to be able 
to simulate the “accelerated conditions” in the temperature 
controlled cabinet of UMATTA tester. In these previous 
tests, temperatures between 20 °C and 40 °C were utilised 
but it was impossible to observe the macro cracks although 
days or maybe weeks of testing periods were exploited 
especially at temperatures around 20 °C[31]. Therefore 40 °C 
was decided as a threshold for the laboratory conditions for 
fatigue testing in UMATTA tester17. In-situ applications 
point out to the fact that fatigue cracking in asphalt concrete 
occurs at lower temperatures but when everything suits to 
the previous research conditions, it is impossible to test 
this amount of specimens and to arrive at similar results 
like the ones obtained via the presented study. The reason 
for choosing a comparatively “higher” ambient temperature 
of testing is lying through the above discussion. Poisson’s 
ratio was taken as 0.35. Pulse period was selected as 500 ms. 
Loading time was chosen as 100 ms, rest period was 400 ms 
and the applied load was overridden into system as 1000 N 
in all of the experiments.

The repeated load indirect tensile test was carried 
out in the following manner: the Marshall specimen was 
placed in the temperature controlled unit for 24 hours 
prior to testing in order to reach the equilibrium testing 
temperature. Then the specimen was seated on the loading 

frame. Lateral deformations of the Marshall specimens 
arising from repeated indirect loadings were measured by 
LVDTs (linear variable differential transformer). A load 
of 1000 N was applied to the specimen and the elastic and 
plastic deformations, tensile stress, resilient strain and elastic 
modulus values were recorded through the data acquisition 
system and the personal computer. The test was terminated 
when the initiated crack was visible to the naked eye. This 
can be seen clearly in Figure 3.

7.	 Repeated Load Indirect Tensile Test 
Results
Throughout the testing, the same type of aggregates 

(gradation curve given in Figure 4), the same type of bitumen 
(physical properties given in Table  1), the same loading 
pattern (1000 N) and the same testing temperature (40 °C) 
were used. The only difference between the specimens was 
the type of filler material. A total of 120 specimens was 
fabricated and tested by using UMATTA tester. The first 
set of 60 specimens was used to train the neural network 
(Figure 1) and the second set of 60 specimens was used to 
test the neural network and obtain the fatigue lives of the 
Marshall specimens by utilizing artificial neural networks. 
There is a vast amount of database from the previous studies 
of the author therefore this 50% training 50% testing scheme 
has been utilised. The specimen type (type of filler), per 
cent bitumen content, specimen height (mm), unit weight 
(g/cm3), theoretical unit weight (g/cm3) and average fatigue 
lives (cycles to failure) are depicted in Table  6. In this 
table, the depicted figures indicate the average of the three 
specimens tested. It can be observed that the Soma fly ash 
specimens have the longest fatigue lives (cycles to failure). 

Table 6. Average values of the inputs and outputs used in the training and testing of the neural network (reported as training/testing).

Specimen 
type

Bitumen 
Content (%)

Specimen Height 
(mm)

Unit weight  
(g/cm3)

Theo. Unit 
Weight (g/cm3)

Total Air V. (%) Fatigue life 
(cycles)

Calcareous 4.5 % 59.2 / 59.0 2.43 / 2.42 2.43 / 2.53 4.0 / 4.0 42146 / 40647

Soma 4.5 % 61.5 / 61.3 2.33 / 2.31 2.33 / 2.49 6.1 / 6.0 51543 / 49325

Çayırhan 4.5 % 61.6 / 61.3 2.36 / 2.37 2.36 / 2.49 5.0 / 4.9 48154 / 45186

Kangal 4.5 % 63.1 / 62.8 2.28 / 2.29  2.52 / 2.50 9.3 / 9.1 50879 / 47149

Calcareous 5.0 % 59.0 / 58.8 2.41 / 2.40 2.51 / 2.52 3.3 / 3.5 50014 / 52648

Soma 5.0 % 61.3 / 61.0 2.36 / 2.33  2.47 / 2.49 5.0 / 5.1 57296 / 61235

Çayırhan 5.0 % 61.4 / 61.1 2.38 / 2.39 2.48 / 2.48 4.0 / 3.8 53547 / 58332

Kangal 5.0 % 62.8 / 62.5 2.31 / 2.30 2.50 / 2.51 7.8 / 8.0 54218 / 60015

Calcareous 5.5 % 58.9 / 58.8 2.44 / 2.43 2.49 / 2.48 2.1 / 2.3 47149 / 49328

Soma 5.5 % 61.1 / 59.8 2.39 / 2.37 2.45 / 2.46 3.3 / 3.1 62478 /65837

Çayırhan 5.5 % 61.2 / 60.9 2.41 / 2.42 2.46 / 2.44 2.1 / 2.0 51687 / 53117

Kangal 5.5 % 62.5 / 62.1 2.34 / 2.36 2.49 / 2.50 5.6 / 5.8 57258 / 54956

Calcareous 6.0 % 58.7 / 58.6 2.45 / 2.44 2.48 / 2.44 1.5 / 1.7 46387 / 44724

Soma 6.0 % 61.0 / 59.7 2.39 / 2.40 2.44 / 2.41 2.5 / 2.4 55794 /51249

Çayırhan 6.0 % 61.0 / 60.7 2.39 / 2.42 2.45 / 2.48 1.4 / 1.5 47228 / 45332

Kangal 6.0 %  62.0 / 61.7 2.38 / 2.36  2.47 / 2.46 4.0 / 4.1 59514 / 61228

Calcareous 6.5 % 58.5 / 58.4 2.44 / 2.41 2.46 / 2.45 0.9 / 1.0 44526 / 46619

Soma 6.5 % 60.8 / 59.5 2.38 / 2.43 2.42 / 2.43 1.7 / 1.9 53861 / 55426 

Çayırhan 6.5 % 60.8 / 60.5 2.37 / 2.36 2.43 / 2.43 0.7 / 0.9 44197 / 42687

Kangal 6.5 % 61.6 / 61.3 2.33 / 2.30 2.44 / 2.45 2.1 / 2.4 52867 / 50237
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Kangal fly ash specimens have the second longest fatigue 
lives, Çayırhan fly ash specimens the third and finally 
calcareous filler (reference) specimens have the shortest 
fatigue lives17. Figure 6 shows that the pattern of the fatigue 
lives of Marshall specimens exhibits a very good correlation 
with the optimum bitumen content values.

Although some of the air void contents of the Marshall 
specimens prepared by using different types of fly ash are 
above 5% (the main departure from the General Directorate 
of Turkish Highways’ standards), these specimens were 
tested in order to determine their fatigue lives. These mixes 
performed well in the fatigue tests when compared with 
calcareous filler specimens (Table 6). Under the effect of 
high tire pressures and high axle loads of the heavy vehicles, 
the flushing and bleeding problems frequently occur and 
so, especially at high ambient temperatures, the use of fly 
ash as a filler replacing agent is very effective. On the other 
hand, high air void values permit for lower compaction 
temperatures when laying asphalt on site32. Also, good 
resistance to rutting, prolonged fatigue life (as evidenced 
in the present study) and less reflection cracking can be 
achieved due to application of fly ash33.

In this study, the tests had been terminated at the point 
when the first visible crack was seen on the specimen surface. 
Therefore, the fatigue lives were calculated on this basis. The 
Soma fly ash specimens have exhibited approximately 25% 
longer fatigue lives compared to calcareous filler specimens 
as it can be seen from Table 6. Kangal and Çayırhan fly ash 
specimens have shown approximately 18% and 9% longer 
fatigue lives compared to those of the calcareous filler 
specimens. Soma fly ash specimens perform better than 
other types of fillers due to17:

a)	Soma fly ash (class F) is the coarsest fly ash; therefore, 
it provides the stiffening effect arising from the filler-
bitumen interaction.

b)	The aluminium oxide (Al2O3) percentage of Soma fly 
ash specimens is 27.64% which is more than twice 
that of the other two types. The aluminium oxide 
is considered to be responsible for the better bond, 
and therefore, improved strength and stiffness of the 
Marshall specimens. The improvement in strength 
and stiffness of the Marshall specimens arises from 
the increase of the bond between the aggregate and 
binder which was concluded from the previous studies 
of the corresponding author17.

c)	The apparent specific gravity of Soma fly ash is 
2105 kg/m3, which is the smallest of the three types 
of fly ashes. Also, this value is much smaller than the 
specific gravity of the calcareous filler. Therefore, it 
can be concluded that the filler-bitumen paste of Soma 
fly ash specimens shows better “bitumen extension” 
(better compatibility of bitumen and fly ash) when 
compared with the specimens prepared with other 
types of fly ashes17.

8.	 Test Results and Discussion
The actual fatigue tests (repeated load indirect tensile 

tests) on Marshall specimens in the laboratory environment 
are time consuming. To give a representative value, a 
fatigue test continuing for 50000 cycles approximately 

lasts in 7 hours under the test conditions of the proposed 
study. This is a relatively long time although the repeated 
load indirect tensile tests carried out in the laboratory are 
accepted as “accelerated”. In order to be able to make 
reasonable estimates regarding the fatigue lives of the 
Marshall specimens, the material properties depicted in 
Figure 1 were used as the input parameters for the neural 
network architecture. Based on the characteristics of the 
data set obtained through extensive laboratory testing, a 
learning algorithm involving a forward-propagating step 
by a backward-propagating step (feed-forward back-
propagation) has been involved. The only output parameter 
considered in this study is the fatigue life (Nf) measured by 
the UMATTA tester. The training and testing processes 
are performed by using the neural network toolbox of 
MATLAB28. In almost all of the neural models that are 
used to approximate functions by utilizing back-propagation 
model, one hidden layer is deemed to be sufficient24. But 
for the research purposes, two and three hidden layers were 
also utilized while determining the optimum architecture. 
The number of hidden nodes in the hidden layers was 
determined by adaptive training and on-line monitoring of 
accuracy measures on the testing data sets. This was done 
by varying the number of hidden processing elements, 
in the hidden layer, until the network was able to learn 
the patterns involved in the test data sets. Hidden nodes 
varying between 5 and 50 (increasing by multiples of 5) 
have been tried in order to find the optimal architecture. 
After carrying out several trials with the neural network 
toolbox of MATLAB28, it has been concluded that, the most 
stable results from the point of view of predicted fatigue life 
cycles have been obtained by utilising 20 hidden neurons 
in the hidden layers

The mathematical activation function has been chosen 
as logarithmic-sigmoid, which produces values typically 
in the range of 0 to 1. In order to be able to utilize this type 
of activation function, the input data were normalized. 
The gradient descent algorithm was used in the training 
of the back-propagation model. Some different techniques 
have been used to accelerate the convergence of gradient 
descent techniques24. In this study, the Levenberg-Marquardt 
training algorithm has been used. With the help of this 
algorithm, very reasonable and fast simulation results can 
be obtained as training the neural networks takes several 
hours with ordinary gradient descent algorithm. The aim 
of using artificial neural networks is to save the time in 
laboratory testing and utilization of Levenberg-Marquardt 
algorithm was beneficial.

Ranges of experimental results are given in Table 7. 
The testing (% 50) and training (%50) sets for neural 
network training procedure are selected randomly from the 
experimental database as the author has been utilising the 
same similar aggregate and bitumen resource for many years 
well spanning the study’s test period. The optimal neural 
network architecture was found to be 5-20-1 (20 hidden 
neurons) as shown in Figure 1.

The next step is to test the network with a unique data 
set that was not used in the training process. While testing 
the network, the experimental fatigue lives are compared 
with the fatigue lives obtained by artificial neural network 
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simulations. This comparison is performed on a Root Mean 
Squared Error (RMSE) basis. RMSE values can be obtained 
by the following standard formula:

( )2n
jj 1 X X

RMSE
N

= −
=

∑

	
(1)

 

where: N = total number of observations; Xj = predicted 
values; X = observed values.

The main objective was to fit the most suitable model 
for the prediction of fatigue lives of different types of 
specimens. The criterion for determining the network 
topology with the “best” performance which validates the 
simulation results in a best manner is having a network 
that has the smallest RMSE and, in addition, having the 
highest coefficient of determination (R2) for observed versus 
predicted (simulated) data.

Hidden neuron numbers varying between 5 and 50 
have been used through the training sessions. In order to 
determine the optimal hidden layer number, neural network 
architectures with one, two and three hidden layers were 
trained and tested. The activation function has been chosen 
as logarithmic-sigmoid after several trials have been carried 
out with other activation functions such as tangent-sigmoid34. 
The termination criteria or goal achievement is set to 10–6. 
Finally minimum gradient, which is another termination 
criteria used in correspondence with goal achievement, is 
10–10. The corresponding RMSEs and R2 values are depicted 
in Table 8 for one, two and three hidden layers, respectively. 
These values are obtained statistically by analysing the 
predicted results together with the actual testing results of 
120 different Marshall specimens (Table 6).

The obtained RMSE values show that the proposed 
architecture of one hidden layer comprising of 20 hidden 
processing elements converged to the smallest standard 
error. In addition, the architecture with one hidden layer had 
the highest coefficient of determination. Figures 7 to 9 show 
the scattergrams depicting the observed versus predicted 
fatigue lives for one, two, and three-hidden layer back-
propagation neural network topologies. The ideal shape in all 
scattergrams would have been a straight line with a slope of 
45 degrees that crosses the origin (Figures 7 to 9). All graphs, 
however, show minor deviations from the ideal, but it is 
evident that the one-hidden-layer back-propagation neural 
network gives the “best” performance. Table 8 indicates that 
for the optimum number of processing elements (that is 20 
hidden neurons in all of the hidden layers), increasing the 
number of hidden layers results in a reduction in the overall 
model performance. This reduction is approximately 37% 
in RMSE basis and 4% in R2 basis between one and three 

hidden layer architectures. This suggests that a one-hidden 
layer back-propagation neural network is sufficient for 
fatigue life prediction and increasing the number of hidden 
layers does not add any benefit to the proposed model 
performance24.

9.	 Conclusions and Further 
Recommendations
This paper examined the effect of fly ash as a filler 

replacing agent on mechanical properties of bituminous 
mixtures. The utilisation of this material will arise a very 
important benefit for the waste management industry all 
over the world. The artificial neural networks were used 
to estimate the fatigue lives of investigated mixtures. 
According to the extensive testing, Soma fly ash specimens 
had the longest fatigue lives. The Soma fly ash (F type) 
specimens have exhibited approximately 25% longer fatigue 

Table 7. Ranges of experimental database.

Bitumen content 
(%)

Specimen Height 
(mm)

Unit Weight  
(g/cm3)

Theo. Unit Weight 
(g/cm3)

Total Air V.  
(%)

Fatigue life 
(cycles)

Max 6.5 63.3 2.49 2.56 9.6 66142

Min. 4.5 58.1 2.25 2.3 0.68 23211

Mean 5.5 60.69 2.38 2.46 3.65 50899.73

Std. Dev 0.72 1.37 0.05 0.04 2.28 7620.21

Table 8. The prediction performances of back-propagation neural 
network architectures.

Neural Network 
Architecture

RMSE Value R2 Value

One hidden layer 1928.7 0.925
Two hidden layers 2465.8 0.902
Three hidden layers 2643.9 0.891

Figure 7. Scattergram of fatigue life prediction model with one-
hidden layer.
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lives compared to calcareous filler specimens. Kangal (C 
type) and Çayırhan fly ash (F type) specimens have shown 
approximately 18% and 9% longer fatigue lives respectively 
when compared to those of the calcareous filler specimens. 
The neural network training and simulation were based on 
the experimental results of repeated load indirect tensile 
tests on standard Marshall specimens.

The network topology with the smallest Root Mean 
Squared Error and the highest coefficient of determination 
for observed versus predicted data was selected. According 
to the simulation results, the fatigue lives of the fly ash 
filler replaced and control specimens were obtained in 
a very reasonable manner as it is visualized with the 
scattergrams. For a specific bituminous mixture with the 
same type of aggregate, gradation, bitumen and testing 

conditions, it is very reasonable to make the estimations of 
fatigue lives through the use of artificial neural networks. 
That means the change of the “physical properties” of a 
specific bituminous mixture can be modelled using neural 
networks and considerable time savings can be obtained 
by eliminating time consuming laboratory testing. This is a 
major advantage over all the laboratory testing procedures 
carried worldwide. Determination of fatigue lives of asphalt 
specimens with repeated load indirect tensile tests is solely 
a rapid solution. With the aid of artificial neural networks, 
this effect has been doubled.

By the aid of artificial neural network estimations of 
fatigue life of asphalt mixtures modified especially by 
different types of fly ashes (or other modifying agents such 
as polymers), a pavement engineer can easily estimate 
the fatigue lives of sections without carrying out on-site 
analyses and waiting maybe for years and years to arrive at 
solid conclusions (sometimes it might also be not possible 
to arrive at these conclusions because of unexpected 
environmental conditions). Marshall specimens fabricated 
in the laboratory environment or cores taken from site can 
be a solution to these intricate analyses by the help of a 
universal testing machine and an environmental chamber.

The laboratory testing program was carried out by 
using a single type of aggregate, gradation, bitumen, 
testing conditions and definite fly ash filler replacers 
for research purposes so is valid only for the specific 
laboratory conditions but can be generalised to other 
types of similar mixtures and testing protocols. For other 
types of materials and types of mixes, extensive further 
research should be carried out. These parameters should 
be changed accordingly and some more testing programs 
should be developed and carried out, especially for the 
testing protocols with UMATTA tester. This will form a 
good basis for further research in order to clarify the effects 
of different parameters in the estimation of fatigue lives of 
different types of modified bituminous mixtures by the aid 
of artificial neural networks. By this way, more insight to the 
problem of fatigue life estimation of bituminous mixtures 
by indirect tensile tests can be obtained.

Also other compaction techniques such as gyratory 
compaction and other fatigue testing protocols from the 
well-known literature or new equipments can be utilised 
further to introduce another approach to the problem. One 
more point is to utilise different gradation types, mixture 
types and types of filler materials to enrich the subject 
matter. Finally, to open the black box form of the proposed 
artificial neural network model, some further studies will 
be carried out to introduce the artificial neural network 
application in a closed form solution.

Despite the efforts devoted to the analyses of all of the 
approaches discussed in this study, there are major areas 
that still need to be investigated. As back-propagation 
neural networks have some drawbacks due to the model 
non-transferability, insufficient ability to generalize, reliance 
on sigmoid activation functions, their essence as data-driven 
techniques and finally fluctuations in predicted values, other 
neural network models should also be used in the analyses, 
such as radial basis models.

Figure 8. Scattergram of fatigue life prediction model with two-
hidden layers.

Figure 9. Scattergram of fatigue life prediction model with three-
hidden layers.
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