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1. Introduction
Hybrid atomic orbitals were introduced, in 1931, by 

the Nobel Prize winner Linus Pauling, in order to explain 
the nature of the chemical bond on quantum mechanical 
grounds1. Since then, these orbitals have been successfully 
used to describe single and multiple bonds between atoms2,3. 
Although a thorough understanding of the hybrid orbitals 
rely on energy calculations, geometrical considerations4, the 
maximization of the overlap integrals5, and group-theoretical 
approaches6 have been proposed.

The aim of this work is to present an alternative 
approach motivated by modern methods of Materials 
Science involving Wannier functions7. Such functions were 
introduced in solid-state physics by G. H. Wannier, in 1937. 
They form a complete basis of the space of electronic states 
of a crystal, just like the Bloch functions do. However, the 
former ones are localized, in contrast with the extended 
character of the latter. The Wannier functions lack unicity 
and some effort has been devoted to the development of 
analytical and numerical techniques that optimize their 
degree of localization7. We show that the hybrid spn 
orbitals are the most localized among the orthogonal linear 
combinations of one s and np orbitals. This is helpful to 
understand why maximally localized Wannier functions 
may resemble the hybrid orbitals7,8.

A similar path towards the hybrid orbitals has been used 
in previous works. In 1952, Hurley9 addressed this problem 
in his Doctoral Thesis. A decade later, Boys10,11 used the same 
localization criterion, while Edmiston and Ruedenberg12,13 
dealt with the minimization of the electrostatic energy. 
Since the mentioned works are hardly available or give no 
mathematical details on the hybrid orbitals, we present an 
independent approach. In Section 2, we derive the hybrid 

orbitals as maximally localized states, according to the 
Foster-Boys criterion. The concluding remarks are given 
in Section 3.

2. Minimization of the Total Quadratic 
Spread
The degree of localization of a wave function may be 

expressed by the variance of the associated probability 
distribution7. In this sense, a state is more localized if its 
distribution has less variance. The variance of an electronic 
state y is given by:

( ) 22 2σ y = y y − y yr r 	 (1)

where r = (x1,x2,x3) is the particle position.
Let us consider an orthonormal set of states f0,f1,...,fn. 

These states can be linearly combined to produce a new set 
of orthonormal states y0,y1,...,yn, i.e.,
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The total quadratic spread of each set of states is 
a Foster-Boys functional7. For the sets f0,f1,...,fn and 
y0,y1,...,yn, the functional is given by
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respectively. Taking Equation 5 into account, the difference 
between Equations 7 and 6 simplifies to
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When one considers the states f0,f1,...,fn as atomic orbitals 
whose probability distribution presents inversion symmetry, 
the condition , 0k kr ′ =

  applies for k,k’ = 0,...,n. Hence,
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This should be minimized, taking into account the 
n(n + 1)/2 independent conditions given by Equation 5.

To deal with the hybridization of one s and n p orbitals 
of a given atomic shell, we take n = 1,...,3,
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for k = 1,...,n. R0(r) and R1(r) are the radial parts of the 
respective orbitals.

By taking into account the symmetries of orbitals in 
Equations 11 and 12, Equation 10 simplifies to
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where

11s pxX x= 	 (14)

From the physical point of view, no generality is lost 
by assuming

,0 0jc ≥ 	 (15)

for every j. Hence, according to Equation 3, we obtain
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This will be minimized, satisfying the conditions in 
Equations 5 and 15.

The conditions in Equation 5 may be stated in terms 
of the vectors ( )0, ,, ,k k n ku c c= …

 , with k = 0,...,n. They 
form an orthonormal set in 1n+C , where C denotes the set 
of complex numbers. In particular, for a given unit vector 

0u , it is required the existence of an orthonormal set of 
vectors 1, , nu u…

   that are orthogonal to 0u . Since 0u  is real, 
this requirement is always fulfilled by a set of real vectors 

1, , nu u…
  . This means that a set of real hybrid orbitals will 
minimize the total quadratic spread.

For real unit vectors 0 1, , , nu u u…
   , Equation 16 takes the 

form

( )24 1X f∆Ω = − 	 (17)

with
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The minimization of ∆Ω should be performed under the 
restrictions (Equation 15) and G = 1, where
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The global minimum of f under the condition 
(Equation  19) may be found by using the method of 
Lagrange multipliers. The existence of the global minimum 
is guaranteed by the fact that the objective function is 
continuous and the restrictions lead to a closed limited subset 
of 1n+R , where R  is the set of real numbers14. The values of 
c0,0,...,cn,0 must satisfy the equations
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for j = 0,...,n, where l is the Lagrange multiplier. After 
computing the partial derivatives, Equation 20 simplifies to
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The system of equations in Equation 21 has 2n+1–1 
meaningful solutions. In fact, each cj,0 is either 0 or 

/ 2l , and at least one of the coefficients cj,0 is not zero. The 
solutions may be classified in terms of the number m + 1 of 
non-null coefficients cj,0, with m = 0,...,n. Since G = 1, we 
obtain ,0

1
1jc

m
=

+
, for m + 1 values of j, and cj,0 = 0 for the 

other n – m values of j. For each m, the value of f is given by 
fm = 1/(m + 1), and the global minimum of f corresponds to  
m = n. Therefore, the minimum value of the total quadratic 
spread corresponds to
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2 2 2
1 2 3,namely, 2 8 / 3 ,and 3X X X∆Ω = − ∆Ω = − ∆Ω = − .

To deal with the shape of the states y0,y1,...,yn, we 
introduce the vectors nj = (cj,1,..., cj,n). From Equation 3, 
we obtain
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for j’ ≠ j. Hence, the angle between different vectors nj and 
nj’ is given by

,
1arccosj j n n′

 q = q = − 
 

	 (25)

For the cases n = 1,2 and 3, this angle equals 

q1 = arccos(–1) = 180°, 2
1 arccos 120
2

 q = − = ° 
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 and 

3
1 arccos 109.471
3

 q = − ≈ ° 
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, respectively. These values 

correspond to the hybrid orbitals sp, sp2 and sp3, respectively.
We also note that each real and normalized linear 

combination of the pxk orbitals may be obtained by rotating  
px1. Hence, Equation 2 may be written as
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where pnj is the real p orbital along nj. Since the s orbital is 
isotropic, all the spn orbitals, for a given n, have the same 
shape.

3. Conclusions
We have shown that the standard spn hybrid orbitals 

are the orthogonal linear combinations of one s and n real p 
orbitals that minimize the total quadratic spread. This helps to 
understand why maximally-localized Wannier functions may 
resemble hybrid orbitals in crystalline materials7,8. It is the case 
when the set of energy bands under consideration is essentially 
reproduced by using a linear combination of atomic orbitals. 
In such cases, the multiband Wannier functions of maximal 
localization should mimic the atomic orbitals. Because of the 
requirement of maximal localization, such orbitals are hybrid 
orbitals instead of pure s or p orbitals. We also note that the 
maximally-localized orbitals are useful when the individual 
contribution of each constituent atom is under investigation15,16.

Finally, we would like to point out that it has been 
proposed that hybrid orbitals should better be excluded 
from the Chemistry curriculum17. Reinforcing several claims 
against such a proposal18,19, we stress that the growing 
importance of Wannier functions in Materials Science 
brings renewed interest on hybrid orbitals. Furthermore, we 
believe the present approach also applies to hybrid orbitals 
that include d and/or f states, such as the icosahedral ones20.
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