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1. Introduction
Agroindustry has generated a large content of residues 

and a necessity of utilization of these residues might reduce 
pollution and increase energy savings. Among these residues, 
rice husks have received attention due to its large volume 
produced and high content of amorphous silica, approximately 
21%1,2. SiO2 can be obtained by direct calcination followed 
by calcination chemical treatment, and by sol-gel route. 
Silica from rice husk is considered as an alternative to 
commercial silica3 due to low cost and wide application, 
such as to obtain silicon carbide4, catalysts5, adsorbents6, 
zeolites7, silicates8 and cement9.

Compared to conventional materials, nanomaterials 
have interesting physical and chemical properties, besides 
several areas of application, and relative easy production 
carried out by different methods such as microemulsion10, 
hydrothermal11 and sol-gel12.

Tin oxide (SnO2) is an important semiconductor oxide in 
the industry13, but despite its wide usage14-17 has low thermal 
stability and tendency to aggregation18, that can be overcome 
by incorporating the amorphous SiO2 to SnO2

[19], generating 
the SnO2/SiO2 nanocomposite. There are several studies 
using SnO2/SiO2, like composite20, xerogel21, nanotubes22 
and films23, which application can be in photocatalysis24 
and sensors25.

This work aims prepare and characterize SnO2/SiO2 
nanocomposites from amorphous biogenic silica of high 
purity extracted from rice husk by Pechini method26, as an 
alternative to TEOS (tetraethoxysilane). Silica from rice husk 
was characterized by X-ray fluorescence (XRF) and by physical 
adsorption of nitrogen. The SnO2/SiO2 nanocomposite was 
characterized by scanning electron microscopy (SEM), by 

X-ray diffractometry (XRD) and Raman spectroscopy and 
Fourier transform infrared spectroscopy (FT-IR).

2. Experimental
2.1. Extraction of SiO2 and Preparations of 

nanocomposite
Extraction of silica was made by grinding of the rice husk 

(RH) followed by chemical treatment with HCl (10% v/v), in 
the ratio RH:HCl 1:3, for one hour with constant stirring to 
solubilize organic matter. The solubilized RH was washed with 
ultrapure water and it was filtered under vacuum, obtaining 
a pulp (PRH) which was treated with a solution of H2SO4 
and H2O2 in the ratio of 1:2:1 (w/v/v) - PRH:H2SO4:H2O2 - 
under constant stirring for one hour to promote the oxidation 
of organic matter. Finally, the oxidized PRH was washed 
with ultrapure water and the biogenic SiO2 was obtained by 
vacuum filtering and calcinations in an oven for 4h at 600 °C.

SnO2/SiO2 nanocomposite was prepared by adding 
biogenic silica and SnCl2.2H2O to a solution of nitric 
acid (NA)/ethylene glycol (EG), obeying the following 
proportions 1:3:12 (SnCl2.2H2O: CA: EG) and 1:4 (w / w) 
- (SiO2: SnCl2.2H2O). This mixture was stirred for 1h at 
60 °C with subsequent heat treatment at 250 °C for 2 hours, 
followed by calcination at 400 °C during 1 hour. All steps 
of calcination and heat treatment were performed without 
heating rate.

2.2. Characterization
Biogenic silica was characterized by x-ray fluorescence 

(XRF) using an Epsilon 3XL spectrometer. Specific surface 
area was determined by nitrogen gas adsorption using a 
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Quantachrome Autosorb-iQ equipment by multipoint BET 
method (Brunauer Emmett Tell) and the average diameter 
of the silica particles was estimated using the following 
equation for spherical particles

( )
6
.BET

BET TEO
d

A ρ
= 	 (1)

where ρTEO is the theoretical density27 for the amorphous 
silica, having a value of 1,92 g cm–3 and ABET is the specific 
surface area.

Morphology of SnO2/SiO2 nanocomposite was determined 
by scanning electron microscopy (SEM) using a JEOL 
model JMS6360-Lv microscope. The crystallinity of the 
material were characterized by X-ray diffraction (Shimadzu/
XRD‑7000) with CuKα radiation (λ = 1.542Å), 40 kV and 
30 mA. Vibrational spectra were recorded on a Bomem 
MB-series spectrophotometer (Model B100) and Raman 
spectra were obtained using Confocal Raman equipment 
model T64000 Jobin-Yvon with laser excitation at 532 nm. 
Composition of the biogenic silica and the nanocomposite 
were identified by XRF, and the crystallite size was determined 
by Debye-Scherrer equation:

Kd
cos
λ

β θ
= 	 (2)

where d is crystallite size, K is shape factor (typical value 
of about 0.89 for spherical crystalline solids with cubic 
unit cells), λ is CuX-ray wavelength (1.542 Å), θ is Bragg 
diffraction angle and β is the peak width of the diffraction 
peak profile at half maximum height.

3. Results and Discussion
3.1. Amorphous SiO2

Composition of the biogenic silica is shown in Table 1. 
According to the percentage values of the components, the 
methodology used to extraction provided SiO2 with purity 
of approximately 98.6%, higher than commercial SiO2

[28]. 
The analysis of the surface area by BET method showed an 
approximated29,30 value of 450 m2 g–1 and a mean particle 
size of 7 nm, given by Equation 1.

3.2. Structural study of SiO2 and nanocomposite
XRD diffractogram of the biogenic SiO2 is presented in 

Figure 1a and shows a broad peak located approximately 
at 2θ = 22.5°, that suggests an amorphous characteristic of 

the sample and agrees with the reported JCPDS data (card 
No. 01-086-1561).

XRD pattern for the nanocomposite is shown in 
Figure 1b and reveals a small shoulder at 2θ = 21.7° that can 
be attributed to amorphous SiO2 and other peaks assigned 
to crystalline SnO2. All values of diffraction peaks are in 
accordance with JCPDS pattern (card No. 00-041-1485). 
The main diffraction peaks observed for SnO2 are centered 
approximately at 2θ  values of 27.1°, 34.2° and 52.1°. 
In addition, the crystallite size based on the major diffraction 
peak is 27.8 nm for the nanocomposite.

3.3. Morphology of nanocomposite
Surface morphology of the nanocomposite is presented in 

Figure 2. SEM micrographs reveal formation of a heterogeneous 
mixture of agglomerates with irregular shapes and sizes.

3.4. FTIR and Raman analyses
FT-IR and Raman spectra for the SnO2/SiO2 nanocomposite 

are shown in Figure 3a and 3b, respectively. Comparisons 
between wavenumber obtained in this work with literature 
values are exhibited in Tables 2 and 3.

Table 1. Composition of SiO2 determined by XRF.

Component %
SiO2 98.589
P2O5 0.834
Al2O3 0.390
CaO 0.130
Fe2O3 0.020
Ag2O 0.011
MnO 0.007
TiO2 0.003
Cl 0.016

Figure 1. XRD obtained for (a) biogenic SiO2 from rice husk and 
(b) SnO2/SiO2 nanocomposite.
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Infrared spectrum shows a broad band at 3455 cm–1 
attributed to O-H stretching from hydroxyl groups presents 
on surface of the material and the band at 1628 cm–1 is 
associated with bending H-O-H bond groups of adsorbed 
water molecules31. Bands at 467, 807 and 1097 cm–1 are 
assigned respectively to vibrational modes of O-Si-O 
bending, to symmetric stretching of Si-O-Si group and to 
the asymmetric stretching of Si-O-Si structural bond of 
siloxane32. Vibrations in the range from 500 to 700 cm–1 
are assigned to Sn-O-Sn group as result of condensation 
reactions33. The bands characterized by the peaks 548 and 
664 cm–1 are assigned to the Sn-O stretching vibration and 
Sn-O-Sn asymmetric vibration, respectively34.

SnO2 has a tetragonal rutile crystalline structure with 
point group D4h

[35]. According to Li et al. there are three typical 
modes to SnO2 in Raman spectrum (474 cm−1 (Eg), 631 cm−1 
(A1g) and 775 cm−1 (B2g). When the particle size decreases, 
A1g and B2g modes of SnO2 are shifted to lower wavenumbers 
and Eg mode is shifted to higher wavenumber36. Obtained 
results have shown that mode at 475 cm–1 is assigned to 
translational mode (Eg) of the oxide. On the other hand, mode 

Figure 2. SEM images magnified (a) 3500 and (b) 10000 times.

Figure 3. Spectra for the SnO2/SiO2 nanocomposite (a) FT-IR (b) Raman.

Table 2. Assignments of infrared bands of the SnO2/SiO2 nanocomposite.

This work LiteratureRef

Assignment
(cm–1) (cm–1)

467 46030 δ (Si-O)
548 55832 νsim (Sn-O)
664 67432 νass (Sn-O-Sn)
807 80030 νsim (Si-O-Si)
1097 107430 νass (Si-O-Si)
1628 1620-163029 δ (H-O-H)
3455 3350-345029 ν (O-H)

Table 3. Assignments of the Raman bands for the SnO2/SiO2 
nanocomposite.

This work LiteratureRef

Assignment
(cm–1) (cm–1)
1592 158040 G band
1376 136040 D band
752 77434, 77535 B2g

681 68734 A2u LO*
620 63834, 63135 A1g

540 51234 A2u TO†

495 47534, 47435 Eg

347 37734 Eu (2) LO
242 23634 Eu (1) TO
125 10034 B1g

*LO – longitudinal optical phonons. †TO – transverse optical phonons.
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at 620 cm–1 is assigned to symmetric O-Sn-O stretching (A1g) 
and the third mode at 752 cm–1 is assigned to asymmetric 
O-Sn-O stretching (B2g)

37.
The position of SnO2 peak in Raman spectrum is 

dependent of particle size and a fourth vibrational mode 
(B1g) peak appears only to nanomaterials. Thus, in the Raman 
spectrum the presence of an intense peak centered at 125 cm–1 
is associated to non degenerated B1g mode of SnO2 and is 
assigned to rotation of the oxygen atoms, with all oxygen 
atoms participating in the vibration at tetragonal unit cell of 
rutile36. All modes and assignments are presented in Table 3.

The effects of particle size and disorder in the material 
lead to a relaxation of the Raman selection rule, and some 
modes that are usually inactive in Raman become actives. 
Furthermore, the peaks at 242 cm–1, 347 cm–1, 540 cm–1 and 
681 cm–1were assigned to optical phonon modes of SnO2, 
Eu (1) TO, Eu (2) LO, A2uTO and A2uLO of SnO2, where LO 
and TO are longitudinal and transverse optical phonons, 
respectively34,38-40.

Peaks at 1354 and 1587 cm–1 are termed D and G bands, 
respectively41, and confirm the presence of amorphous carbon 

that is typical of the temperature and of the sol-gel route 
used for obtain the nanocomposite.

4. Conclusion
Biogenic SiO2 extracted from rice husk and the SnO2/SiO2 

nanocomposite were characterized by XRF, XRD, SEM, 
FTIR and Raman. The method used in SiO2 extraction was 
efficient to obtain amorphous biogenic SiO2 of high purity 
in nanometer scale. SnO2/SiO2 nanocomposite behaved as 
a solid mixture of SiO2 of low crystallinity and crystalline 
SnO2. Therefore, from rice rusk is possible obtain biogenic 
SiO2 of high purity that added to SnO2 provide the SnO2/SiO2 
nanocomposite.
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