
DOI: http://dx.doi.org/10.1590/1980-5373-MR-2016-1009
Materials Research. 2017; 20(Suppl. 2): 260-264

A New Dynamic Powder Consolidation Technique Using Shock Waves
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Techniques for shock consolidation of powders have been developed for different purposes, including 
the synthesis of diamond from carbon powder. In this work, a new device configuration for dynamic 
consolidation is proposed. It consists of three coaxial tubes, with a conical cover made of explosive at the 
top of the device. The inner tube contains the powder to be compacted. The second is accelerated towards the 
first in order to promote its collapse. The third confines the explosive. A conical cap at the top of the device 
triggers the explosive. For a preliminary evaluation, two types of explosives, TNT and Composition B, were 
used. Preliminary analytical results by the impedance matching method indicate that maximum pressures 
of 35.44 GPa and 48.16 GPa could be achieved using TNT and Composition B, respectively. Maximum 
temperatures around 1,600 K and 2,500 K for TNT and Composition B, respectively, are expected. These 
pressure and temperature values are adequate for transforming graphite into diamond. Preliminary Rietveld 
refinement indicated that nanodiamond is a fraction of approximately 54% of the detonation resulting powder.
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1. Introduction
Shock wave consolidation and synthesis of materials 

has been investigated since 1960’s1-14 for many purposes, 
including the synthesis of diamonds from carbon powder15-27. 
This process is associated with the use of explosives. Upon 
detonation, a high-pressure shock wave is generated that 
moves into the main explosive, initiating the reaction. Figure 1 
presents a detonation wave scheme. The front of this wave 
moves toward the unreacted material with a speed D. The 
interface between the unreacted explosive and the front of 
the detonation wave has a high peak pressure, called the von 
Neumann peak, which is narrow and quickly attenuated. 
Between the unreacted explosive and detonation of the 
explosive products, there is a region named chemical reaction 
zone. It performs the transformation of solid explosive into 
gaseous detonation products. 

The interface between the chemical reaction region and 
the detonation products is where the synthesis is completed. 
This is called the Chapman-Jouguet point (C-J), used to 
characterize the explosive, i.e., its pressure (PCJ) and particle 
velocity (UP)CJ

28. The wave of relaxation, known as Taylor 
wave, propagates into the product immediately behind the 
detonation wave28. The phenomenon of dynamic deformation 
at high rates due to detonation shock wave is governed by 
conservation relationships that were derived from Rankine-
Hugoniot28-31. The following equations represent, respectively, 
the conservations of mass, momentum and energy.
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where ρ0 is the initial specific mass; ρ, the final specific 
mass; D, the detonation wave velocity; Up, the particle 
velocity; P, the final pressure; P0, the initial pressure; E, 
the final energy; E0, the initial energy; V, the final volume; 
V0, the initial volume, and Q is the chemical energy per 
mass unit.

The conservation equations, (1), (2) e (3), involve 5 
variables. So, one additional equation is required to relate 
them. Then, it is also used an experimentally obtained 
equation of state shown in Eq. 4.

. . ( )U C S U 4s p0= +

where S is an empirical parameter and C0 a characteristic 
sound wave velocity.

Some previous methods use substantial amounts of 
explosives, in the order of up to hundreds of pounds. 
Besides that, there are methods that combine distinct types 
of explosives which can generate difficulties, such as good 
interaction of different explosives, and interface effects as 
well. With the present method, only about 2 kg of a single 
type of explosive was used in each detonation for similar 
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purpose. This contributes to minimizing the cost of confection 
of the device, including the amount of explosive, making 
it possible to increase the number of tests to be performed.

2. Materials and Methods

As aforementioned, this new configuration is proposed 
to transform a carbon precursor powder into diamond. Then, 
as such precursor, carbon black (Quimesp, 98% purity) was 
used. Upon transformation, a fast quench is necessary to 
maintain the diamond structure. Thus, copper powder (Viner 
Brasil Tecnologia, 99,6% purity) was chosen as quenching 
medium, given its known high thermal conductivity. The 
carbon black and copper powder were mixed, with a weight 
ratio of 10/90, respectively, to ensure greater homogeneity 
and satisfactory cooling to achieve the desired transformation.

The new design for dynamic consolidation is a round 
configuration consisting of three concentric cylinders in the 
form of tubes. Meyers and Wang6 were the first to use this 
technique with the purpose of promote powder synthesis by 
shock wave. Subsequently, Ferreira9 improved it. From the 
device successfully used by Meyers6, an adaptation has been 
made, shown schematically in Figure 2. This new design 
requires less explosive and successfully yields comparatively 
more diamonds than previous ones6,9. This novel technique 
here proposed is the startup through a single explosive in 
conical shape at the top of the double tube device. The 
intermediate cylinder, called flyer tube (diameter of 1.5 in.), 
is made of the same inner stainless steel tube (diameter of 
3/4 in.). The flyer tube is accelerated inward by the shock 
wave produced by the detonation of TNT (trinitrotoluene) 
and Composition B (hexolite, 60wt% RDX and 40wt% 
TNT) that collapse the inner tube containing the powder to 

be synthesized. These tubes are 304 stainless steel and 300 
mm high. High pressure and elevated temperature achieved 
by the shock wave are favorable conditions for carbon 
transformation into the diamond structure17,18,23,26,27,28. Between 
the steel tubes, there is an empty space that is required for 
accelerating the flyer tube against the inner tube containing 
the powder. The external tube, made of PVC, with 500 mm 
of height and 100 mm of diameter, confines the explosive. 
The explosives were cast and poured into the device. Then, 
its solidification was made with the device immersed in 
flowing water at room temperature.

It is expected that the detonation wave of the conical 
explosive cap (also with 100 mm diameter), initiated by the 
detonator, reaches the cap/explosive interface as a plane 
wave, given the distance to be traveled and the speed of 
the detonation wave6,28. 

The calculation of the pressure generated by the shock 
wave at the moment of the impact was estimated using the 
shock impedance matching method28. This is given by the 
intersection of the direct Hugoniot from the target material 
with the inverted Hugoniot from the impacting material. The 
relation between the impact velocity of the flyer tube and the 
ratio of the masses of the flyer tube and of the charge (M/C) 
follows the Gurney’s equation31 for cylindrical configuration, 
presented by Eq. 5.

Figure 1. (a) The structure of a detonation shock wave, and (b) the 
pressure as a function of time (adapted from Meyers28).

Figure 2. Schematic representation of the proposed device (adapted 
from Meyers28), with the conical cap made of explosive.
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A sequence of dynamic relationships permitted the 
evaluation of the pressure at the C-J point18.

The P x Up direct Hugoniot of the materials may be 
calculated by Eq. 6.

. . . . ( )P C S U U 6p p0 0t= +Q V
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and its P x Up inverted Hugoniot, presented as follow. on the mixture powder, due the interaction with the stainless 
steel tube, was about 36.62 GPa, with particle velocity of 
799.23 m/s.

Figure 4 illustrates the direct and inverted Hugoniots of 
the materials involved in the detonation of the Composition 
B explosive.

. . . . ( )P C S V U V U 7p p0 0t= + - -Q QV V" %

were V is the impact velocity. The P x Up inverted 
Hugoniot of the explosive is given by.
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and the pressure at the Chapman-Jouguet point (PCJ) 
can be calculated by.

where γ is the polytropic gas constant.

3. Results and Discussion

The first results were achieved considering the TNT 
explosive. All parameters involved were taken from Meyers28. 
In order to obtain the pressure values in the flying tube PFT 
and its respective particle velocity (Up)FT as well as the 
pressure in the copper powder, the values of the intersections 
of the Hugoniot curves of the materials involved were used, 
as seen in Figure 3.

. / . ( )P D 1 9CJ 0
2t c= +Q V

Figure 3. Hugoniot curves obtained by the detonation of TNT 
explosive.

Observing the graph, the point that intercepts the direct 
Hugoniot of the flyer tube with the inverted Hugoniot of the 
explosive provides PFT ≅ 36.50 GPa and (UP)FT ≅ 801.47 
m/s. One can also observe that the impact velocity of the 
flyer tube is about 1,602.94 m/s, which, in accord with the 
Gurney equation31. The dimensions of the device, provides 
an M/C ratio around 0.885.

The direct Hugoniot of the container of the powder to 
be compacted (copper with carbon) is hidden by the direct 
Hugoniot of the flyer tube because both are made of the 
same material. It is also seen in Figure 3 that the pressure 

Figure 4. Hugoniot curves obtained by the detonation of Composition 
B explosive.

The intersection point of the direct Hugoniot of the flyer 
tube with the Composition B inverted Hugoniot gives PFT ≅ 
47.85 GPa and (UP)FT ≅ 999.52 m/s. The impact velocity of 
the flyer tube is about 1,999.04 m/s, providing an M/C ratio 
about 0.718. Besides that, one can observe that the pressure 
generated on the mixture of copper and carbon black was 
about 48.16 GPa, with particle velocity close to 994.46 m/s.

In order to estimate the temperature reached by the 
detonation, the method described by Meyers28 to the temperature 
rise associated with shock waves was adopted. The standard 
solution is of the form shown in Eq. 10.
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According to the values displayed on literature28, a 
temperature of the order of 1,600 K is estimated for the 
TNT detonation, and about 2,500 K for the detonation of 
the Composition B explosive.

Such values of pressure and temperature, even for the 
TNT and Composition B explosives, achieved the diamond 
region on the carbon phase diagram presented in Figure 5.
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Rietveld refinement of the products obtained from the 
TNT explosive detonation was performed. It indicated 
that a considerable amount of detonation diamonds (more 
then 50%), with crystallite size about 29 nm, and GOF of 
1.418, was achieved as can be seen in Figure 6. Moreover, 
experimental evidence of transformed diamond nanoparticles 
is shown in Figure 7.

configuration, with a conical single explosive cap initiation. 
The pressure, impact velocity and temperature values to be 
reached with the detonation of explosives were estimated. The 
shock wave generated by detonation TNT (trinitrotoluene) 
indicated a pressure around 35.44 GPa and a temperature of 
approximately 1,600 K, while the Composition B detonation 
provided a pressure of 48.16 GPa and a temperature of about 
2,500 K. By the M/C ratio, it can be seen that the necessary 
quantity of explosives is relatively small (~2 kg), reducing 
the cost of the process. The preliminary experimental results 
of SEM, Rietveld refinement and Raman spectroscopy, 
confirmed the presence of transformed nanodiamonds, with 
estimated crystallite size of about 29 nm.
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Preliminary Raman spectroscopy analyses of the detonation 
product confirmed the presence of diamonds.

4. Conclusions
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