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Hot Deformation Behavior and Microstructure Evolution of 2219/TiB2 Al-matrix Composite
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Hot compression tests for 2219/TiB2 Al-matrix composite were conducted on a Gleeble-3500 isothermal 
simulator in the temperature range of 300~500°C and strain rates of 0.01, 0.1, 1, 10s-1 to obtain 
true stress strain curves. The original Johnson-Cook model was calculated and used to describe the 
constitutive relationship of hot deformation behavior of this composite. After precision evaluation and 
analysis, a new modified Johnson-Cook model was proposed. Comparing with the original model, 
the new model has a lower absolute average relative error (AARE) of 6.4415% and a higher relative 
error (R) of 0.9852, which indicates better prediction precision. Meanwhile, to understand the intrinsic 
workability of this composite, processing map based on dynamic materials model was constructed. 
Two stable regions locating at 300~400°C&0.01~0.1s-1 and 420~500°C &0.01~1s-1 were identified by 
the processing map and the instable microstructure in the instability region validated the reliability of 
the processing map. Furthermore, the microstructure evolution was analyzed and the results revealed 
that the θ-phase reduced with the increasing temperature.

Keywords: 2219/TiB2 Al-matrix composite; modified Johnson-Cook model; processing map; 
microstructure evolution.

1. Introduction
Aluminum matrix composites (AMCs) are increasingly 

used in aerospace, aircraft, automotive industries due to the 
advantages such as light weight, good wear resistance, high 
specific strength and low thermal expansion coefficient1-3. 
So far, the main widely used reinforcing particles for AMCs 
are Ni2O3

4, Al2O3
3, ZrB2

5, SiC1,6 and TiB2
7 etc. Among these 

strengthened Al-matrix composites, the main research goals 
of previous research reports were at obtaining good adhesion 
property at the interface of particles and matrix and mature 
fabrication processes. However, the hot deformation behavior 
of the composites was few reported.

Hot deformation behaviors of alloys were normally studied 
using constitutive models and processing maps8-10. Until now, 
many constitutive models to describe the hot flow behaviors 
of alloys were developed. As early as in 1966, C.M. Sellars 
and W.J. McTegart proposed the nowadays most widely used 
Arrhenius model. Subsequently, G.R. Johnson and W.H. Cook 
firstly proposed the Johnson-Cook model for describing severe 
plastic deformation behavior of metal in 198311 and F.J. Zerilli 
and R.W. Armstrong proposed the Zerilli-Armstrong model 
based on dislocation mechanics in 198612. As one of the most 
classical phenomenological models, Johnson-Cook model 
has been widely used due to its comprehensive advantages of 
simplicity and high precision13-15. Nevertheless, the original 
Johnson-Cook model cannot describe the flow behavior of 
most alloys with high precision and researchers normally 
like to modify the model to better suit the flow behavior of 

a certain alloy15-17. Hence, it is possible to develop a better 
modified Johnson-Cook model for 2219/TiB2 Al-matrix 
composite since this field has been rarely reported. Meanwhile, 
processing map has become a mature method to identify the 
intrinsic workability of alloys18-21, but it was either seldom 
used in the investigations of 2219/TiB2 Al-matrix composite. 
To better understand the hot deformation behavior and intrinsic 
workability of 2219/TiB2 Al-matrix composite, it is important 
to construct the suitable constitutive model and processing 
map for it. Besides, investigating the effect of ceramic particles 
in the microstructure evolution during hot deformation 
of 2219/TiB2 Al-matrix composite is also necessary.

In this study, the original Johnson-Cook constitutive model 
for 2219/TiB2 Al-matrix composite was firstly constructed and 
the prediction precision was evaluated. After analyzing the 
main factors limiting the precision of the model, a modified 
Johnson-Cook model was proposed to better describing the 
flow behavior of this composite. Meanwhile, the processing 
map at the strain of 0.9 was developed to identify the 
intrinsic workability of this composite. Subsequently, the 
microstructure evolution was analyzed by optical microscopy 
and used to verify the processing map, at the same time, the 
microstructure evolution during hot deformation was studied.

2. Experimental
The as-received material is a homogenized 

ingot 2219/TiB2 Al-matrix composite with chemical 
compositions (wt.%) of 5.8-6.8Cu, 0.2-0.4Mn, 0.2Si, 
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0.1-0.25Zr, 0.3Fe, 0.02Mg, 0.1Zn, 0.02-0.1V, balance Al, 
and the addition of 6vol.% TiB2 particles. The optical 
microscopy (OM) and scanning electronic microscopy (SEM) 
microstructures of the alloy under as-received condition are 
shown in Figure 1a and 1b. Also, the EDS mapping of B and 
Ti elements are shown in Figure 1c and 1d. To prepare for 
hot compression tests, the specimens were cut into cuboid 
with dimensions of 10mm×15mm×20mm. Hot compression 
tests were conducted on a Gleeble-3500 isothermal simulator 
at the temperature range of 300~500°C with an interval 
of 50°C and the strain rate range of 0.01~10s-1 and the height 
reduction of 60%. To reduce the effect of friction, graphite 
flakes were added between the anvils and the largest end 
faces of specimens. Also, to ensure uniformed temperature 
distribution before compressing, specimens were heated 
by 10°C/s to a certain temperature and held 180s. The nominal 
stress strain data were automatically obtained by a computer-
assisted monitor and interpreted into true stress strain data.

3. Results and Discussion

3.1 True stress strain curves
Figure 2 shows the measured true stress strain curves 

of 2219/ TiB2 Al-matrix composite at different conditions. 
It can be seen that true stress varies with the deformation 
temperature and strain rate distinctly. Higher deformation 

temperature and lower strain rate will result in lower true 
stress, a conventional explain for this phenomenon is that 
the nucleation of dynamic recrystallization is easier to 
process under higher temperature and lower strain rate22-24. 
Besides, the true stress increases dramatically at the initial 
stage of deformation and decreases with the increasing strain, 
which is caused by the predomination of work hardening at 
the beginning of deformation and the subsequent effect of 
dynamic recovery and dynamic recrystallization becoming 
stronger with the increasing strain.

3.2 Construction of Johnson-Cook model
As an empirical model, Johnson-Cook constitutive model 

was firstly proposed by Gordon R. Johnson and William 
H. Cook in 1983 to describe the relationship between flow 
stress and deformation parameters including strain, strain 
rate and temperature for the large plastic deformation of 
alloys11. It was expressed as following:

	 ( ) ( )ln *
m

refn

m ref

T T
A B 1 C 1

T T
σ ε ε

  − = + + −       −  



	 (1)

where σ, ε  are the flow stress, strain, * / ref=ε ε ε   , ε is the strain 
rate, refε  is the reference strain rate, T is the current absolute 
temperature, Tm is the melting temperature, here, Tm=650°C, 
Tref is the reference temperature, respectively. A is the yielding 

Figure 1. (a) the OM microstructure; (b) the SEM microstructure; the EDS mapping of (c) B and (d) Ti elements.
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stress at reference condition, B is strain hardening coefficient, 
C is strain rate hardening coefficient, n is strain hardening 
exponent and m is temperature softening exponent.

According to Equation 1, it is clear that a reference 
condition needs to be set before the calculation of this 
model. In our study, the reference condition was set as the 
deformation temperature of 300°C and strain rate of 0.01s-1. 
As shown in Figure 3, at the reference condition, the yielding 
stress (namely A) of this composite is about 80MPa.

Under the reference temperature and strain rate, the 
effect of strain rate and temperature on flow curves could 
be ignored and Equation 1 can be denoted as:

	 ( )nA Bσ ε= + 	 (2)

Taking natural logarithm of both sides:

	 ( )ln ln lnA B nσ ε− = + 	 (3)

According to Equation 3, it is obvious that ln(σ-A) is 
linearly relate to lnε. Hence, the values of n and B were 
determined to be -0.8835 and 2.0495 by linear fitting 
respectively.

Under reference temperature condition, Equation 1 can 
be denoted as:

	 ( ) ( )ln *nA B 1 Cσ ε ε= + +   	 (4)

Equation 4 can be converted into:

	 ( ) ( )ln *
n

1 C
A B

σ ε
ε

= +
+

 	 (5)

Similarly, σ/(A+BεN) and ( )ln *ε  is linearly related and 
C-value was determined to be 0.1512 by linear fitting as 
shown in Figure 4.

Figure 2. True stress strain curves of 2219/ TiB2 Al-matrix composite

Figure 3. Stress strain curve at reference condition.
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To obtain the value of m, Equation 1 can be expressed as:

	 ( )* m
1 Y T− = 	 (6)

Where ( )[ ]ln *n
Y

A B 1 C
σ

ε ε
=

+ + 

 and * ref

m ref

T T
T

T T
−

=
− .

Taking natural logarithm of the both sides of Equation 6:

	 *ln lnY m T= 	 (7)

According to the linear fitting of lnY and lnT* under the 
strain of 0.3 as shown in Figure 5, the m-value was finally 
determined to be 0.6859.

Here, after obtaining the material constants, the 
Johnson-Cook model for 2219/ TiB2 Al-matrix composite 
was constructed as:

	 ( ) ( )
.

.. . ln *
0 6859

ref0 8835

m ref

T T
80 2 0495 1 0 1512 1

T T
σ ε ε−

  − = + + −       −  

 	 (8)

Figure 6 shows the comparison between predictions of 
constructed Johnson-Cook model and experimental results. 
It can be seen that the predictions are much higher than the 
experimental results at lower strain condition and close to 
the experimental results at higher strain condition. Moreover, 
at lower strain rate condition, e.g. 0.01s-1 and 0.1s-1, the 
prediction accuracy is relative better than that at higher strain 
rate condition, the error of prediction precision increases 
with the increasing strain rate.

Figure 4. Determination of C-value.

Figure 5. Determination of m-value.

Figure 6. The comparison between predictions of constructed Johnson-Cook model and experimental results.
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3.3 Modification of Johnson-Cook model
As discussed above, the original Johnson-Cook model 

can describe the flow behavior of 2219/ TiB2 Al-matrix 
composite to some extent, but the prediction precision is 
not satisfying. The main reasons of lower precision are: 
1) according to the original calculation process, linearly 
fitting ln(σ-A) and lnε will obtain negative n-value under 
low strain conditions, which will result in opposite variation 
tendency of flow stress and greater error; 2) the accuracy of 
linear fitting σ/(A+BεN) and ( )ln *ε  is about 0.91347 which is 
not high enough. Hence, the slope of this fitted line cannot 
represent the C-value better; 3) The precision of predicted 
flow stress becomes lower with the increasing strain rate, 
which can be attributed to the m-value which is a certain 
value under different strain rate. Obviously, m should be a 
function about strain rate.

Due to the larger error of the result of linear fitting 
ln(σ-A) and lnε as shown in Figure 7a, it is better to choose 
polynomial fitting. Here, a fifth order polynomial fitting 
were taken to better fit the relationship between ln(σ-A) and 
lnε. The determination coefficient R2 rises from 0.44949 of 
linear fitting to 0.99044. As a result, the following expression 
was obtained:

( ) ( ) ( ) ( )( ) 2 3 4 5f -2.167-11.940ln -13.594 ln -8.294 ln -2.509 ln -0.288 lnε ε ε ε ε ε= 	 (9)

Where f(ε) = ln(σ-A).
Similarly, to better fit the relationship between σ/(A+BεN) 

and ( )ln *ε , a second order polynomial fitting were taken as 
shown in Figure 7b. It can be seen that the R2-value rises 
from 0.91347 to 0.9379. At the same time, the following 
expression was obtained:

	 ( ) ( )( ) ln * ln * 2
f 1 0.25172 -0.01455

e Aε
σ ε ε= +
+

 
	 (10)

Moreover, the m-values at the strain of 0.3 and different 
strain rate were calculated. As shown in Figure  7c, the 
relationship between m and ( )ln *ε  was fitted by a third order 
polynomial function which is expressed as:

	 ( ) ( ) ( ) ( )* . . ln * . ln * . ln *2 3m 0 7125 0 23427 0 0878 0 0073ε ε ε ε= − + −   

	 (11)

Here, the modified Johnson-Cook model was developed 
as following:

( ) ( ){ }
( )*

( ) ln * ln *
m

2 reff

m ref

T T
e 80 1 0.25172 -0.01455 1

T T

ε
εσ ε ε

  −  = + + −        −   



  	(12)

where 
( ) ( ) ( ) ( ) ( )( ) 2 3 4 5f -2.167-11.940 ln -13.594 ln -8.294 ln -2.509 ln -0.288 lnε ε ε ε ε ε= ;

( ) ( ) ( ) ( )* . . ln * . ln * . ln *2 3m 0 7125 0 23427 0 0878 0 0073ε ε ε ε= − + −         

3.4 Prediction precision analysis of the modified model
Figure 8 shows the comparison between experimental 

result and predicted result of modified Johnson-Cook model. 
Compared with Figure 6, it is distinct that the new predicted 
results are more accurate, especially at low strain conditions. 
To better analyze the accuracies of the two models, relative 
coefficient (R) expressed as Equation 13 and absolute 
average relative error (AARE) expressed as Equation 14 were 
introduced. As shown in Figure 9, the R-value and AARE-value 
of original Johnson-Cook model are 0.94731 and 10.3747% 
respectively and the two indicators of modified model 
are 0.9852 and 6.4415% respectively.

	
( )( )

( ) ( )

n
i i

i 1
n n2 2

i i
i 1 i 1

E E P P
R

E E P P

=

= =

− −
=

− −

∑

∑ ∑
	 (13)

Figure 7. (a) Fitting error analysis of n and (b) C, (c) the fitting curve of m.
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	 %
n

i i

i 1 i

E P1AARE 100
n E=

−
= ×∑ 	 (14)

where Ei and Pi are experimental result and predicted result 
respectively, E and P  are the mean value of experimental 
results and predicted results respectively.

3.4 Processing map
The intrinsic workability of a metal means its maximum 

ability of deformation without being fractured during hot 
processing25,26. Usually, this ability is characterized by method 
of processing map which can identify the stable and instable 
hot working region and help researchers to understand 
the deformation mechanism and microstructure evolution 

mechanism of a metal during hot deformation. It is widely 
accepted that constructing processing maps based on dynamic 
materials model (DMM) is effective and precise, which was 
firstly done by Prasad et al.27. Prasad et al.27 believe that the 
hot working process is a power dissipation process, the total 
absorbed power is mainly dissipated by plastic deformation 
and the structural variation of microstructure during plastic 
deformation, and this process was denoted as:

	 0 0P G J d dε σσ ε ε σ= + = +∫ ∫


  	 (15)

Where P is the total absorbed power, G content represents 
the absorbed power by plastic deformation and J co-content 
represents the absorbed power by microstructure evolution. 
At a giving temperature and strain rate, J co-content can be 
denoted as21,26:

Figure 8. The comparison between predictions of modified Johnson-Cook model and experimental results.

Figure 9. Error analysis of (a) the original Johnson-Cook model and (b)modified Johnson-Cook model.
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0

mJ d
m 1

σ
ε σ σε= =

−∫   	 (16)

Where m is strain rate sensitivity index denoted as Equation 17. 
The value of m can reflect the deformation mechanism of 
a metal especially the ability of superplastic deformation 
during hot forming28,29.

	
, ,

log log
log logT T

d32m
dε ε

σ σ
ε ε

   ∂
= ≈   ∂    

	 (17)

To calculate the value of m, a third order polynomial 
function can be used to fit the relationship of logε and logσ  
as following30-32:

	 log log (log ) (log )2 3
1 2 3 4k k k kσ ε ε ε= + + +  

	 (18)

The m-value can be obtained by taking the derivation 
of Equation 18:

	 log log (log )
log

2
2 3 4

dm k +2k 3k
d

σ ε ε
ε

= = + 



	 (19)

Where k1~4 are material constants. At a certain strain and 
deformation temperature, the values of k1~4 can be calculated 

by third order polynomial fitting the relationship of logε and 
logσ . For example, Figure 10a shows the fitting relationship 
of logε and logσ  under the strain of 0.9 and different 
temperature conditions. After obtaining the values of k1~4, 
the m-values can be calculated and its 3D response surface 
map is shown in Figure 10b.

Under ideal linear dissipation condition, J co-content 
reached its maximum value:

	 mJ
2
σε

=
 	 (20)

The power dissipation efficiency (η) is expressed as:

	
m

J 2m=
J m 1

η =
+

	 (21)

The value of power dissipation efficiency reveals different 
deformation mechanism, e.g. dynamic recrystallization 
(DRX), dynamic recovery (DRV), adiabatic shear band and 
crack. Generally, higher η-value reveals higher possibility 
that DRV and DRX operate. After calculating the η-values 
under different conditions, the power dissipation maps at the 
strain of 0.5 and 0.9 were constructed as shown in Figure 11. 
The power dissipation maps reflect the workability of this 

Figure 10. (a) the fitting relationship of logε and logσ  under the strain of 0.9; (b) the 3D response surface map of m-values.

Figure 11. The power dissipation maps at the strain of (a) 0.5 and (b) 0.9.
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alloy to some extent by means of η-values. However, to 
better understand the working stability of the alloy during hot 
processing, the instability situations need to be considered 
and instability criterion needs to be introduced. The common 
instability criterions for plastic deformation include Gegel’s 
instability criterion33, Prasad’s instability criterion34, Ziegler’s 
instability criterion35, Alexzander’s instability criterion36 and 
Murty’s instability criterion37. Here, we choose Prasad’s 
instability criterion which is expressed as27,34:

	 log

log( )

m
m 1= m 0ξ
ε

 ∂  +  + <
∂ 

	 (22)

Where ξ is the instability coefficient and it indicates the 
occurrence of instability when it is negative. The instability 
maps at the strain of 0.5 and 0.9 were constructed as shown 
in Figure 12 after the determination of ξ-values.

By overlapping the instability maps on the power efficiency 
maps, the processing maps at the strain of 0.5 and 0.9 were 
obtained as shown in Figure 13. It can be seen that, the η-values 
are higher at the conditions of 350°C/0.1s-1, 450-500°C/0.1s-1, 
400~430°C/0.01s-1, which reveals that DRX and DRV are 
more tend to happen. Due to the addition of ceramic particles 

which offer more particles for nucleation, the continuous 
dynamic recrystallization (CDRX) are more likely to occur. 
Hence, CDRX operates at this temperature area. Besides, the 
grey areas in Figure 13 are instability areas which distribute 
in the regions of high strain rate. As a result, one of the 
intrinsic optimum workable areas is at the temperature range 
of 300~400°C and strain rate range of 0.01~0.1s-1, another 
area is at the temperature range of 420~500°C and the strain 
rate range of 0.01~1s-1.

3.5 Microstructure analysis
Figure 14a and 14b show the microstructures of the deformed 

center of specimens at the temperature of 350°C and strain 
rates of 0.01s-1 and 10s-1, respectively. It is obvious that the 
flow net in Figure 14a distributed uniformly. As a comparison, 
a deformation band with an angle of approximately 45° to the 
compression axis can be seen in Figure 14b, this structure is 
usually believed to be shear band which is a typical defect of 
deformed microstructure. Here, the microstructures coincide 
with the results of processing map.

Figure 15 shows the microstructures at the temperature 
ranges of 350~500°C with the strain rate of 1 s-1, it can be 
seen that θ-phase reduces with the increasing temperature. 

Figure 12. The instability maps at the strain of (a) 0.5 and (b) 0.9.

Figure 13. The processing maps at the strain of (a) 0.5 and (b) 0.9.



9Hot Deformation Behavior and Microstructure Evolution of 2219/TiB2 Al-matrix Composite

As shown in Figure  15d, θ-phase was vanished at the 
temperature of 500°C because it was dissolved in the α-phase 
matrix, meanwhile, the grain boundary becomes vaguer 
which coincides with the phase diagram of Al-Cu alloy. 
Besides, TiB2 particles can also be seen in Figure 15 and 
they usually concentrated in grain boundary.

Figure 14. (a) Microstructures at the center of specimens deformed at (a) 350°C&0.01s-1 and (b) 350°C&10s-1.

Figure 15. The microstructures of the specimens at the strain rate of 1s-1 and different temperatures: (a) 350°C; (b) 400°C; (c) 450°C; (d) 500°C.

4. Conclusions
1.	 The hot deformation behavior of 2219/TiB2 Al-matrix 

composite was greatly influenced by deformation 
temperature and strain rate. Also, deformation 
temperature and strain rate have an interaction 
effect on flow stress;
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2.	 A new modified Johnson-Cook model was proposed 
because the original Johnson-Cook model has 
greater error after error analysis. As a result, the 
AARE-value of new model was reduced 37.91% 
comparing with original one and the model was 
denoted as:

( ) ( ){ }
( )*

( ) ln * ln *
m

2 reff

m ref

T T
e 80 1 0.25172 -0.01455 1

T T

ε
εσ ε ε

  −  = + + −        −   



 

where
( ) ( ) ( ) ( )( ) 2 3 4 5f -2.167-11.940ln -13.594 ln -8.294 ln -2.509 ln -0.288 lnε ε ε ε ε ε= ;

( ) ( ) ( ) ( )* . . ln * . ln * . ln *2 3m 0 7125 0 23427 0 0878 0 0073ε ε ε ε= − + −         

3.	 Processing map at the strain of 0.9 for 2219/ TiB2 
Al-matrix composite was constructed. There are 
two stable regions located at the temperature range 
of 300~400°C with strain rate range of 0.01~0.1s-1 
and temperature range of 420~500°C with strain 
rate range of 0.01~1s-1.

4.	 The microstructures are coinciding with the 
prediction of instability area in processing map. 
Also, the content of θ-phase reduces with the 
increasing temperature.
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