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Artificial Neural Networks for Producing a Low-Cost Austempered Ductile Iron
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Two artificial neural networks (ANNs) were developed for producing an austempered ductile iron 
(ADI) with low-cost chemical composition and mechanical properties as per ASTMA897/897M-16-
grade-1050/750/07 standard. Thus, the first ANN predicted the chemical composition range within the 
lowest cost and required mechanical properties. Next, in the second ANN, the resulting values from 
the first ANN were refined considering the target chemical composition suggested in the standard. 
Moreover, mechanical properties and microstructural analyses were undertaken in the ADI produced 
to support the ANNs’ findings. Hence, ANNs can be used to make a standard-compliant ADI and 
achieve cost savings.
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1. Introduction
The mechanical properties of cast irons make them 

interesting for applications such as gearboxes, connecting rods, 
and wheel hubs, amongst others1. Overall, the microstructure 
of ductile cast iron (DCI) is composed by ferrite and pearlite 
with nodular graphite2. Besides, low-cost production with 
improved yield strength (YS) and ultimate tensile strength 
(UTS) through the austempering process can be reached3. 
The mechanical properties are classified in ASTM A897/
A897M-164 to ensure reliability for producing ADI. Thus, 
austempering process consists of austenitising at 815-925°C 
to generate an austenite microstructure (γ), followed by 
quenching at 260-400°C for the process to occur5,6. The 
resulting microstructure is acicular ferrite, which might be 
called ausferrite in a carbon saturated austenite matrix7-10.

Artificial neural networks (ANN) can be used in varied 
engineering fields due to their excellent self-learning 
function. ANNs are a potential tool for forecasting various 
consequences of the manufacturing process11,12. Cao and 
Guo11 showed that the cutting force for machining an ADI 
was successfully estimated using ANN, with an error of 
around 4%. Hammood and Lieth13 presented ANN for the 
effect of retained austenite on fatigue life, and the mechanical 
properties were predicted with high accuracy. Guo14 analysed 
the hardness through ANN and varied austempering parameters, 
and thus the predicted values approached the measured 
data. Ławrynowicz and Dymski15 compared the mechanical 
properties of ADI through an algorithm showing that ANN 

is suitable for analysing the ultimate tensile strength (UTS), 
yield strength (YS), and elongation.

The current work aims at producing an ADI with low-cost 
chemical composition and required mechanical properties 
by applying ANNs. Thus, these mechanical properties are as 
per ASTM A897/897M - 16 Grade 2 1050/750/07 standard.

2. Materials and Methods

2.1. Database
The current investigation was based on reports and 

technical sheets related to ADI production16-37. The database 
was organised with a variation in the chemical compositions 
(low to high levels of alloying elements) seventy-five chemical 
compositions with thirteen alloying elements (C, Si, Mn, 
Mo, Ni, Mg, S, Cu, Cr, Ti, Al, V, Nb) and their mechanical 
properties (UTS) [MPa], YS [MPa], elongation [%], and 
hardness Brinell [HB]). All these are required following ASTM 
A897/897M-16. So, this database was used for calculating 
the furnace charge and estimating the cost variation [$/ton].

2.2. The furnace charge, cost variation, and 
dataset

The charge calculation estimated a minimum of a ton of 
cast iron for each alloy38. The primary raw materials were pig 
iron, steel scrap, and ferroalloys. To that, the data from the 
international market39 and the Brazilian Foundry Association40 
were used, and quantities for producing cast iron in the 
charge, and the gross cost was estimated40,41. Therefore, the *e-mail: diogo.hofmam@outlook.com

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9659-3178


Hofmam et al.2 Materials Research

alloy cost was obtained by its variation between different 
charges. The minimum cost was identified as “100%”, up 
to a maximum of “472.71%”. Thus, a dataset containing 
variables as costs in charge and chemical compositions with 
their mechanical properties (C, Si, Mn, Mo, Ni, Mg, S, Cu, 
Cr, Ti, Al, V, Nb, cost variation [$/ton], YS, UTS, %E, and 
HB), totalling 1350 pieces of information. Table 1 shows a 
significant price variation.

2.3. Artificial neural network models, inputs, and 
outputs

An ANN model involves computations and mathematics 
for simulating the human–brain processes. ANNs have a 
specific architecture format, and regression models between 
data collection and analysis, structure design, hidden layers, 
simulation, and weights/bias trade-off computed through 
learning and training methods. Using an error optimisation 
algorithm (Levenberg-Marquardt (LMT), the ANN could find 
optimum weight for each synapse (the connection between 
nodes of different layers) after a certain number of epochs. 
Once the ANN is successfully trained, input parameters 
can be fed into the model, and afterwards, the ANN can 
predict the output parameters. In the current investigation, 
the ANN models were made using MATLAB software. The 
architecture of the LMT algorithm had multiple layers of the 
backpropagation type, which led to a superior performance 
in heat treatment42. The mean square error (MSE) was 
calculated using:

( )2
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where N is the number of data points, fi is the value returned 
by the model, and yi is the actual value for data point “i”. 
The MSE was obtained from the ANN training session.

The calculation of the partial derivatives of error 
concerning the parameters of the ANN is essential43. Thus, 
the accuracy (R2) was used as a good indicator; when R2 
was close to 1, it meant maximum accuracy44.

The first ANN was designed and trained using the LMT 
algorithm from the dataset information. Therefore, the LMT 
algorithm correlated the data by cross-referencing them 
using 70% for training, 15% for validation, and 15% for 
testing with these percentages based on45,46. The first ANN 
was constructed using minimum values simulated according 
to the standard (UTS 1050 MPa, YS 750 MPa, %E ~7, 
302 HB, and $/ton < 100% (in Table 1); thus, the minimal 
requirements of these properties could lead to the lowest 
ADI cost. The minimum values were tested sixty-five times, 
which resulted in a certain range for each element. The first 
ANN is shown in Figure 1, and its architecture containing 
one hidden layer with seventeen nodes is next presented 
in Figure 2. Moreover, the second ANN is also shown in 
Figure 1, and its architecture comprising one hidden layer 
with seventeen nodes is further displayed in Figure 3.

In Figure 2, the architecture of the first ANN shows five 
input data values (UTS, YS, %E, HB, and $/ton). Therefore, 
this ANN contained one hidden layer with seventeen nodes 
and thirteen output element values (chemical composition).

Table 1. Cost variation (%) between chemical compositions.

Sample 1 2 3 ... 72 73 74 75
% 100.00% 102.76% 103.11% ... 257.79% 289.45% 359.41% 472.71%

Figure 1. Flowchart showing the two ANNs of this work.

Figure 2. Architecture of the first ANN.
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Figure 3 shows the second ANN, where the input layer 
was the outcomes from the first ANN (chemical composition 
range tested), with one hidden layer, seventeen nodes, and 
five outputs (UTS, YS, %E, HB, and $/ton). The chemical 
composition range obtained in the first ANN (low and high 
quantities of alloying elements) was tested ten times at each 
level in the second ANN, thus equalling twenty trials. Thus, 
the second ANN was programmed to verify if the resulting 
chemical composition range of the first ANN implied a 
chemical composition that led to the required mechanical 
properties.

2.4. Casting and heat treatment
The molten metal with the resulting chemical composition 

was prepared in an induction electric furnace Inductotherm 
with a 1500 kg/hr capacity. Five Y-blocks of 25 mm thickness 
were pouring, and their dimensions are displayed in Figure 4.

After casting, the five Y-blocks were heat treated. In 
this context, based on the literature2,16,18,24, the temperature 
for austenitisation was 850°C, and for austempering, it 
was 350°C. Considering these temperatures, the steps of 
the heat treatment were selected. Therefore, as shown in 
Figure 5, the alloy was austenitised for 30 minutes at 840°C 
(austenitising step) in a muffle furnace. After quenching, the 
austempering process was done for 30 minutes at 340°C 
in a quenching tank with a molten salt bath (sodium and 
potassium nitrate, NaNO3 + KNO3). Later, the samples were 
washed in hot water47-49.

Samples with 58 mm length and 13 mm diameter were 
extracted for tensile tests, as per ASTM A897/A897M-164. 

Furthermore, hardness measurements were performed in a 
Brinell Hardness tester with a 3000 kg load, as indicated in 
ASTM A897/897M - 2016. Complementarily, microhardness 
tests were carried out on a Mitutoyo HV 100 machine with a 
1-kilogram load (HV1) due to the resulting microstructure. 
Thus, five measurements were performed in the ausferrite 
phase, and an average and standard deviation were calculated.

For microstructure investigation, samples were cut, 
prepared according to metallography, and etched using 3% 
Nital. The microstructure was analysed by optical microscopy 
(OM) in an OLYMPUS and scanning electron microscopy 
(SEM) in a SHIMADSU SSX-55047. In addition, the degree 
of nodularization was verified through comparison with 
images of50. Next, grain size and nodule count were measured 
using ImageJ software51.

3. Results and Discussion
In Table 2, the resulting chemical composition range 

verified in the first ANN is presented. The suitability of the 
models proposed can be demonstrated through the R2 scores 
achieved. Thus, Figure 6 shows that the R2 scores of the first 
ANN were above 98%.

The chemical composition of ADI verified in the first 
ANN was evaluated by a spectrometer, and it is given in 
Table 3. In other words, the chemical composition predicted 
by the ANN was compared to that found in the ADI produced.

Figure 3. Architecture of the second ANN.

Table 2. Chemical composition range in the first ANN.

%C %Si %Mn %Mo %Ni %Mg %S %Cu %Cr %Ti %Al %V %Nb
Min. 3.60 2.40 0.50 0.00 0.01 0.05 0.01 0.05 0.05 0.00 0.02 0.00 0.00
Max. 3.70 2.50 0.60 0.00 0.02 0.06 0.01 0.05 0.06 0.00 0.10 0.00 0.00

Figure 4. Y-block dimensions.

Figure 5. Heat treatment steps for ADI production.
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Figure 7 presents the ausferrite phase, with characteristics 
such as needle-shaped acicular ferrite and stabilised austenite. 
Moreover, these results have similarities with the study of 
Mrzygłód B10, where an ADI was austenitised at 920°C and 
austempered in salt baths at varying temperatures including 
a similar as used in this investigation. However, it should be 
noted that the present work attempted the production of ADI 
with a low amount of alloying elements, which thus led to a 
lower final cost. Figure 7a shows the graphite nodule, stabilized 
austenite, and acicular ferrite, as likewise seen by other 
authors52,53. Thus, in this way, our outcomes agree well with 
related studies on ADI10,52,53. Figure 7b presents SEM imaging 
analysis detailing the results shown in the OM. Finally, with 
graphite type I, the average nodule count was 362 nodules/mm2. 
In addition, the degree of nodularization was 95%, and the 
average size of graphite was 35.69 μm. Therefore, it is noted 
that these findings follow ASTM A247 – 1750.

In Figure 8, tensile testing results are shown by comparing 
the ADI produced, the standard, and three alloys found in 

literature18,24,25, which works were selected as they reported an 
improvement in UTS due to the greater amount of ausferrite. 
However, Sellamuthu, P. and Jiwang Z2,33. employed a great 
quantity of alloying elements, which would lead to high costs. 
Therefore, the non-necessity of high number of alloying 
elements for achieving desired mechanical properties affects 
the cost production. The ADI produced shows one of the 
highest in UTS, besides being up to 81.23% cheaper compared 
to the selected alloys18,24,25. In addition, the indicated hardness 
range for ASTM A897/897M – 2016 grade 2 considering 
the microstructure formed is 302-375 HB: the current work 
achieved 354 HB, which is suitable. Putanda K. S25. obtained 
a hardness like the ADI as our study but with a high amount 
of alloying elements, thus demonstrating the importance of 
this work. Furthermore, microhardness measurements were 
done in the ausferrite phase, thus achieving an average of 
382 HV (σ ±9.633).

In Figure 9, the average cost of the alloys used for the 
ANN development was 49.8% higher than the cost of the 

Table 3. Manufactured chemical composition ADI alloy (wt%).

%C %Si %Mn %Mo %Ni %Mg %S %Cu %Cr %Ti %Al %V %Nb
Sample 3.69 2.42 0.54 0.00 0.01 0.05 0.01 0.02 0.05 0.00 0.02 0.00 0.00

Figure 6. First ANN R2 scores (a) training 99.96%, (b) test 98.2% and (c) all 99.77%.

Figure 7. ADI microstructure (a) optical microscopy, where GN is Graphite Nodule, SA is Stabilised Austenite, and AF is Acicular 
Ferrite. (b) SEM imaging.
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ADI produced. Moreover, these values are also shown as the 
amount of Mo and Nb plays an essential role in cost savings. 
Therefore, the ADI manufactured was 6.2% cheaper than the 
minimum value of the alloy54. In addition, the most expensive 
alloy (maximum value) costs 372.7%55 more than the ADI 
produced. Thus, a low-cost ADI was manufactured, with 
requirements of microstructure and mechanical properties 
as per the standard4. Furthermore, both quantities of Mo and 
Nb in the ADI produced were basically zero, which agrees 
with its lowest cost.

4. Conclusions
i)	 A low-cost chemical composition was predicted 

through artificial neural networks (ANNs) for 
producing an austempered ductile cast iron (ADI). 
Next, chemical composition and mechanical properties 
were analysed in the manufactured ADI. Therefore, 
the ADI produced met the requirements of the ASTM 
A897/897M – 16 Grade 2 1050/750/07 standard.

ii)	 The architecture of the first and second ANNs 
using the Levenberg–Marquardt algorithm (LMT) 
was effective for predicting a low-cost chemical 
composition, mechanical properties, and final cost 
of ADI. Furthermore, the microstructure of the ADI 
manufactured was characterised by ausferrite with 
stabilised austenite.

iii)	 An ADI was produced with a considerable cost 
reduction compared to the costs of the alloys used 

in the database for developing the ANNs. Thus, the 
ADI manufactured was around 49% cheaper than 
the average cost of the alloys considered. However, 
a cost reduction during manufacturing cast parts 
might be complex and should be analysed in each 
specific context.
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