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Sum of squares in discrete physical spaces
(Soma de quadrados em espaços f́ısicos discretos)
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Discretization of three-dimensional physical spaces can induce, on observable physical quantities, effects which
are not present in the continuum. Consider, as an example, the problem of the radiation spectrum of a blackbody,
studied in introductory courses in quantum mechanics. One sees that the Rayleigh assumption of continuous and
uniform frequency distribution of standing waves inside a cubic cavity with perfectly reflecting inner walls can be
validated by a heuristic type of reasoning. However, by means of number theory, one sees that there might exist
frequencies for which it is not possible to have standing waves inside the cavity. Nevertheless, within the same
context, one can argue that a more general criterion can be adopted to validate the hypothesis of continuity of
the observables which are expressed as the square root of the sum of three integers of a threedimensional space
Onxnynz.
Keywords: space discretization, blackbody radiation, Rayleigh-Jeans formula.

A discretização de espaços f́ısicos tridimensionais pode induzir em quantidades f́ısicas observáveis efeitos que
não existem no cont́ınuo. Considere, por exemplo, o problema do espectro de radiação do corpo negro, estudada
nas disciplinas introdutórias de mecânica quântica. Pode-se notar que a hipótese de Rayleigh de uma distribuição
de freqüências cont́ınua e uniforme para as ondas estacionárias dentro de uma cavidade com paredes internas
perfeitamente refletoras pode ser validada por um tipo heuŕıstico de racioćınio. Contudo, pode meio da teoria
de números, observa-se que podem existir freqüências para as quais não é posśıvel haver ondas estacionárias.
Apesar disso, no mesmo contexto, pode-se argumentar que um critério mais geral pode ser usado para validar
a hipótese da continuidade dos observáveis que são expressos como a raiz quadrada da soma de três inteiros de
um espaço tridimensional Onxnynz.
Palavras-chave: discretização espacial, radiação de corpo negro, fórmula de Rayleigh-Jeans.

1. Introduction

At the beginning of last century, Planck solved the
problem of the radiation spectrum from a blackbody
by setting forth the hypothesis that molecules repre-
sented by harmonic oscillators (resonators) carry quan-
tized values of energy [1]. Subsequently, Einstein in-
serted the light quantum concept in a corpuscular sce-
nario. In his seminal paper, Einstein showed that if
one assigns the mean energy kBT for the set of oscil-
lators, the blackbody energy density u (ν, T ) could be
described, in the low frequency limit, by means of the
well-known Rayleigh-Jeans relation

u (ν, T ) =
8πν2

c3
kBT. (1)

In order to obtain the pre-factor 8πν2

c3 in Eq. (1),
giving the spectral density of the radiating wave,
Rayleigh estimated the density of normal modes in a

resonant cavity having the shape of a cubic box. In do-
ing so, he retained only wave vectors components being
multiple integers of π

a , a being the length of the box
edge. This implies that the count of normal modes is
done in a discrete momentum space. We thus start by
briefly recalling Rayleigh derivation of Eq. (1) and use
this rather well known example to discuss, on the basis
of number theory, some properties of observable phys-
ical quantities calculated in real spaces and bearing a
discrete character. We provide a quantitative analy-
sis by which it can be argued that Rayleigh method in
counting normal modes in the cubic black box is indeed
correct. We shall also see in brief what consequences a
discrete Minkowski space may have on light cone events.

A pedagogical valence can thus be attributed to the
present work if one considers that the examples cho-
sen show that interdisciplinary concepts tend to give a
deeper vision of the problem at hand and can at times
bring in new ideas even when discussing well known
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topics.

2. The Rayleigh-Jeans formula

Let us consider a blackbody at a certain fixed temper-
ature T . More specifically, let us consider a cubic box
with perfectly reflecting internal walls, having a small
hole, through which electromagnetic radiation can be
absorbed or emitted. The box behaves like a perfectly
absorbing body, i.e., a blackbody, when we send radia-
tion through the hole, since electromagnetic energy re-
mains stored in the body itself. The emitted radiation,
indeed, may be considered to be negligible, if the hole
is sufficiently small, so that it would also be possible to
observe the propertied of the emitted radiation with-
out perturbing, in a significant way, the energy density
inside the box.

Electromagnetic radiation, with wave vector k and
frequency ν = ω

2π , can be described by means of the
oscillating function f (r, t) as follows

f (r, t) = f0e
i(k·r−ωt) = f0e

i(kxx+kyxy+kzz−ωt). (2)

Because of multiple reflections on the internal walls,
the electromagnetic wave f (r, t) can give rise to a
standing wave, owing to constructive interference, only
for the following values the wave vector components





kxa = nxπ,

kya = nyπ,

kza = nzπ,

(3)

where nx, ny, nz are non-negative integers. From the
dispersion relation for electromagnetic waves, we can
set

k =
2πν

c
⇒ ν =

ck

2π
=

c

2a

√
n2

x + n2
y + n2

z. (4)

Before dwelling more deeply in the allowed values of
k, given that the indices nx, ny, nz are non-negative
integers, we first derive Eq. (1). The number of normal
modes in the cavity for frequency intervals of ampli-
tude dν can be calculated by starting from Eq. (4).
Let us then represent all possible values of the quan-
tity ρ = 2aν

c in the three-dimensional discrete space
Onxnynz, where Eq. (4) defines the equation of a
sphere. The number dN of normal modes in the spher-
ical shell of radius ρ and of thickness dρ (thus in the
frequency interval (ν, ν + dν)) is given by

dN =
2

(
4πρ2

)
dρ

8
=

8πa3ν2dν

c3
, (5)

where the factor 2 indicates the possible polarizations
of electromagnetic radiation and the factor 8 accounts

for the positively defined nature of the frequency, so
that only one octant of the sphere (the one obtained in
the portion of space where all components nx, ny, nz

are positive). Therefore, the number of normal modes
in the interval of frequency (ν, ν + dν) is given by the
following expression

dn

dν
=

1
a3

dN

dν
=

8πν2

c3
. (6)

If we multiply the average energy kBT of a single
oscillator to the factor obtained in Eq. (6), we recover
the Rayleigh-Jeans formula (1).

In carrying out the calculation, however, we had to
assume a continuous and uniform distribution of points
in the three-dimensional discrete space. The hypoth-
esis of uniformity of the distribution of points in the
discrete space Onxnynz does not need further consid-
eration, since it is trivial to prove its validity. As for
the continuity of the distribution of points, we could
guess that this hypothesis is never rigorously fulfilled.
We shall see in the following section how to validate this
last hypothesis by means of a heuristic definition of con-
tinuity. Therefore, if the heuristic continuity condition
is fulfilled by the system, one can affirm that no error
has been committed in counting the normal modes in
a cavity.

3. Three-dimensional discrete physical
spaces

We need to give a heuristic type of definition of continu-
ity for the discrete three-dimensional space Onxnynz.
From the physical point of view we can say that a uni-
form discrete three-dimensional space is continuous if,
given the most accurate instrument available, the dis-
tance between any two nearest neighbor points cannot
be resolved by this instrument. On the other hand, by
using the conventional instrument chosen, if this dis-
tance takes on a finite value, then we necessarily define
the distribution as non-continuous.

We now need to transfer this concept in the con-
text of the preceding section. Therefore, we may say
that, if the dimensionless quantity ∆ρ

ρ is much smaller
than one, we can consider the distribution of frequen-
cies in the space Onxnynz as continuous. The state-
ment ∆ρ

ρ << 1, on its turn, is fulfilled if the quantity
∆ρ may be considered infinitesimal (∆ρ → dρ), the
quantity ρ being finite in the space Onxnynz.

We therefore set

∆ρ

ρ
=

nxdnx + nydny + nzdnz

ρ2
<< 1. (7)

It is possible to estimate the variation of the quan-
tity ∆ρ in the spherical octant where the indices
nx, ny, nz are positive. We represent, in Fig. 1, the
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quantity ∆ρ in terms of the spherical coordinates re-
lated to the three-dimensional space Onxnynz, under
the condition of maximum variation of the quantities
∆nx, ∆ny, ∆nz (∆nx = ∆ny = ∆nz = 1). In this
way we may obtain a criterion to decide whether the
inequality in Eq. (7) is satisfied. The maximum value
of ∆ρ in the graph shown in Fig. 1 can be calculated
to be 1.73, so that we can write

ρ >> 2 ⇒ ν >>
c

a
≈ 100 MHz, (8)

where we have taken the characteristic dimension a of
the blackbody to be of about one meter. The assump-
tion of continuity of the space Onxnynz becomes thus
plausible in the limit of high frequencies and of wave-
lengths much smaller than a. Visible light and infrared
radiation satisfy well this condition, so that we may
conclude that no error has been made in considering
the space Onxnynz as continuous in this limit.

The discrete character of the space Onxnynz, how-
ever, has further consequences. We notice that the di-
mensionless quantity ρ2 is expressed in terms of the sum
of squares of three integers. From Lagrange theorem [4]
in number theory it is known that every positive integer
can be written as the sum of squares of four integers.
It could therefore happen that a positive integer, as ρ2

in our case, could not be given by the sum of three
squares. From Gauss condition [4], indeed, it is known
that the equation
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Figure 1 - The quantity ∆ρ as a function of the spherical co-
ordinates associated to the discrete three-dimensional space
Onxnynz. It can be shown that the maximum value of ∆ρ
in the spherical octant, where all frequencies are positive, is
1.73.

ρ2 = i2 + j2 + k2 (9)

possesses a solution only if

ρ2 6= 4α (8β + 7) , (10)

where α and β are non-negative integers. Therefore,
there might exist frequencies for which it is not pos-
sible to have standing waves inside the cavity. These
frequencies are given by the following expression

να,β =
c

a
2α−1

√
8β + 7. (11)

In order to represent these frequencies, we show a
graph of the quantity ρα,β = 2a

c να,β in terms of non-
negative integers α and β in Fig. 2. We notice that, by
letting α and β vary in the intervals [0, 5] and [0, 100],
respectively, we obtain a family of sequence of isolated
points. The presence of frequencies not allowing stand-
ing waves inside the cavity, could therefore affect the
validity of the hypothesis of uniform distribution of fre-
quencies in the Onxnynz space. Before discussing this
aspect and before giving a definitive solution to this
logical question, we notice that, when we consider the
directions in the Onxnynz space to which frequencies
not allowing standing waves inside the cavity are associ-
ated, we find a non-trivial regular behavior. As already
shown in Ref. [5], by showing the vectors 1

ρ (nx, ny, nz)
on the unitary sphere we may obtain the direction in the
Onxnynz space along which the quantities ρα,β lie. By
looking at the first octant of this unitary sphere, from
Fig. 3 we notice the appearance of “stripes”, given by
the absence of points, showing a somewhat regular be-
havior. In these stripes, which have been denoted as
equatorial gaps [5], the quantity ρ = ρα,β cannot be
present for Gauss condition. Indeed, by extending this
analysis to the whole unitary sphere, from Fig. 4 we
notice that these stripes are located around maximum
circumferences on the sphere, so that the above defini-
tion is justified. In Fig. 5, by looking from the top of
the nx − ny plane to the unitary sphere in Fig. 4, we
notice two stripes of greater thickness along the nx and
ny axes, while other two stripes, of smaller thickness
with respect to the first two, lie along the ny = ±nx

lines.

4. Remarks and conclusions

The consequences of discretization of points of a three-
dimensional space are investigated. In particular, the
assumption of continuous and uniform frequency distri-
bution of standing waves inside a cubic cavity with per-
fectly reflecting inner walls is considered. By the same
discrete character of the space in which the frequen-
cies are defined, there could be frequencies for which
standing waves are not allowed. This could affect the
validity of the hypothesis of the uniformity of distribu-
tion of normal modes inside the cavity in the fictitious
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space Onxnynz used by Rayleigh to derive Eq. (1). In
order to validate the hypothesis of a continuous fre-
quency spectrum, a heuristic type of reasoning is in
general adopted [3]. The appearance of not allowed
frequencies, defined in a discrete space, has thus been
investigated by means of number theory concepts.

In order to illustrate further these concepts, let us
consider the analogous case of the light cone events in
Minkowski space. By taking only events on the light
cone, we might notice that the relation c
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Figure 2 - A family of sequences of points obtained by let-
ting the parameters α and β in Eq. (10) vary between 0 and
5 and between 0 and 100, respectively. These sequences rep-
resent the values of the quantity ρ which are not allowed in
the space Onxnynz.

Figure 3 - The directions in the Onxnynzspace for which
the dimensionless quantities ρ are allowed are indicated by
points in the same space. These directions are calculated
for indices nx, ny, nz varying in an interval [0, 20].

c2t2 = x2 + y2 + z2 (12)

cannot be satisfied for some discrete values of (x, y, z).
In this way, there could exist directions in the discrete
Minkowski space for which light propagation is not pos-
sible. These directions, for what seen above, would cor-
respond to the equatorial gaps on the unitary sphere
(see Fig. 4, for example).

Figure 4 - Directions in the Onxnynz space for which the
quantities ρ are allowed. These directions are calculated for
indices nx, ny, nz varying in an interval [-10, 10]. Notice
the presence of equatorial gaps in which these quantities
are not allowed.

Figure 5 - Directions in the Onxnynz space for which the
quantities ρ are allowed as seen by an observer placed on
the top of the unitary sphere on the nz axis. These direc-
tions are calculated for nx, ny, nz varying in the interval
[-15, 15].
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However, as the discretized space increases in size,
these directions would reduce to a subset with null mea-
sure on the unitary sphere (the equatorial gaps would
reduce to lines, in practice). Therefore, as far as phys-
ically observable quantities are concerned, these points
would acquire a vanishing statistical significance, which
would make these effects not observable.

Going back to Rayleigh’s assumption of continu-
ity of the frequency spectrum, by this same argument,
without recurring to the heuristic argument proposed
in some textbooks, it could be once more concluded
that Rayleigh correctly calculated the spectral density
of the radiating wave inside the cubic cavity. Indeed,
when one considers a wide range of modes in the cavity
itself (i.e. one considers very many values of the indices
nx, ny, nz) the example above clarifies that the statis-
tical significance of not allowed frequencies, in deriving
the Rayleigh-Jeans formula, vanishes.
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