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The derivation of the expressions of momentum and energy of a particle in special relativity is often less
than satisfactory in elementary texts. In some, it is obtained by resorting to quantum or electrodynamic
considerations, in others by introducing non-elementary concepts, like that of a four-vector, or even
misleading ones, like “relativistic mass”. Nevertheless it is possible, following ideas described by Einstein in
1935, to obtain a fully elementary derivation of these expressions based only on the Lorentz transformations,
on the conservation laws, and on the Newtonian limit. The resulting argument allows for a clearer and
logically consistent introduction to the basic concepts of relativistic dynamics.
Keywords: Special relativity, Lorentz transformations, energy, momentum, conservation laws.

A dedução das expressões do momento e da energia de uma part́ıcula na relatividade restrita é muitas vezes
pouco satisfatória nos textos elementares. Em alguns textos, a dedução é feita com recursos a considerações
quânticas ou eletrodinâmicos; em outros, através da introdução de conceitos pouco elementares, como
quadrivetor, ou até mesmo de conceitos um tanto enganosos, como ”massa relativ́ıstica”. No entanto, de
acordo com ideias descritas por Einstein em 1935, é posśıvel fazer uma dedução totalmente elementar dessas
expressões, com base apenas nas transformações de Lorentz, nas leis de conservação e no limite newtoniano.
Os argumentos utilizados permitem uma introdução clara e logicamente consistente aos conceitos básicos
da dinâmica relativ́ıstica.
Palavras-chave: Relatividade restrita; transformações de Lorentz, energia, momento, leis de conservação.

1. Introduction

Several texts provide an elementary derivation of
the kinematics of special relativity, eventually based
on the first part of Einstein’s fundamental paper of
1905. [1] Starting from the two postulates of the total
equivalence of inertial reference systems, and of the
constancy of the speed of light in all such systems, it
is in fact easy to obtain the expression of the Lorentz
transformation of space-time coordinates. A partic-
ularly simple and appealing derivation is obtained
by exploiting Bondi’s so-called k-calculus, [2] itself
based on the Doppler effect. Nevertheless going from
kinematics (the Lorentz transformation) to dynam-
ics, and in particular to the relativistic expressions
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of momentum and energy, is often achieved by re-
sorting to more sophisticated concepts, like that of a
four-vector, or by the use of quantum considerations.
(One example of this approach is the “elementary
derivation” suggested by F. Rohrlich, [3] which ex-
ploits the expressions of the momentum and energy
of a photon of frequency ν.) Einstein himself had
originally derived the mass-energy equivalence via
an explicit use of electrodynamics, [4] and not just
by the kind of kinematic considerations which he
had developed in the first part of his 1905 paper,
which are based on the constancy of the speed of
light, but do not otherwise depend on Maxwell’s
equations.

Einstein had remarked this problem, and he pro-
posed in 1935 an elementary derivation of the mass-
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energy relation, independent of his 1905 argument,
motivating it with the following words: [5]

The special theory of relativity grew out
of the Maxwell electromagnetic equations.
So it came about that even in the deriva-
tion of the mechanical concepts and their
relations the consideration of those of the
electromagnetic field has played an essen-
tial role. The question as to the indepen-
dence of those relations is a natural one
because the Lorentz transformation, the
real basis of the special relativity theory, in
itself has nothing to do with the Maxwell
theory and because we do not know the
extent to which the energy concepts of
the Maxwell theory can be maintained in
the face of the data of molecular physics.
In the following considerations, except for
the Lorentz transformation, we will depend
only on the assumption of the conservation
principles for impulse and energy.

Einstein’s considerations exploit a conceptual experi-
ment introduced by G.N. Lewis and R.C. Tolman [6]
and further discussed by P.S. Epstein, [7] where one
considers collisions between pairs of particles in dif-
ferent inertial reference frames, and one looks for
the expressions of momentum and energy by postu-
lating their conservation. It is interesting to point
out that Lewis and Tolman’s paper, as well as Ep-
stein’s one, only consider elastic collision and derive
the relativistic expression of momentum, while they
provide a doubtful argument for the mass-energy
equivalence by the consideration of the change of the
“relativistic mass” with speed. “Relativistic mass” is
in fact a rather problematic concept, [8,9] and there
is a growing consensus to avoid its introduction in
the teaching of relativity. Einstein derives instead
the equivalence by simply extending the argument to
inelastic collisions. The advantage of this approach
for introducing the basic concepts of special relativ-
ity has been well remarked by R.F. Feynman who, in
his Lectures (Ref. [10, Vol. I. Secs. 16–4, 16–5]), de-
rives the relativistic expressions of momentum and
energy in a way that closely resembles Einstein’s one.
(Feynman’s derivation is however marred by his use
of the “relativistic mass”.) Einstein’s argument has
been more recently discussed by F. Flores, [11] who
identifies three closely related but different claims
within the mass-energy equivalence concept, and
compares Einstein’s 1935 argument with his original

1905 derivation [4] and with M. Friedman’s 1983
derivation, [12, p. 142ff] which rests upon the consid-
eration of Newton’s equations in special relativity.

In this note, I present this line of thought in the
hope that it may be found useful for the presentation
of these fundamental concepts of special relativity
in introductory courses for students of physics and
mathematics. While the derivation of the relativis-
tic expression of momentum in Sec. 3 is close to
Epstein’s and Feynman’s arguments, the discussion
of the expression of the kinetic energy and of the
mass-energy equivalence is closer to Einstein’s one.

2. Lorentz transformations and dynamic
postulates

Following Einstein’s 1905 paper (Ref. [1, § 2]), the
kinematic concepts of special relativity rest on the
following postulates:

(i) The laws that govern the transformations of
the state of physical systems take the same
form in reference frames animated by uniform
translational motion one with respect to the
other.

(ii) There is a class of such reference frames (the
inertial frames) in which the speed of light as-
sumes the same value c, independently of the
state of motion of its source.

We shall choose from now on units in which c =
1 and limit our considerations to inertial frames.
Based on these postulates one can easily derive
Lorentz transformations in the following form. Let
us consider two reference frames, K and K ′, such
that K ′ is in uniform translational motion in the
positive x direction and with speed V with respect
to K. Then the event of coordinates (t′, x′, y′, z′) in
K ′ has in K the coordinates (t, x, y, z), where

t = γ(V )(t′ + V x′);
x = γ(V )(x′ + V t′);
y = y′;
z = z′,

(1)

and we have defined

γ(V ) = 1
(1− V 2)1/2 . (2)

The same relation holds for the differentials dt, dx,
etc. Dividing by dt we obtain the rules for the trans-
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formation of velocities:

ux = dx

dt
= u′

x + V

1 + u′
xV

;

uy = dy

dt
=

u′
y

γ(V )(1 + u′
xV ) ;

uz = dz

dt
= u′

z

γ(V )(1 + u′
xV ) .

(3)

To introduce dynamical concepts we obviously
need supplementary postulates. We shall therefore
postulate the following:

(iii) The momentum P and the energy E of a par-
ticle possessing the velocity u in the reference
frame K have respectively the expressions

P = muF (u); E = E0 +mG(u), (4)

where E0 is a constant, that can be called the
rest energy, m is a positive constant (which is
relativistically invariant, i.e., does not change
from one inertial frame to another, and thus
does not depend on the particle’s velocity) which
we shall simply call its mass, and F (u) and G(u)
are monotonically increasing universal func-
tions of u = |u|. The fact that the functions
F and G depend only on the magnitude u of
the velocity, but not on its direction, can be
inferred by the isotropy of space.

(iv) For u� 1 these expressions reduce to the well-
known classical ones. One has in particular

F (u) = 1 + O(u2); G(u) = 1
2u

2 + O
(
u4
)
.

(5)
(v) The total momentum P tot and the total energy

Etot of a system of several particles are respec-
tively given by the sum of P and of E running
over all the particles of the system.

(vi) Conservation of momentum and energy:
Let us assume that (elastic or inelastic) colli-
sions occur in a system of particles. Then, in
each reference frame, P tot and Etot maintain
the same values before and after each collision.

As a corollary, the velocity of each particle remains
constant as long as no collision occurs, because one
can consider systems made up of single, independent
particles.

3. Elastic collisions and relativistic mo-
mentum

Let us now consider a particle pair, i.e., a system
made of two particles with equal values of m. Let us
assume that in a reference frame K they have oppo-
site velocities u1, u2 = −u1, where u1 = (V, v, 0),
with |v| � V , V > 0. Thus |u1,2| ' V . Let us
moreover assume that the particles undergo an elas-
tic collision, and take on respectively the veloci-
ties w1 = (W,w, 0) and w2 = (W ′, w′, 0) after it.
By the conservation of momentum one must have
W ′ = −W and w′ = −w, independently of the form
of the function F (u). Indeed, one has P tot

in = 0 be-
fore the collision. By the conservation law one must
have

P tot
out = 0 = mw1 F (w1) +mw2F (w2). (6)

Thus the vectors w1 and w2 are antiparallel, and
one has

|w1|
|w2|

= F (w2)
F (w1) . (7)

Since the function F (u) is monotonically increasing,
this equation can only be satisfied if |w1| = |w2|,
and we have therefore w1 = −w2. Now energy con-
servation imposes wi = ui. Indeed, the total kinetic
energy before the collision is given by 2mG(u), and
after it is given by 2mG(w). Since G(u) is a mono-
tonically increasing function of u, this condition can
only be satisfied if w = u.

Let us now consider the special case where the
velocity change is parallel to the y axis. (This rules
out “head-on collisions”, where the particles simply
exchange their velocity.) Let the particles’ velocities
be given by u′

1 = (V ′, v′, 0) and u′
2 = −u′

1 (cf. fig. 1)
in the K ′ reference frame. Let us now look at the
same collision in a reference frame K moving with
a velocity V ′ in the x direction with respect to K ′.

In this reference frame, the velocities u of the
particles are respectively given by

u1 = (0, v, 0),
u2 = (−V,−w, 0),

(8)

where

V = 2V ′

1 + V ′2 ,

v = v′

γ(V ′)(1− V ′2)

w = v′

γ(V ′)(1 + V ′2)
.

(9)
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Figure 1: Above: Collision of a particle pair in the K ′

reference frame. Below: The same collision as seen in the K
reference frame. Figures are schematic and no quantitative
relations are implied.

One can easily check that

γ(V ) = 1√
1− V 2

= 1 + V ′2

1− V ′2 , (10)

and therefore that

v = w γ(V ). (11)

One can also obtain this result by applying Eq. (3)
to the transformation from the K ′ reference frame
to a frame K ′′ animated, with respect to K ′, by
a uniform translational motion with velocity −V ′

parallel to the x axis. In this frame the x compo-
nent of the velocity u′′

2 vanishes and that of the u′′
1

velocity is equal to V , and thus the speeds of the
two particles are interchanged.

Let us now consider the conservation of momen-
tum. The change δP1 of the momentum of particle 1
is given by

δP1 = −2mv F (v) ey, (12)

where ey is the y axis versor. The corresponding
quantity for particle 2 is given by

δP2 = 2mwF (u2) ey, (13)

where u2 =
√
V 2 + w2. Let us momentarily assume

v, w � V : then F (v) ' 1 and u2 ' V . From momen-
tum conservation we obtain δP1 + δP2 = 0, which
implies

mv = mwF (V ). (14)
Since w = v/γ(V ), we obtain

F (V ) = γ(V ) = 1√
1− V 2

. (15)

Having obtained this result for v, w � V , it is easy
to see that it also holds for larger values of v and w,
by substituting V with the speed of the correspond-
ing particle. We have in fact

mv F (v) = mwF (u2) = mv

γ(V ) F (u2), (16)

from which it follows

F (u2) = F (v)γ(V ), (17)

namely

1√
1− u22 = 1√

1− v2
1√

1− V 2
, (18)

an identity which is easy to check directly.

4. Kinetic energy conservation

Let us consider a particle having the velocity u′ =
(u′, 0, 0), parallel to the x axis, in the K ′ refer-
ence frame. Its velocity u in the K frame, in uni-
form translational motion with respect to K ′ with
speed V in the direction of the positive x-axis, is
given by u = (u, 0, 0), with

u = u′ + V

1 + u′V
. (19)

One can easily see that

γ(u) = (1 + u′V ) γ(u′)γ(V ). (20)

If u′ is not parallel to the x axis, but one has instead
u′ = (u′

x, u
′
y, u

′
z), one has the more general relation

γ(|u|) = (1 + u′
xV )γ(u′)γ(V ), (21)

which can be obtained with a little algebra. It is
also easy to check that

uxγ(u) = (u′
x + V )γ(u′)γ(V );

uyγ(u) = u′
yγ(u′);

uzγ(u) = u′
zγ(u′).

(22)
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Let us now consider a particle pair, which have
opposite velocities u′

1, u′
2 = −u′

1 in the K ′ frame.
Thus u′ = |u′

1| = |u′
2| is the common value of the

particles’ speed in the K ′ frame. Let us denote by
u1 and u2 the corresponding velocities in the K
frame. We obtain

γ(u1) + γ(u2) = 2γ(u′)γ(V ). (23)

We have seen that an elastic collision in the K frame
cannot change the common value u′ of the particles’
speed. Thus the right-hand side of this equation
cannot change in the collision. But then neither can
its left-hand side. If we denote by w1 and w2 the
particles’ speeds in the K frame after the collision,
we obtain

γ(u1) + γ(u2) = γ(w1) + γ(w2). (24)

As Einstein (Ref. [5, p. 227]) points out, these equa-
tions have the form of conservation laws. We can
thus interpret [13] m (γ(u)−1) as the kinetic energy
T of a particle with mass m animated by a veloc-
ity u. For small values of u this quantity is thus
given by

T = m (γ(u)− 1) ' 1
2mu

2, (25)

in agreement with the classical limit. We can thus
set

G(u) = γ(u)− 1. (26)

Let us remark moreover that, by applying Eqs. (22)
to a particle pair, we obtain

u1γ(u1) + u2γ(u2) = 2V γ(u′)γ(V ). (27)

We can thus derive the following relation:

u1γ(u1) + u2γ(u2) = w1γ(w1) + w2γ(w2), (28)

which can be interpreted as the conservation law
for the momentum. We thus recover the relativistic
expression of the momentum derived in sec. 3.

5. Mass-energy equivalence

Let us now consider a totally inelastic collision in
a particle pair. In the reference frame K ′ in which
P tot = 0, the total kinetic energy before the collision
is given by

T ′
in = 2m

(
γ(u′)− 1

)
, (29)

For simplicity, we shall assume that the particles
velocities u′

1,2 are parallel to the y axis. The total
kinetic energy after the collision vanishes, but the
energy of the resulting particle has increased by T ′

in.
By momentum conservation the resulting particle
is at rest in the reference frame K ′ and has thus
velocity V parallel to the x axis in the K frame. Let
us denote by M its mass. In the K frame the total
momentum before the collision is given by

P = m (u1γ(u1) + u2γ(u2)) = 2mV γ(u′)γ(V ),
(30)

while after the collision it has the value

P = MV γ(V ). (31)

We obtain therefore

M = 2mγ(u′) = 2m+ T ′
in. (32)

Therefore when two particles collide inelastically
to form a new particle, the mass of the resulting
particle is larger than the sum of the masses of
the colliding particles by a quantity exactly equal,
in our units, to the kinetic energy transformed by
the collision into other energy forms. One can thus
introduce a “natural” choice of the energy at rest E0
of a particle, by equating it (in our units) to its mass,
also because, “from the nature of the concept, [that]
is determined only to within an additive constant,
one can stipulate that E0 should vanish together
with m.” [5, p. 229]. We can then identify mγ(u)
with the total energy of a particle, and associate the
change δE of energy from the kinetic to a different
form with a change δm = δE of the mass of the
particle. In the more general case, in which the
two particles do not coalesce, but are animated by
velocities with the same magnitude w′ in the K ′

frame after the collision, one can then express the
conservation of energy by

2mγ(u′) = 2m̄γ(w′), (33)

where m̄ is the mass of each particle after the colli-
sion. The same applies in the K frame, if we take
into consideration the relation

γ(u) = γ(u′)γ(V ), (34)

which holds since both u1 and u2 are parallel to
the y axis.

It is then a simple matter to verify that the energy
E and the momentum P of a particle of mass m
satisfy the relation

E2 − P 2 = m2, (35)
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where the right-hand side is relativistically invariant.
This relation also holds in the limit of a zero-mass
particle, for which it assumes the form

E = |P |. (36)

As a corollary, mass is not additive: the mass of
a system of particles depends on its total energy
content in the vanishing-momentum frame. Thus
when light waves (of vanishing mass) with opposite
momenta are emitted from a particle at rest, the
mass of the particle changes (as argued in Einstein’s
1905 work, Ref. [4]). Since the right-hand side of
Eq. (35) is invariant, it can be taken as the starting
point to show that the energy E and the momentum
P combine into a relativistic four-vector, a property
which generalizes to particle systems.

One should point out that this line of thought
does not rest on Maxwell’s equations (keeping only
the constancy of the speed of light) and neither
does on other mechanical concepts, in particular on
the concept of force, that is difficult to justify in
special relativity. Einstein criticizes the use of the
concept of force in the derivation of the relativistic
expression of momentum, contained in the book
by G.D. Birkhoff and R.E. Langer, Relativity and
Modern Physics, [14] exactly for this reason, as made
clear by the closing paragraphs of his 1935 paper: [5]

Thus, in the book just mentioned, es-
sential use is made of the concept of force,
which in the relativity theory has no such
direct significance as it has in classical me-
chanics. This is connected with the fact
that, in the latter, the force is to be consid-
ered as a given function of the coordinates
of all the particles, which is obviously not
possible in the relativity theory. Therefore
I have avoided introducing the force con-
cept.

Furthermore, I was concerned with
avoiding making any assumption concern-
ing the transformation character of impulse
and energy with respect to a Lorentz trans-
formation.
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