
Revista Brasileira de Ensino de F́ısica, vol. 43, suppl. 1, e20200403 (2021) Articles
www.scielo.br/rbef cb

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403 Licença Creative Commons

Bosons vs. Fermions – A computational
complexity perspective

Bósons e Férmions sob a perspectiva da complexidade computacional

Daniel Jost Brod*1

1Universidade Federal Fluminense, Instituto de F́ısica, Niterói, RJ, Brasil.

Received on September 22, 2020. Revised on November 10, 2020. Accepted on November 17, 2020.

Recent years have seen a flurry of activity in the fields of quantum computing and quantum complexity
theory, which aim to understand the computational capabilities of quantum systems by applying the toolbox of
computational complexity theory.

This paper explores the conceptually rich and technologically useful connection between the dynamics of free
quantum particles and complexity theory. I review results on the computational power of two simple quantum
systems, built out of noninteracting bosons (linear optics) or noninteracting fermions. These rudimentary quantum
computers display radically different capabilities—while free fermions are easy to simulate on a classical computer,
and therefore devoid of nontrivial computational power, a free-boson computer can perform tasks expected to be
classically intractable.

To build the argument for these results, I introduce concepts from computational complexity theory. I describe
some complexity classes, starting with P and NP and building up to the less common #P and polynomial
hierarchy, and the relations between them. I identify how probabilities in free-bosonic and free-fermionic systems
fit within this classification, which then underpins their difference in computational power.

This paper is aimed at graduate or advanced undergraduate students with a Physics background, hopefully
serving as a soft introduction to this exciting and highly evolving field.
Keywords: Quantum computing, quantum complexity theory, linear optics, free fermions.

Os últimos anos presenciaram uma atividade crescente nas áreas de computação quântica e teoria de
complexidade quântica. Essas áreas têm como objetivo analisar a complexidade e as capacidades computacionais
de diversos sistemas quânticos através do uso das ferramentas desenvolvidas, ao longo das últimas décadas, no
contexto da teoria de complexidade computacional.

Este artigo explora as conexões conceitualmente ricas e tecnologicamente úteis entre a dinâmica de part́ıculas
quânticas livres e a teoria da complexidade. Eu reviso resultados sobre a complexidade computacional da simulação
de dois sistemas quânticos simples, constrúıdos com bósons não interagentes (ou seja, óptica linear), ou com
férmions não interagentes. Tais sistemas podem ser vistos como tipos rudimentares de computadores quânticos,
com potencialidades radicalmente distintas: por um lado, sabe-se que férmions livres são facilmente simulados por
um computador clássico e, portanto, desprovidos de poder computacional não trivial; por outro lado, existe forte
evidência de que um computador constrúıdo a partir de bósons livres pode realizar uma tarefa que é classicamente
intratável (ou seja, é capaz de demonstrar vantagem ou supremacia quântica).

A fim de construir os argumentos que fundamentam esses resultados, este artigo oferece uma introdução básica
a alguns conceitos do campo da teoria da complexidade computacional. Para isso, eu descrevo algumas classes de
complexidade e as relações entre elas, partindo das bem conhecidas P e NP, e avançando para as classes #P e
a hierarquia polinomial. Identifico então como as probabilidades de transição nos sistemas de bósons livres e de
férmions livres se encaixam nessa classificação, o que fundamenta a diferença em seu poder computacional.

Este artigo foi pensado para estudantes no fim da graduação e na pós-graduação, com formação em F́ısica.
Espero que ele sirva como uma introdução leve a este campo fascinante e em rápido desenvolvimento.
Palavras-chave: Computação quâtica, teoria de complexidade quântica, óptica linear, férmions livres.

1. Introduction

Computational complexity theory and quantum
mechanics lie at the hearts of two major fields of
human study. Computational complexity theory [1] is
the subfield of computer science that aims to understand

* Correspondence email address: danieljostbrod@id.uff.br

the fundamental nature of computational problems by
classifying them according to e.g. how long they take to
solve. Its central open question is whether the ability
to efficiently check that a solution to a problem is
correct implies that a solution is easy to find (the P vs.
NP question). This is one of the most important ques-
tions in mathematics, and one of the seven Millennium
Prize Problems [2]. The classes P and NP, though

Copyright by Sociedade Brasileira de F́ısica. Printed in Brazil.

www.scielo.br/rbef
https://orcid.org/0000-0002-5925-4158
emailto:danieljostbrod@id.uff.br

e20200403-2 Bosons vs. Fermions – A computational complexity perspective

particularly famous, are just two among a rich landscape
of complexity classes [3] which lay the foundation for
our understanding of the notions of computability and
computational efficiency. In essence, computational
complexity theory aims to understand the limits of
what computers can do, a worthwhile goal given how
ubiquitous computers are in our daily life and society.

Quantum mechanics, on the other hand, forms the
basis for most of our understanding of the physical world,
the standard model of fundamental particles. Despite
that, some aspects of it remain not fully understood—
even though its mathematical previsions are trusted and
sound, there is no consensus on how to interpret them, or
how classical mechanics ultimately emerges as its limit.
In order to understand this transition better, quantum
mechanics has been progressively tested in the limits of
large masses [4], large distances [5] and so on.

From the intersection of these two fields arose the
subfield of quantum computing, and its more abstract
cousin, quantum complexity theory [6, 7]. Quantum
mechanics predicts that quantum computers will be able
to solve some computational problems (e.g. factoring
large integers) very efficiently [8], whereas complexity
theory gives us evidence that these problems cannot
be solved efficiently by classical computers [1]. The
combination of these two facts has launched the field
of quantum computing into rapid growth over the last
few decades, and more recently shifted it from a purely
academic to an industrial endeavor [9].

However, the field of quantum computing is still
subject to an amount of skepticism, mostly (but not
exclusively!) from the side of some computer scientists
[10, 11]. Prior to the proposal of quantum computers,
a central tenet of complexity theory was the Extended
Church-Turing thesis, which states (informally) that all
problems efficiently solvable by any realistic model of
computation are efficiently solvable by a Turing machine
(i.e. by classical computers). This is a useful principle,
since it allows us to build a theory of computation that
is abstract, and in a sense robust against different defini-
tions of computational models. It will also, of course, be
threatened by the construction of a full-purpose large-
scale quantum computer. Quantum computing skeptics
often argue that, despite all the progress made so far,
unavoidable levels of experimental noise will defeat any
practical attempt at a large-scale quantum computer.

This skepticism has motivated the concept of quan-
tum computational advantage, or quantum supremacy
[12, 13]. This is an approach where the usefulness or
applications of quantum computers are temporarily left
aside, in favor of constructing the simplest quantum
experiment capable of performing some computational
task much faster than any classical computer. In a sense,
it is the exploration of yet another frontier of quantum
mechanics—rather than large masses or distances, it
is the frontier of large computational complexity. This
has seen impressive recent progress, culminating in

an experiment on a 54-qubit quantum computer that
allegedly performs a task tens of thousands times faster
than the best classical supercomputer [9].

The main approach in the paradigm of quantum
computational advantage is to consider a restricted
quantum system, e.g. one that has some limitations in
its allowed dynamics which might make it weaker than
a full-fledged quantum computer, but still stronger than
a classical one, in some sense, and easier to implement
in near-future experiments. One of the first examples
of such a restricted system was linear optics. A simple
experiment, consisting of preparation of single photons,
followed by a sequence of beam splitters and culminating
in a round of photon number detections, was shown [14]
to sample from a probability distribution that cannot be
reproduced efficiently by a classical computer (modulo
some complexity-theoretic conjectures which we will des-
cribe in due time). Interestingly, the fermionic analogue
of this system, where “beam splitters” are replaced by
Hamiltonians quadratic in the fermionic operators (such
as hopping Hamiltonians on a lattice), does not have
the same complexity—free fermion dynamics is easy to
simulate on a classical computer [15, 16].

In this paper, I review the main results that separate
free-boson and free-fermion dynamics (both of which
I will refer to as linear optics for simplicity) from a
computational complexity theory point of view. It is
aimed at graduate or advanced undergraduate students
with a Physics background, but no familiarity with
computational complexity theory is assumed.

In section 2, I review the formalism of second quan-
tization. I suggest that even readers familiar with the
formalism take a quick glance at this section, as it defines
the assumptions, the physical system and the dynamics
we consider, as well as some notation. In section 3, I
give a basic introduction to computational complexity
theory and some of the main complexity classes. It is
not comprehensive, as I focus only on a cross-section of
the theory that I use in the rest of the paper, but it is
introductory.

Section 4 contains the main results I wish to review.
In section 4.1, I define formally what it means, for our
purposes, to simulate a quantum system. This defini-
tion, together with the structure of complexity classes
described previously, culminate in section 4.2, where I
discuss the classical simulability of free fermions, and
section 4.3, where I outline the evidence that (bosonic)
linear optics is not classically simulable. Sections 4.2
to 4.3 are the most technical sections of the paper,
and can also be of interest to more advanced readers
entering the field of quantum computing. In section 4.4
we return to a more leisurely speed, and I discuss
the paradigm of quantum computational advantage, or
quantum supremacy, reviewing some of its most recent
advances. Finally, in section 4.5, I move briefly beyond
linear optics to give some other examples where compu-
tational complexity theory and quantum mechanics have

Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403

Brod e20200403-3

interacted, in particular in the context of computing
ground states of (interacting) bosonic and fermionic
Hamiltonians, and the well-known sign problem from
condensed matter and quantum field theory.
Notation: Throughout this paper, I represent by {0, 1}n
the set of all binary strings of length n. I assume
that any mathematical object of interest (an integer, a
matrix, a graph) can be encoded in some binary string
(see [1], chapter 0, for a careful discussion). If real
numbers are involved, we can assume they have been
truncated to some desired precision. A Boolean function
f(x) is a function that takes as input a binary string
x and outputs a single bit. I denote as poly(n) any
quantity which is a polynomial in n but whose details
are unimportant. We refer to the number of elements of
a set S as |S|.

Here I also assume that ~ = 1 for simplicity. Though
~ is an important fundamental constant that sets the
scales for many quantum phenomena, from the point of
view of computational complexity it is just a constant
that does not change e.g. the asymptotic behavior of
algorithmic runtimes.

2. The formalism of second quantization

Let us begin with a quick review of the formalism used
to describe identical quantum particles. This review will
serve also to fix notation and situate the readers of
various backgrounds on details of the systems I will
consider here and the underlying assumptions. For an
in-depth discussion of this formalism, see e.g. [17].

In this paper, I will describe bosonic or fermionic sys-
tems in the language of second quantization. We are inte-
rested only in the particles’ bosonic or fermionic nature,
and none of our conclusions depend on other properties
such as mass, charge, spin, and so on. Our discussion
will be valid for any particle for which the corresponding
dynamics, to be described shortly, can be realized.

2.1. The states

Consider a set of creation operators, {a†i}i=1...m, labeled
by some discrete index i. We use the letter a for particle
operators that can be either bosonic or fermionic. When
the situation requires distinction between them, we
replace a by b, for bosons, or f , for fermions. Borrowing
terminology from quantum optics, we refer to labels i
as modes. Physically, these modes could represent any
degree of freedom of the particles, such as polarization,
wave vector, or time-of-arrival at a detector, for photons,
spin or momentum, for an electron, and so on. They
could a priori be discrete or continuous but, for the
applications we have in mind, we assume that they are
discrete.1

1 If we refer to a degree of freedom that is continuous, such as
direction of propagation, the reader can assume that we are using
some suitable coarse-grained discretization of it.

All characteristic bosonic or fermionic behaviors, of
which we will see some examples shortly, follow from
the canonical commutation relations, given by

[bi, b†j] = δij ,

[bi, bj] = 0 = [b†i , b
†
j],

{fi, f†j } = δij ,

{fi, fj} = 0 = {f†i , f
†
j }.

Suppose now that we have a single mode. From the
creation operators we can construct the single-mode
Fock states. For bosons, these states are constructed as

(b†)n |0〉 =
√
n! |n〉,

whereas for fermions we have

(f†) |0〉 = |1〉.

In both cases |0〉 is the corresponding vacuum state,
defined by the fact that a |0〉 = 0. The bosonic Fock
states satisfy

b† |n〉 =
√
n+ 1 |n+ 1〉, (1a)

b |n〉 =
√
n |n〉, (1b)

while for fermionic ones we have

f† |n〉 = δn,0 |n+ 1〉, (2a)
f |n〉 = δn,1 |n〉. (2b)

In both cases, we have that

a†a |n〉 = n |n〉.

From the above equations it is clear why a†, a and n :=
a†a are referred to as creation, annihilation and number
operators, respectively.

When we have m modes in total, these equations are
replaced by a natural generalization. If again we define
the vacuum state as the unique state for which ak |0〉 = 0
for all k, the bosonic Fock states are constructed as

m∏
i=1

(b†i)
ni |0〉 =

(
m∏
i=1

ni!
) 1

2

|N〉,

where N is a shorthand for (n1, n2 . . . nm). Generalizing
equations (1) to more than one bosonic mode, we have

b†i |N〉 =
√
ni + 1 |n1, . . . , ni + 1, . . . , nm〉,

b†i |N〉 =
√
ni |n1, . . . , ni − 1, . . . , nm〉.

For fermions, the Fock states are constructed as(
f†1

)n1 (
f†2

)n2
. . .
(
f†m
)nm |0〉 = |N〉.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403 Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021

e20200403-4 Bosons vs. Fermions – A computational complexity perspective

Similarly, we can generalize equations (2) for more than
one fermionic mode:

f†i |N〉 = δni,0(−1)
∑

j<i
nj |n1, . . . , ni + 1, . . . , nm〉,

fi |N〉 = δni,1(−1)
∑

j<i
nj |n1, . . . , ni − 1, . . . , nm〉.

In both cases,

a†iai |N〉 = ni |N〉.

We refer to the Fock space as the space spanned by all
Fock states on these m modes.

For the benefit of the reader that is more familiar with
the language of first quantization, let us give a brief
example that connects these two formalisms. Suppose
we have particles that can have one of two values for
some quantum number. These can represent horizontal
or vertical polarizations of a photon, up or down Z
components of electron spins, and so on, but let us
label them 0 and 1 for simplicity. In a first-quantized
notation, if we have a single of these particles, we would
represent the two corresponding states as |0〉1 and |1〉1
(where the label 1 indicates this state is written in first
quantization).

Suppose now we have two of these particles, and
they are in a state where each assumes a different
value for this quantum number. If the particles are
distinguishable, this could correspond to either state
|01〉1 or |10〉1, or in fact any superposition of them.
However, if the particles are bosons (fermions), then this
state must be symmetric (antisymmetric) under particle
exchange, so we would write it as:

1√
2

(|01〉1 + |10〉1), for bosons, and

1√
2

(|01〉1 − |10〉1), for fermions.

In the second quantization formalism we reviewed, states
are identified instead by the occupation number of each
mode. In this example, the modes are identified with the
quantum numbers {0, 1}. Both states are written simply
as |11〉, and the information about the symmetry of the
wave function is encoded in the corresponding bosonic
or fermionic commutation relations.

2.1.1. Fock space dimension

What are the dimensions of the Fock spaces described so
far? In principle, for fermions the dimension is 2m, while
for bosons it is infinite, as there can be arbitrarily many
bosons in even a single mode. However, the dynamics
we consider here always preserves the total number
of particles, and so we can restrict ourselves to the
subspaces of fixed total particle number2.

2 Some readers might object to this, given that second quantization
was developed precisely to deal with states with varying particle

Let us denote the set of all configurations of n fermions
in m modes as Fm,n, and its bosonic analogue as
Bm,n. The size of Fm,n, which we denote |Fm,n|, just
corresponds to the number of permutations of m objects,
out of which n are identical (the occupied modes),
and the remaining m − n are also identical (the empty
modes). Therefore

|Fm,n| =
m!

n!(m− n)! =
(
m

n

)
.

For bosons, we need to count all ways to drop n identical
balls in m bins, and so

|Bm,n| =
(m+ n− 1)!
n!(m− 1)! =

(
m+ n− 1

n

)
.

For reasons that will become clear in due time, it is
sometimes convenient to consider a restriction on the
bosonic Fock space to only no-collision states, i.e., those
in which ni ≤ 1. We denote this space as B∗m,n, and note
that |B∗m,n|= |Fm,n|.

Unless n is very small (or, for fermions, if either n or
m−n is small), both Bm,n and Fm,n grow exponentially
in dimension as we increase the number of particles and
modes. This is identified as one reason why quantum
systems are hard to simulate on classical computers,
and why quantum computers might be better at this
task [7, 18]. However, it cannot be the only reason, since
a system of n classical particles in m bins also has
an exponentially large configuration space (even larger
than Bm,n if we attach labels to the classical particles,
such that they are distinguishable!). In order to see
complexity arise, let us move to the matter of dynamics.

2.2. Bosonic and fermionic linear optics

In principle, quantum mechanics allows for arbitrary
unitary transformations in Fock space. However, we are
interested in the computational complexity of identical
particles in a much more restricted settings, that of
linear optics.

Suppose we have m modes associated with either
bosonic or fermionic particles. A linear-optical transfor-
mation will be defined by an m×m matrix U such that
the evolution of the particle operators in the Heisenberg
representation is given by

(a†i)out =
m∑
j=1

Uij(a†j)in, i = 1, 2, . . . ,m. (3)

Transformations such as equation (3) are also often
referred to as Bogoliubov transformations, or free-
particle or noninteracting-particle evolutions. We will

numbers. Though that might be historically accurate, this does
not mean that this formalism cannot prove valuable in other
circumstances. Hopefully this paper showcases an example where
second quantization is the appropriate description even in the case
of fixed particle number, as most of what we discuss would be
considerably more complex to write in first quantization.

Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403

Brod e20200403-5

restrict ourselves to discrete-time transformations, in
terms of incoming and outgoing operators, rather than a
continuous-time evolution. This is standard practice in
the fields of quantum information and quantum optics,3
and can be done without loss of generality, since every
unitary matrix can be written as the complex expo-
nential of some Hamiltonian. The Hamiltonian which
generates an arbitrary linear-optical evolution can be
written as

H =
∑
ij

hijaia
†
j , (4)

where h is an m×m Hermitian matrix. These Hamilto-
nians can represent, for example, beam splitters or phase
shifters in linear optics, or hopping terms between sites
for particles in a lattice.

Let us prove that this Hamiltonian gives rise to an
evolution as in equation (3) in the bosonic case (the fer-
mionic case is analogous, and we leave the proof for the
interested reader). To that end, consider the Heisenberg
equation for a set of (time-dependent) operators b†i (t),
such that (b†j)in := b†i (0):

d

dt
b†i (t) = i[H, b†i (t)]

By using the bosonic commutation relations we can write
this as

d

dt
b†i (t) = i

∑
j

hijb
†
j(t)

Since h is Hermitian, the solution to this set of coupled
first-order differential equations is simply

b†i (t) =
∑
j

Uijb
†
j(0)

where U = exp (iht) ∈ SU(m). Since t is just a
parameter, we can set it to 1 such that (b†j)out := b†i (1).
This shows we can generate the whole of SU(m) by
tuning h in equation (4).

Note that U is not an unitary evolution operator
acting on the Fock space, it is simply a matrix that
describes the linear evolution of the creation operators
as per equation (3). In particular, while the Fock spaces
for n particles in m modes are exponentially large,
U has only roughly m2 free parameters. This shows
that considering only linear-optical dynamics is a very
restrictive setting. Furthermore, these transformations
cover only an exponentially small corner of the space
they inhabit, which creates a tension with the argument,
from the previous section, of hardness of simulation
based on the dimensionality of the Fock space.

As we will see, the complexity of these systems is
dictated neither by the Fock space being too large nor

3 It can also be thought of as a discretized version of the standard
scattering formalism.

by the operator space of linear optics being too small.
In order to understand the actual complexity of these
systems, we need to look more closely at how their
transition probabilities behave.

2.2.1. Elementary linear-optical elements

Let us now illustrate the use of the second quantization
formalism by analyzing simple two-mode transformati-
ons. We consider, as elementary transformations, the
beam splitter and the phase shifter (borrowing nomen-
clature from linear optics). The phase shifter acts on a
single mode and is defined by the following Hamiltonian

HPS = φa†a,

or correspondingly

(a†)out = eiφ(a†)in.

Physically, the phase shifter corresponds to one mode
where particles gain a phase relative to the others. This
can happen, for example, due to a difference in optical
length of two paths, for photons, or to a difference in the
local magnetic field acting on two distant electron spins.
We represent its action as in Figure 1(a).

The beam splitter is defined as

HBS = θ(a†1a2 + a†2a1),

with corresponding action on the particle operators

(a†1)out = cos θ(a†1)in − i sin θ(a†2)in

(a†2)out = −i sin θ(a†1)in + cos θ(a†2)in.

Physically it can correspond to a semi-reflective mirror
for optical propagation modes, a wave-plate for pola-
rization modes, or a lattice hopping term for massive
particles, where in each case the parameter θ regulates
the transmission probability. We represent its action as
in Figure 1(b).

An arbitrary 2-mode linear-optical transformation can
be obtained by alternated application of phase shifters
and beam splitters. To see that, recall that a general

(a) (b)

(c)

Figure 1: Elementary two-mode linear-optical transformations.
(a) A phase shifter. (b) A beam splitter. (c) An arbitrary SU(2)
element, with three free parameters.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403 Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021

e20200403-6 Bosons vs. Fermions – A computational complexity perspective

SU(2) element has three free parameters, and can be
always written as [7]:

U =
(
ei(φ1+φ2)/2 cos θ −iei(φ2−φ1)/2 sin θ
−iei(φ1−φ2)/2 sin θ ei(−φ1−φ2)/2 cos θ

)
.

where θ ∈ [0, π] and φ1, φ2 ∈ [0, 2π]. This corresponds
to the decomposition depicted in Figure 1(c), up to an
irrelevant global phase.

Imagine now an experiment where we input particles
in such a two-mode transformation, or interferometer.
Let us write the interferometer matrix generically as

U =
(
α β
γ δ

)
.

If we input a single particle in mode 1 then, according
to equation (3), the output is

(αa†1 + βa†2) |0〉

and this is independent of whether the particle is a boson
or fermion, as there is no distinction at the single-particle
level.

Suppose now we input one particle in each arm of
this two-mode transformation, i.e., input state |11〉 =
a†1a
†
2 |0〉. What do we observe at the output?

Consider first the bosonic case. Using the bosonic
commutation relations, it follows that the output state
is given by

(αb†1 + βb†2)(γb†1 + δb†2) |0〉 =
√

2αγ |2, 0〉+
√

2βδ |0, 2〉
+ (αδ + βγ) |1, 1〉. (5)

For the fermionic case, we have

(αf†1 + βf†2)(γf†1 + δf†2) |0〉 = (αδ − βγ) |1, 1〉, (6)

Note that the application of the second quantization
formalism is very similar in both cases. Only at the very
end do we use the commutation or anti-commutation
relations, as appropriate, and the expressions differ.

To see how equations (5, 6) lead to inherent bosonic
and fermionic behaviors, suppose that the interferometer
is a 50:50 beam splitter (i.e. θ = π/4):

U = 1√
2

(
1 i
i 1

)
(7)

By plugging equation (7) into equation (5), we obtain
the output state

i√
2
|2, 0〉+ i√

2
|0, 2〉,

and so the two photons have zero probability of exiting in
separate modes. This is known as the Hong-Ou-Mandel
effect [19], and is a small-scale manifestation of the natu-
ral tendency of bosons to bunch together. Equation (6),
on the other hand, tells us that fermions always exit in

(a)

(b)

(c)

(d)

Figure 2: Effect of a 50:50 beam splitter on different particle
types. In each diagram, the circles represent particles, which
are input on the left of the beamsplitter. At the output,
columns represent possible outcomes with their correct relative
frequencies. (a) For a single particle (yellow), there is no
difference in behavior between bosons and fermions. (b) The
Hong-Ou-Mandel effect, where two photons (blue) impinging
on a balanced beam splitter always leave it together. (c) The
Pauli exclusion principle, which states that two fermions (red)
cannot occupy the same mode. (d) For comparison, the behavior
of distinguishable particles (white), which exit the beam splitter
together or separately with equal probabilities.

separate modes, no matter what U is, which of course is
due to the Pauli exclusion principle. Figure 2 summarizes
the different behaviors on a balanced beam splitter.

Let us look more carefully now at the amplitude of
the |1, 1〉 outcomes in equations (5, 6). The combinations
(αδ+βγ) and (αδ−βγ) are well-known matrix functions
of U , the permanent and the determinant, respectively.
Let us now see what these expressions look like for
scaled-up experiments.

2.2.2. m–ports

We now define the paradigmatic large-scale linear-
optical experiment. Suppose that we have a system of
n particles in m modes, and they are prepared in some
initial state

|S〉 = |s1, s2, . . . , sm〉

such that
∑
i si = n. These particles will be input in

an m-mode interferometer U , or m-port, which acts
as per equation (3). It was shown by Reck et al. [20]
that an arbitrary m-port can be decomposed in terms
of m(m − 1)/2 two-mode transformations, as shown in
the main circuit of Figure 3. Finally, we place detectors
at all output ports of the interferometer to measure
the occupation number of each mode, repeating the

Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403

Brod e20200403-7

Prob.

Figure 3: The standard linear-optical setup we consider, composed of (i) Fock state input with n particles (bosons or fermions)
in m modes, (ii) arbitrary m-mode linear-optical transformations (which can be decomposed as a circuit of m(m − 1) elementary
transformations [20]), and (iii) detection of occupation number at all output ports, repeated to build statistics.

experiment many times to build statistics. The full setup
is represented in Figure 3.

We now consider the probability of observing an
output state |T 〉 = |t1, t2, . . . , tm〉. To that end, we need
to define a submatrix of U , which we call US,T , by the
following procedure. First, we take ti identical copies
of the ith column of U and construct an intermediate
m×n matrix UT . Then, we take each sj identical copies
of each jth row of UT to obtain the n× n matrix US,T .
For example, suppose

U =

α β γ
δ ε ζ
η θ ι

,
and suppose that |S〉 = |011〉 and |T 〉 = |200〉. Then we
obtain

UT =

α α
δ δ
η η

, and US,T =
(
δ δ
η η

)

The transition probabilities can now be written as the
generalizations of equations (5, 6) as follows:

Pr(S → T) = |per(US,T)|2∏
i si!

∏
j tj !

for bosons, (8a)

Pr(S → T) = |det(US,T)|2 for fermions. (8b)

The functions per(A) and det(A) are the permanent
and determinant, respectively, given by

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai,σi , (9a)

per(A) =
∑
σ∈Sn

n∏
i=1

Ai,σi
, (9b)

where Sn is the set of all permutations of the set
{1, 2, . . . , n}, and sgn(σ) is the signature of the permuta-
tion, equal to +1 if the permutation is even and −1 if it is

odd. Notice that the only difference in these expressions
is the minus signs in the determinant for odd permuta-
tions. That can be traced directly to the fermionic anti-
commutation relations. From this also follows the Pauli
exclusion principle, since any outcome with two fermions
in the same mode would correspond to a matrix US,T
with repeated columns, whose determinant is always
zero. I invite the interested reader to use equations (9)
to verify equations (5, 6).

The connection between the transition probabilities
and equations (9) is somewhat intuitive. The determi-
nant and permanents are sums over all possible choices of
one matrix element from each distinct row and column.
Each term in this sum corresponds to one trajectory that
the n input particles might have taken to end up as the
n output particles – though, since particles are identical,
these possibilities are all summed coherently. For a proof
of these expressions, see [14, 21].

For completeness, we should point out that transition
probabilities for classical (i.e. distinguishable) particles
can also be written similarly. Of course, a priori classical
particles can have labels, so their configuration space
is larger. For particles labeled a and b, state |ab〉 is
different from state |ba〉. However, imagine we perform
an experiment, but forget the particle labels at the
output (alternatively, imagine we perform an experiment
with particles that are all in mutually orthogonal states
of some internal, undetectable degree of freedom). Then
the configuration space coincides with that of bosons,
and the transition probabilities are given by

Pr(S → T) = per(|US,T |2)∏
i si!

∏
j tj !

for classical particles,

(10)

where |US,T |2 is obtained from US,T by taking element-
wise absolute value squared.

With such similar expressions, one might think that
bosonic and fermionic probabilities can be computed
with similar computational cost. That is not the case,
but to give a full justification we need to take a
detour into the territory of computational complexity
theory.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403 Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021

e20200403-8 Bosons vs. Fermions – A computational complexity perspective

3. Computational complexity theory

The distinction between the determinant and the per-
manent (which will translate into a difference between
bosons and fermions) seems, at first glance, a trivial
minus sign in some terms of equations (9). Both expres-
sions seem to require computing sums with the same
number of very similar terms (n!, in fact, for n × n
matrices), which might suggest that they should be
equally easy or hard to compute. This impression is
misleading–computing the permanent is in fact typically
much harder than the determinant. In order to give
a robust justification for this claim we need employ
the toolbox of computational complexity theory, which
aims to classify computational problems based on their
hardness. This theory is quite extensive and technical, so
here we only look at a cross section of it that serves our
purposes. We direct the interested reader to the excellent
textbook by Arora and Barak [1].

3.1. P and NP

Let us begin our foray into the field of computational
complexity theory with an example:

Problem 1. Suppose you, a famous archaeologist,
discovered an ancient tablet of a forgotten civilization.
After some work in deciphering the tablet, you realize
that it is a geographical document: it contains a list of
n cities, together with a list of all pairs of cities which
share a common border. Wanting to understand more
about this civilization, you decide to figure out: did they
inhabit a single island4?

How should you proceed?

This problem has two notable features prominent for
our discussion. The first is that it is a decision problem,
i.e., it has a definite yes or no answer. The second is that
there exists a procedure to solve this problem which takes
a number of steps that grows as a polynomial in the size
of the problem (n). One simple such procedure, based on
a strategy known as breadth-first search, is the following:

1. Choose any city in the list, number it 1.
2. Go through the list of borders, identifying the

neighbors of city 1. Label them as 2.
3. Repeat the previous step, identifying (yet

unlabeled) neighbors of all cities labeled 2. Label
them as 3.

4. Repeat the previous step, incrementing the labels,
until the procedure stops and no new cities receive
labels. If every city receives a label, then they are
all in a single island. Any cities left unlabeled are
not in the same island as city 1.

We represent this procedure in Figure 4. Clearly it
solves the problem, but how long does it take? If there

4 In the jargon of graph theory, this problem is called graph
connectivity.

1

2
2

2

3

3

3

3

... ...

Cities Borders

4

Figure 4: On the left, two ancient tablets, one with a list of cities
and the other with a list of borders. To decide whether all cities
are in the same island, you represent this data as a graph, on the
right, where cities are vertices and edges correspond to shared
borders. This does not yield a visual answer to the problem, so
you resort to the procedure described in the text. You choose one
city and label it as 1, its neighbors as 2, subsequent neighbors
as 3, and so on. As the procedure terminates, you realize that
three cities have not been labeled, and you conclude they are
located on a second island.

are n cities, then the procedure will iterate for at most n
steps. In each step, we may need to parse through a list
containing at most n(n−1)/2 elements, corresponding to
the maximum number of pairwise borders that can exist.
Therefore, if we were to write an algorithm implementing
this procedure in our preferred programming language,
its runtime would grow more slowly than n35. This is
definitely not optimal, but crucially it is a polynomial in
the size of the problem.

Decision problems for which there exist a polynomial-
time classical algorithm can be collected in what is
probably the most well-known complexity class, named
simply P. This is identified, informally, as the class of
problems that a classical computer can solve efficiently.
Problems outside of P are those for which the best
classical algorithm must take time that grows faster than
any polynomial (e.g. exponentially).
Definition 1. P [informal]: the set of decision problems
that can be solved by some classical algorithm that runs
in time polynomial in the size of the input.

Alternatively, the set of decision problems for which
there exists some Boolean function f(x) such that:

(i) x is an encoding of the problem instance in n bits;
(ii) if the answer is yes, f(x) = 1, otherwise f(x) = 0;

and
(iii) f(x) can be computed on a classical computer in

time poly(n).
In this case, the decision problem can be formulated as
“given x, is f(x) = 1?”

5 In complexity theory and algorithm analysis this is denoted as
O(n3). Given two functions f(n) and g(n), then f = O(g) means
that f(n) is upper bounded by some positive multiple of g(n) in the
limit n → ∞. Note that a similar notation is used in the physics
literature with a similar spirit but different technical meaning.
We refer the reader to chapter 0 of [1].

Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403

Brod e20200403-9

The alternative definition above, in terms of a Boolean
function f(x), may sound a bit opaque for now but will
be convenient when we consider generalizations of P. In
essence, x simply encodes the question (e.g. it is some
encoding of the list of cities and borders in problem 1
as a binary vector), whereas f(x) encodes the answer
(yes or no).

There are objections to this definition of P. In particu-
lar, the definition requires the existence of an algorithm
that runs in polynomial time for every instance of the
problem. What if I develop an algorithm that runs
in polynomial time for most instances of a problem?
Or for a subclass of instances relevant for a particular
practical application? For problem 1, for example, one
can easily devise an algorithm that works much faster
than what I described above for the particular case of
a map where one city borders all others. Also, what if
my algorithm had runtime n100, should we label that
as more efficient than an algorithm that has runtime
1.00001n, just because the first is a polynomial while
the second is an exponential?

These are all valid objections. Nonetheless, the de-
finition of P has historically been very useful, laying
the foundations for the structure of complexity classes
that has proven so far to be quite robust. From now on
we take this and subsequent definitions for granted in
order to make meaningful claims about the complexity of
simulating quantum mechanical particles, but we direct
the interested reader to chapter 1 of [1] for a more
thorough discussion.

One complexity class doesn’t quite make up a useful
classification scheme, so let us now define another, again
with an example.

Problem 2. While studying more ancient tablets, you
come across the following story.

A king ruled the land many years ago. He had two
twin children, and it was unclear which of them would
inherit the throne. The king thus decided to divide his
kingdom between the two. However, he wished to enforce
cooperation between his bickering descendants. The king
then established the following rule: each town in the
kingdom was to be assigned to one of the children, but
in such a way that no two neighboring towns could be
under the rule of the same person. The overly optimistic
monarch reasoned that, in this way, every time one his
children wanted to move goods or people between their
towns they would be forced to cross territory owned by
their sibling, and they would be forced to cooperate.

You strongly doubt the king’s reasoning but, in any
case, how can you tell whether such a division is possi-
ble6? You only possess the list of towns and borders, as
in the problem 1.

This problem is actually quite easy to solve by a minor
modification of the algorithm I described for problem 1,

6 This problem is known as 2-Coloring, or more generally
k-coloring if the king had k children.

Figure 5: A map of the king’s island, which he wishes to divide
between his children according to the rules of problem 2. If the
king only has two children, this task is impossible, as this map
is not 2-colorable. A proof of this fact follows by analyzing the
possibilities around the triple border in the center or the map.
The map is 3-colorable, so the division is possible if the king
has three children, as shown above. (If the king evicts everyone
from the green region and removes it from the kingdom, the
map does become 2-colorable.)

and it is thus also in P. Something interesting happens,
however, if we assume that the king had more than just
two children. If the king had four children, the answer
would always be yes. This follows from the four-color
theorem, which states simply that any separation of
a planar shape in contiguous regions (i.e. a map) can
be colored with four colors in such a way that no two
adjacent regions have the same color7.

What happens if the king instead had three children?
In this case, there is no known efficient algorithm to
decide whether the distribution of regions desired by the
king is possible. Curiously, however, if such a division of
the kingdom is possible, and some court magician used
their magic powers to find it, they could easily convince
the king of this fact. To that end, they could simply
provide the king with a list of the cities assigned to each
heir. It would be a much easier task to check that the
assignment follows the rules imposed by the king than
it would be to find such an assignment. Figure 5 shows
an example.

Problems with the above feature—where a solution
can be verified efficiently regardless of whether it can be
obtained efficiently–define the second most well-known
complexity class: NP.

Definition 2. NP [informal]: the set of decision pro-
blems with the property that, when the answer is yes,
there exists a certificate which can be used to check this
fact efficiently (i.e. verifying the solution is in P).

7 This is one the first major theorems proven using a computer!

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403 Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021

e20200403-10 Bosons vs. Fermions – A computational complexity perspective

Alternatively, the set of decision problems for which
there exists some Boolean function f(x, y) such that:

(i) x is an encoding of the problem instance in n bits;
(ii) y is an m-bit string (known as a certificate), with

m = poly(n);
(iii) f(x, y) can be computed on a classical computer in

time poly(n); and
(iv) if the answer to the decision problem is yes, there

exists y such that f(x, y) = 1. Conversely, if the
answer is no there is no y such that f(x, y) = 1.

In this case, the decision problem can be formulated as
“given x, does there exist y such that f(x, y) = 1?”

There are countless known problems in NP. The ver-
sion of problem 2 where the king has three children,
known as 3-coloring, is one example. Others including
finding the prime factors of some integer (factoring),
the traveling salesman problem, and many optimization
problems. So far the definition of NP may seem a bit
loose, simply collecting a variety of unrelated problems.
However, it is made much more robust by the notion of
NP–completeness.

An NP–complete problem is an NP problem with
the property that every other NP problem reduces to it.
We will see concrete examples of reductions in the next
section (involving the determinant and the permanent)
but, for now, it suffices to say that a reduction from
problem A to problem B is a way of efficiently converting
an instance of A to an instance of B. If an efficient
algorithm for B exists, this then implies that A can
be solved efficiently as well, simply by mapping it to B
and using the algorithm for B as a subroutine. In other
words, a reduction from A to B implies that B has to
be at least as hard as A. Consequently, NP–complete
problems are the hardest among all NP problems, since
an efficient algorithm for one of them could be used as
an efficient algorithm for any other.

The definition makes NP–complete problems sound
very useful! One can wonder, then, whether they exist
at all—and, if so, are they common? The first question
was answered in one of the foundational results of
computational complexity theory, known as the Cook-
Levin theorem [22, 23], which essentially states that
NP–complete problems do indeed exist, and provides an
example (a problem known as Boolean satisfiability pro-
blem, or sat). Soon after, Karp published 21 additional
NP–complete problems [24], and since then thousands
more have been discovered [25].

Complexity theory is the study of relations between
these classes, so how are P and NP related? It is
straightforward to see that P⊆ NP. If the king wants
to know whether it is possible to divide the kingdom
between his two children to his satisfaction, he can just
ignore the solution provided by the court magician and
solve the problem himself. The reverse question, whether
NP⊆ P is one of the most important open problems in

computer science, and one of the seven Millennium Prize
Problems stated by the Clay Mathematics Institute [2].
It is impossible to overstate the importance of this
question, and I cannot do justice to it here. If it turns
out that P = NP, then the mere ability to check the
correctness of the solution to a problem would imply the
ability to solve it, and our world would likely become a
very different place (for an entertaining and nontechnical
discussion of the importance of the P vs. NP question,
we direct the interested reader to ref. [26]).

Our interest here is not on the P vs. NP question,
our goal lies in higher levels of the structure of comple-
xity classes. However, this digression aims to illustrate
the role played by some conjectures in computational
complexity theory. Even though it is currently unknown
whether NP is contained in P, many researchers con-
sider that the answer is probably negative. There are
thousands of NP–complete problems in several fields
of knowledge, such as economics, graph theory, number
theory, physics, biology and so on. Finding an efficient
algorithm for any of them (equivalently, proving that
any of them is in P) would cause a collapse and imply
that P = NP. As a matter of fact, there are only a
handful of problems which are not known to be either
NP–complete or in P (the most famous examples being
factoring and graph isomorphism [25]). And yet, decades
of research have failed to produce an efficient algorithm
for any one of these problems.

An analogy can be traced between the belief that
P 6= NP and the laws of thermodynamics prior to
the invention of statistical mechanics. The laws of
thermodynamics are empirical observations about the
world, not proven facts. Despite no proof that it was
impossible, any early-19th century scientist familiar with
thermodynamic theory would be wary of investing in a
project of a perpetual motion machine. Similarly, there
is no proof that P 6= NP, but any proposed efficient
algorithm for e.g. the traveling salesman problem is
regarded with skepticism unless it clearly uses novel
ingredients missed by the community for the last several
decades.

Of course, the P vs. NP question is different from the
laws of thermodynamics in a fundamental way. Though
statistical mechanics subsumes thermodynamics in some
sense, it has replaced the latter’s laws by microscopic
principles which are still essentially empirical. The ques-
tion of whether P = NP, on the other hand, is a well-
posed mathematical question, which in principle has
a definite truth value and presumably can be proven.
Nonetheless, I can give two examples to justify why the
analogy is apt. The first is the fact that, to date, one
of the methods used for public-key cryptography, known
as RSA [27], depends on the assumption that factoring
large integers is a much harder problem than multi-
plication. The second is that one of the crown jewels
of the field of quantum computing is Shor’s algorithm
[7, 8], which precisely shows how to factor large integers

Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403

Brod e20200403-11

in polynomial time on a quantum computer. Though
Shor’s algorithm is no longer the main driving force
behind research (and funding) on quantum computing, it
certainly holds a special place kick-starting widespread
interest in it. Both of these endeavors are predicated
on the conjecture that factoring is a hard problem for
classical computers—despite the fact that factoring is
not even the hardest among NP problems!

The belief in conjectures such as that P 6= NP has
led to several results in theoretical computer science
of the form “if claim X was true, it would imply
P = NP, therefore X is probably not true”. The entire
field of quantum computing in a sense stands on similar
assumptions, given that there is no proof that a quantum
computer really is faster than its classical counterpart.
In the following section we will use a similar conjecture
to give evidence of the large discrepancy in complexity
between the determinant and the permanent and, subse-
quently, between the computational power of bosons and
fermions. Hopefully the preceding discussion has made
it clear why these conjectures, though still unproven, are
not empty or unjustified.

3.2. The polynomial hierarchy and counting
problems

Let us now move a few rungs up the complexity ladder to
define two new complexity classes, PH and #P, which
will be central to our main argument.

The polynomial hierarchy, or PH, is a tower of
generalizations of P and NP, which can be defined as
follows.

Definition 3. PH: The set of decision pro-
blems for which there exists some Boolean function
f(x, y, z, w, . . .) such that:

(i) x is some encoding of the problem instance in n
bits;

(ii) y, z, w are poly(n)-sized strings;
(iii) f(x, y, z, w, . . .) can be computed on a classical

computer in time poly(n).

The decision problem can then be formulated as “given
input x, does there exist y such that for all z, there exists
w such that ... f(x, y, z, w . . .) = 1?”

This formulation of PH justifies our inclusion of
the function-based definitions of P and NP, as it is
a straightforward generalization of them. Technically,
PH is not a complexity class, but rather a union of
infinitely many classes. For each number of sequential
“there exists” and “for all” quantifiers, the corresponding
set of problems defines one level of PH. P corresponds
to level 0, NP (and the closely related co-NP, which we
have not seen) correspond to level 1, and so on.

I will not go into further details of the definition, or
even examples of problems within higher levels of PH.
For us, the polynomial hierarchy will serve simply as

a proof mechanism. It can be shown that, if any two
levels of PH are equal, then the entire tower collapses
to that level. For example, if P = NP, it follows that
the tower collapses to its level 0, i.e. PH = P. Our main
conclusions will then be predicated on the conjecture
that this does not happen, and that the polynomial
hierarchy is infinite. This is a very common generaliza-
tion of the conjecture-based argument described in the
previous sections, but now of the form “if X is true the
polynomial hierarchy collapses to its nth level, therefore
X is probably not true”. This is a reasonable conjecture,
as there is no reason to expect the class of problems of
the form “given input x, does there exist y such that
for all z, there exists w... is f(x, y, z, w . . .) = 1?” to
simply terminate after some number of quantifiers. Note
however that it is a strictly weaker conjecture than P6=
NP, since it is possible for the latter to be true even if
PH collapses (e.g. to some level above the second).

Finally, the last complexity class we will need is #P,
which can be defined as follows:
Definition 4. #P [informal]: The set of problems
of the type “compute the number of solutions to an
NP problem”.

Note that #P collects problems of a different na-
ture than the previous classes we encountered, namely
counting problems rather than decision problems. One
example would be if the king from problem 2 wanted
to know not only whether it is possible to divide the
kingdom between his children as desired, but rather how
many different ways there are to make this division. In
the next section we will show how the permanent of a
matrix can be cast as a #P problem.

How does #P relate to the classes we saw previously?
First, #P problems must be harder than NP problems
by definition. If we can count the number of solutions
to an NP problem, we can easily find out whether a
solution exists, just by checking whether the number of
solutions is larger than 0! On the other hand, even if
a solution to a particular problem happens to be easy
to find, there might be exponentially many different
solutions, and counting all of them might be much
harder. A well-known result in complexity theory, Toda’s
theorem, establishes that #P is in fact harder than the
entire polynomial hierarchy:
Theorem 1. Toda’s Theorem [28]: PH ⊆ P#P

Note that, technically, we cannot write PH ⊆ #P.
This makes no sense, since PH is a set of decision
problems, while #P is a set of counting problems, so
they are not directly comparable. This is resolved by
defining the class P#P, which informally means the set
of decision problems that a classical computer could
solve efficiently if it had access to an auxiliary machine
capable of solving counting problems.

We have now constructed the cross-section of the
structure of complexity classes that we will need, con-
sisting of P, NP, PH and #P. However, this is far

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403 Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021

e20200403-12 Bosons vs. Fermions – A computational complexity perspective

P

PH

BPP

BQP

QMA

PSPACE

NP coNP

#PP

EXP

Figure 6: Abridged version of the petting zoo of complexity
classes [3], focusing on the most common classes and those
important for this work. The only classes not mentioned in the
main text are PSPACE, corresponding to problems solvable by
a classical computer with polynomial memory (regardless of
how long it takes), and EXP, which corresponds to problems
which classical computers can solve given exponential time.
Lines indicates inclusions, from bottom to top (e.g. P⊆ NP),
though not necessarily strict inclusions (e.g. it is unknown
whether NP ⊆ P).

from a complete picture of computational complexity
theory. In Figure 6 we represent these classes in relation
to a few well-known others, but there are in fact several
hundred known complexity classes to date, and we direct
the reader to the Complexity Zoo website [3] for a full
listing.

3.3. The determinant and the permanent

Let us now see how the determinant and permanent
functions fit within the classification scheme described
in the previous section. Consider first the determinant.
Recall its definition:

detA =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai,σi
,

where A is an n × n matrix. This expression is a
very inefficient way to perform the computation, as
it requires the summation of n! terms. This does not
mean that there is no better alternative. Recall that the
determinant has the following property:

det(XY) = detX detY.

This provides a shortcut for computing the determi-
nant. Rather than use the definition, we can instead
rewrite A as a product of matrices whose determinants
are easy to compute. One example is the standard
high school method for computing the determinant and
solving linear systems based on Gaussian elimination.
This procedure is based on applying three types of
transformations on the rows of A: (i) swapping two rows,
(ii) multiplying a row by a scalar c, and (iii) adding

one row to another. All three steps can be written as
multiplying A by particular matrices, whose respective
determinants are (i) −1, (ii) the scalar c or (iii) 1. At the
end of this procedure, A is taken into another matrix,
A′, that is in upper triangular form. In other words, we
can write:

AB1B2 . . . Bm = A′,

where the number of operations is m = n(n+1)/2 < n2.
Notice that detA′ is easy to compute, since A′ is in upper
triangular form, and its determinant is just the product
of the diagonal elements. Therefore, we can write

detA = (detB1 . . . detBm)−1 detA′,

which requires computing less than n2 easy determi-
nants. If we carefully account for all the intermediate
steps in the Gaussian elimination, this algorithm re-
quires roughly n3 steps8. Since this is polynomial in
the size of the matrix, this places computation of the
determinant in P9.

Having shown that the determinant can be computed
efficiently, what about the permanent? Can we use a
similar trick? Alas, the answer seems to be no. In general
per XY 6= per X per Y , so it is not possible to perform
an efficient tracking of the permanent during Gaussian
elimination, as was done for the determinant. We will
now give a stronger argument why it is unlikely that the
permanent can be computed efficiently. Before we get to
that, however, let us define another useful problem, that
of perfect matchings (illustrated in Figure 7).

Problem 3. Upon finishing your archaeological dig, you
return to your regular life as a university professor. On
your first class of the semester, you are assigned two
groups, one composed of n junior students and the other
of n senior students. To improve the performance of the
junior students, you decide to pair each of them with one
senior student. However, you are aware that some pairs
of students simply despise each other, and will refuse
to work together. Is it possible to find a pairing of the
students, one from each group, such that no student is
left to work alone? This is known as a perfect matching.

How hard is this problem? It can be shown that it is
in P, and I will now describe a simple procedure that
(almost) proves this.

We begin by labeling the senior students as
(s1, s2, . . . sn), and the junior students as (j1, j2 . . . jn).

8 One caveat is that this algorithm can produce intermediate
numbers with exponentially many digits [29], but there are better
algorithms which are truly polynomial [30].
9 The alert reader may protest that computing the determinant is
not a decision problem, so it cannot be in P. This is technically
true, though it is possible to replace the problem of computing
det A by a sequence of decision problems of the type “is the nth
digit of det A greater than 5?”, which allows us to reconstruct
det A to a desired precision. So we stick to standard imprecise
terminology and state that the determinant is in P.

Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403

Brod e20200403-13

Figure 7: The problem of finding a perfect matching between
a group of students. Blue and orange dots represent senior and
junior students, respectively. For every pair of students that are
willing to work together, we draw an edge between them. In
blue, we represent one possible solution to this problem. For
this example, there are three possible perfect matchings.

We then construct a matrix A (known as the Edmonds
matrix in graph theory [31]) by the following prescrip-
tion:

Aik =
{
xik if si and jk would work together,
0 otherwise.

(11)

In principle the variables xik are indeterminates, though
for the applications we consider we can assume they can
take integer values, for simplicity.

For the example of Figure 7, this matrix is given by

A =


0 x12 x13 0 0
x21 x22 0 x24 0
x31 0 0 x34 0
0 0 0 x44 x45
0 0 x53 0 x55

. (12)

Now consider the quantity detA, as given in the
definition in equation (9a). Clearly, it is a polynomial
of degree n in {xik}. Each of its monomials contains
the product of n elements of A that do not share
rows or columns. Therefore, each monomial is directly
associated with one way to pair the students, where
senior student si is paired to junior student jσi . If any
of these pairs would refuse to work together, then the
corresponding matrix element is 0 and that monomial
does not contribute to the sum. Therefore, the only
terms of detA that survive are those corresponding to
valid perfect matchings of the students! This means
that we have reduced the problem of deciding whether
some perfect matching exists to the problem of deciding
whether detA is the zero polynomial.

The next step is to decide whether detA is the
zero polynomial. We can write it explicitly, e.g. for
equation (12) we have

detA =x12x24x31x45x53 − x12x21x34x45x53

− x13x22x31x44x55.

However, writing detA explicitly is not efficient, as it
may contain exponentially many monomials. Instead,

we can use the following procedure. We first choose
random values for the {xik} variables, and then we
compute detA for those values, which can be done
efficiently, as we argued above. Suppose we repeat this
procedure many times, and every time we observe that
detA = 0. The more samples we take, the higher our
confidence that it is indeed the zero polynomial, since it
is unlikely that we chose only roots of detA by chance.
Conversely, if detA is not the zero polynomial, we expect
to very quickly find one assignment of {xik} for which
detA 6= 0. The success probability of this procedure can
be formalized by the Schwartz-Zippel lemma:

Lemma 1 (Schwartz-Zippel [32–34]). Let P (x1,
x2 . . . xm) be a non-zero polynomial of total degree at
most d. Let S be a finite set of integers. Then, if
a1, a2, . . . am are randomly chosen from S, then

Pr[P (a1, a2 . . . an) = 0] ≤ d

|S|
,

where |S| is the number of elements of S.

Clearly, the Schwartz-Zippel lemma guarantees that
we can make the probability of failure of the previous
procedure arbitrarily small. Therefore, we conclude that
the problem of deciding whether a perfect matching of
the students exists is at most as hard as computing the
determinant, and thus it can be done efficiently on a
classical computer.

The preceding argument does not quite place the
problem of perfect matching in P, because the definition
of P does not allow for randomness or a tiny (but non-
zero) failure probability. It does place the problem in
BPP, which is the generalization of P that does allow
randomness, but which we have not defined. In any case,
there are other ways to prove that perfect matching is
in P, both in the versions of deciding whether one exists
and actually finding one [35].

What if we now consider the problem of counting the
number of perfect matchings? Interestingly, even though
the decision version of the problem is easy, the counting
version is actually #P–complete. Recall that an NP–
complete problem was one of the hardest NP problems,
and the definition of #P–complete is similar. A problem
is #P–complete if every other #P problem reduces
to it. If there exists an efficient algorithm to count the
number of perfect matchings, then every #P problem
would also be solvable efficiently. From the discussion of
the previous section, this would imply that the entire
polynomial hierarchy would come crashing down and
collapse to P, due to Theorem 1. This suggests that such
an efficient algorithm is very unlikely indeed!

The #P–completeness of counting the number of
perfect matchings in a graph was shown, by Valiant, in
the same paper that defined the #P class [36], and where
he proved that the permanent is also #P–complete. To
see why the latter is true, consider the Edmonds matrix
A we constructed in equation 11, but set all (nonzero)

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403 Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021

e20200403-14 Bosons vs. Fermions – A computational complexity perspective

variables xik to 1, obtaining the following matrix (known
as the biadjacency matrix)

A′ =


0 1 1 0 0
1 1 0 1 0
1 0 0 1 0
0 0 0 1 1
0 0 1 0 1

. (13)

When computing detA, we argued that every nonzero
monomial in that sum corresponded to one valid perfect
matching. By the exact same argument, each of the
monomials in detA′ takes value 1 for a perfect matching
and 0 otherwise. If we now drop the minus signs from the
definition of the determinant, the resulting expression
counts the number of perfect matchings. But that is
simply the definition of per A′

per A′ =
∑
σ∈Sn

n∏
i=1

A′i,σi
.

Since counting perfect matchings is #P–complete, this
proves that computing the permanent of a matrix—
furthermore, even one whose elements are 0 or 1—is #P–
complete as well, since any #P problem can be reduced
to counting perfect matchings and subsequently to the
permanent.

Let us summarize the conclusions of this section. First,
we argued that the determinant is in P. Then we showed
that deciding whether a set of students can be matched
perfectly can be reduced to the determinant, and hence
it is also easy. We then showed that counting in how
many ways we can match these students reduces to
the permanent. But this counting is known to be #P–
complete, and therefore the permanent is #P–complete.
If we now look back at Figure 6, this shows us how
radically different the permanent and determinant are,
in terms of complexity–at least if we assume there are
no major collapses in these complexity classes.

This concludes our review of computational com-
plexity theory. We now have the tools necessary to
investigate the difference in complexity of bosons and
fermions. The previous paragraph suggests that bosonic
linear optics should be computationally more complex,
in some sense, than fermionic linear optics, due to the
difference between the determinant and the permanent
that appear in equations (8). However, there is more
work to be done to justify that claim, because quantum-
mechanical probabilities are not directly observable.
Therefore, we need to define more formally what does
it mean to simulate a quantum system.

4. Sampling of bosons and fermions

4.1. Classical simulation

There are many notions of what it means to simulate
a quantum system. We might want to compute its

energy levels and describe the corresponding eigenstates,
or obtain the expectation value of some observable,
or compute the probabilities associated with particular
outcomes. Our approach will be to formulate a concrete
computational task that we could in principle perform
experimentally using fermions or bosons, and then con-
sider how well a classical computer would perform at the
same task.

Suppose initially we want to use a bosonic system to
directly compute the permanent of a matrix. If possible,
that would be quite astounding, since it would imply
quantum computers can solve #P–complete problems—
whereas currently we do not believe they can solve
even NP–complete ones. An attempt to leverage the
bosonic transition probabilities was made by Troyansky
and Tishby in [37], where they showed how to encode
per A for some n× n matrix A as an expectation value
of a bosonic observable. Predictably, however, this did
not imply an efficient quantum procedure to compute
permanents, since the variance of this observable grows
exponentially, implying we would need to repeat the
measurement exponentially many times to obtain a
reasonable precision in the estimate of per A10.

A similar approach would be to directly compute
the permanents via equation (8a), by repeating the
experiment many times and estimating the correspon-
ding probabilities. This suffers from the same problem,
however. Recall, from section 2.1, that the configuration
space for n bosons in m modes is exponentially large.
As a consequence, for typical transition matrices U , the
probabilities of specific events tend to be exponentially
small, again requiring an exponential number of repeti-
tions of the experiment to estimate.

Can there be a smarter way to use bosons to compute
permanents? There is no proof that quantum computers
cannot solve #P–complete problems–as I argued previ-
ously, there rarely is. But let us move towards a more
feasible goal, that of providing evidence of complexity
of whichever task a linear-optical experiment performs
more naturally. To that end, recall the ingredients of
our paradigmatic linear-optical experiment (shown in
Figure 3): (i) a (bosonic or fermionic) Fock input state
of n particles in m modes, |S〉 := |s1s2 . . . sm〉, such
that

∑
si = n; (ii) a linear-optical transformation U ,

or interferometer, acting according to equation (3); and
(iii) a final measurement of the occupation number
of the output modes. The output is described by the
probabilities:

Pr(S → T) = |per(US,T)|2∏
i ti!

∏
j sj !

, for bosons,

Pr(S → T) = |det(US,T)|2 , for fermions.

In both cases US,T is a submatrix of U constructed by
the prescription just above equations (8).

10 Interestingly, they observed that the variance for the correspon-
ding fermionic observable encoding det A was zero.

Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403

Brod e20200403-15

We now make two simplifying assumptions for the
bosonic case. First, we assume the input state is such
that si ≤ 1, i.e. we only input one particle in each mode.
Second, we also ignore output collision states (when
two or more bosons exit in the same mode). In other
words we assume tj ≤ 1, so the output distribution
only has support on B∗m,n, as defined in section 2.1.
There are two justifications for this assumption. The
first is experimental: often, photonic linear-optical ex-
periments use avalanche photo-detectors [38], which can
only distinguish whether photons arrived or not, but not
how many. In that case, an experimental run is only
accepted if n different detectors click, i.e. for no-collision
outputs. Luckily, the second justification is based on the
bosonic birthday paradox [14, 39], which states that no-
collision states dominate the output distribution, and
therefore not many experimental runs will be wasted
by ignoring collisions. This only holds if m � n2 and
for typical (uniformly random) unitaries U , but this
regime is required for other technical reasons anyway,
which we will mention in section 4.3. Fortunately, in
this aspect the theoretical limitation happens to match
experimental convenience!

Having made these assumptions, bosons and fermions
now inhabit configurations spaces of the same size,
namely |Fm,n|= |B∗m,n|=

(
m
n

)
. Therefore, we can write

the output probability distributions of bosonic (B) and
fermionic (F) linear optics, as functions of the interfero-
meter matrix U , as follows

Pr(T)
B

= |per(US,T)|2 , for bosons, (14a)

Pr(T)
F

= |det(US,T)|2 , for fermions, (14b)

where, in both cases, we can think of T as running over
all bit strings with n ones and m− n zeroes.

We have made some progress in formulating a con-
crete computational task: since a fermionic or bosonic
system behaves according to B or F , our task is now
to simulate either probability distribution (given as
input a description of U). However, there are a still
a few different things we might mean by simulating a
probability distribution.

The first, known as strong simulation, can be defined
as follows:

Definition 5 (Strong simulation). Given a probability
distribution B or F , as in equations (14), an efficient
strong simulation of it consists of a classical algorithm
that computes any probability to poly(m,n) digits of
precision in time poly(m,n).

Whenever strong simulation can be done efficiently
on a classical computer (as we will see happens for
fermionic linear optics), there is no reason not to use
this definition. However, it is not a good standard of
comparison between the computational power of a quan-
tum and a classical device, because a quantum device

in general cannot perform this task efficiently. This is
because probabilities are not directly observable, and the
best that a quantum device can hope to do is produce a
sequence of samples drawn from this distribution.

We could try to estimate the probability of an event
by repeating the experiment many times and building a
table of relative frequencies, but that does not achieve
sufficiently high precision. To see why, suppose an event
happens with probability one in 1000, and we wish to
estimate this probability from a list of samples. We
expect to need around 1000 samples for the event to
happen at least once and for us to be able to ascribe
it a nonzero probability. But this estimate would have
precision of only 3 digits. In general, taking M samples
only provides logM digits of precision. Since the defi-
nition of strong simulation requires poly(m,n) digits of
precision, this in turn requires repeating the experiment
exponentially many times. Therefore, a quantum device
cannot efficiently strongly simulate itself.

This gives rise to the notion of weak classical simula-
tion, defined as follows:

Definition 6 (Weak simulation). Given a probability
distribution B or F , as in equations (14), an efficient
weak simulation of it consists of a classical algorithm
that, in time poly(m,n), produces a sample drawn from
this distribution.

More simply, a weak simulation is just a procedure by
which the classical computer imitates the behavior of the
quantum device, in a sense producing the same amount
of information we would get by running the experiment
the same number of times. Although it is less common, it
is the appropriate standard by which to judge a classical
competitor that wants to computationally outperform
a quantum device11. And, indeed, there are examples
of quantum systems for which efficient weak simulation
is possible but efficient strong simulation is considered
unlikely [40, 41]. The two types of simulation are repre-
sented in Figure 8.

We can now finally define the precise computational
task solved by a linear-optical experiment:

Problem 4. Given as input an efficient description of
the linear-optical transformation U , acting on a state of
n bosons, the task of (exact) BosonSampling is to weakly
simulate the distribution B given in equation (14a), in
time poly(m,n). The fermionic analogue, FermionSam-
pling, is defined equivalently in terms of the distribution
F from equation (14b).

One can make the job of the classical competitor
even easier by noticing that a real-world quantum device

11 Often, in the definition of strong simulation one is also required
to computer conditional probabilities. That is, not only the
probabilities over the outcomes, as in equations (14), but also
quantities like “the probability of observing a particle on mode
2 given that a particle is known to occupy output mode 1”. This is
necessary for the notion of strong simulation to be strictly stronger
than that of weak simulation.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403 Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021

e20200403-16 Bosons vs. Fermions – A computational complexity perspective

(a)

(b)

(c)

Figure 8: Two notions of classical simulation. (a) A quantum
experiment within the setup of Figure 3 is completely defined
by its interferometer matrix U . (b) A strong classical simulator
takes as input U and outputs the value of any outcome
probability. (c) A weak classical simulator takes as input U and
outputs samples from the corresponding distribution.

cannot even provide an exact weak simulation of itself,
due to experimental noise. Therefore, we could define
notions of approximate weak simulation, where the
algorithm is only required to produce samples from a
distribution suitably close to the ideal one. I will not
use this notion of simulation in detail here, since it is
drastically harder to prove meaningful results in this
more realistic setting. However, it is the standard used
by the field of quantum computational advantage, which
we return to in section 4.3.

4.2. FermionSampling

Let us begin with the easiest case, that of FermionSam-
pling. Equation (14b) states that transition probabilities
in F are proportional to determinants of sub-matrices of
U . As we argued in section 3.3, the determinant can be
computed efficiently by a classical computer (it is in P).
Therefore, it immediately follows that strong simulation
of fermionic linear optics is in P as well.

What about weak simulation? We can efficiently
compute the probability of any outcome, but not of all
outcomes, since Fm,n has exponentially many states. In
order to sample from the distribution F , we need to be
able to compute conditional or marginal probabilities.
Then we can, for example, simulate the outcome of
the first detector, then simulate the outcome of the
second detector conditioned on the outcome obtained
for the first, and so on. By definition this will result

in a sample that was obtained according to F . I will
not go into the details of how this is done, as it is
not particularly illuminating. It requires invoking Wick’s
theorem and the Pfaffian (a matrix function related to
the determinant), as shown in [15]. This implies that
weak classical simulation of FermionSampling is also
easy.

This argument suggests that fermionic linear optics
does not display the high level of complexity usually
associated with quantum computers. That is not a
bug, but a feature, since we can leverage the classical
simulability of fermions to simulate efficiently other
interesting quantum systems. One way to do this is to
use the Jordan-Wigner transformation [42], which maps
quadratic fermionic Hamiltonians into Hamiltonians of
spin-1/2 particles.

The Jordan-Wigner transformation maps an m-mode
fermionic system into a 1D chain of m spins, such that
the |0〉 and |1〉 states of mode i are identified with the
|↑〉 and |↓〉 states of the ith spin. Then, it establishes
the following correspondence between fermionic and spin
operators:

f†j =
∏
k<j

Zk(Xj + iYj)/2,

fj =
∏
k<j

Zk(Xj − iYj)/2,

where Xj , Yj and Zj are the conventional Pauli ope-
rators acting on spin j (with identity implied on the
remaining spins). It is easy to check that, if the particle
operators satisfy the proper anti-commutation relations,
then the spin operators satisfy the correct algebra for
Pauli matrices. This mapping seems very nonlocal at
first sight, but it actually maps quadratic operators
acting on nearest-neighbor modes into operators on
nearest-neighbor spins. For example,

−(X3 + iY3)(X4 − iY4)/4 = f†3f4.

Note how all the extra Zi operators for i < 3 cancel since
Z2 = I.

Now recall, from equation (4), that quadratic fer-
mionic Hamiltonians are precisely the generators of
fermionic linear optics. If we work out all possibilities for
(nearest-neighbor) quadratic operators, we will see that
the corresponding spin Hamiltonians are those spanned
by the following set:

M = {XiYi+1, YiYi+1, XiXi+1,

YiXi+1, Zi, Zi+1}i=1...m−1.

The classical simulability of free fermions then directly
implies the simulability of any one-dimensional con-
densed matter system with a Hamiltonian spanned by
elements of M, which include, e.g., the Ising and the
XY (or anisotropic Heisenberg) interactions.

Beyond condensed matter applications, unitaries ge-
nerated by Hamiltonians from M have appeared in

Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403

Brod e20200403-17

the quantum computing literature as matchgate circuits
[16, 43]. The fact that they are classically simulable
has served as a testbed to investigate particular aspects
of large restricted quantum computers that would be
prohibitive in general. While an arbitrary quantum com-
puter cannot be classically simulated beyond a few dozen
particles (a point we will return to in section 4.3), a
computer composed only of matchgates can be simulated
up to thousands of qubits. This has been used e.g.
to investigate error propagation and benchmark error
correcting codes [44, 45], or as toy models for holographic
duality [46].

4.3. BosonSampling

We now move to the bosonic case where, as we should
already expect, the situation is drastically different from
that of fermions. The task of BosonSampling was first
considered formally (and named) in a seminal paper
by Aaronson and Arkhipov [14] which is arguably the
starting point of the field of quantum computational
advantage (or supremacy). In this section, I outline the
proof of their simpler result, which provides evidence
that the exact version of BosonSampling is hard for
classical computers. I also briefly touch on some aspects
of their more experimentally-friendly proof that appro-
ximate BosonSampling is also expected to be hard12.
I leave a more general discussion on the concept of
quantum advantage for the next section.

In previous sections, we identified that transition
amplitudes for bosonic linear-optical devices are given
by matrix permanents. We also saw how permanents
are expected to be extremely hard functions to com-
pute (they are #P–complete, and so outside of the
polynomial hierarchy). This already implies that strong
simulation of these devices is a #P–complete task.
However, this is not enough to attest that the quantum
device is performing a computationally hard task, since
it cannot strongly simulate itself either. Therefore it
might be possible, in principle, to have an efficient
classical algorithm that weakly simulates this device. In
order to provide evidence that this is not possible, we
need some more sophisticated tools.

The central ingredient we need is a classic result due to
Stockmeyer [47]. Below I paraphrase it and use a version
adapted for our purposes.

Theorem 2. [Stockmeyer [47]] Let D = {px}x be a
probability distribution over x ∈ {0, 1}n. Suppose there is
an efficient randomized classical algorithm that produces
a sample drawn from D. Let g ≥ 1 + 1

poly(n) . Then there
exists an efficient randomized classical algorithm which,
upon receiving x ∈ {0, 1}n, and when given access to a
machine capable of solving problems within the second
level of PH, approximates px to multiplicative precision.

12 The whole argument spans over 80 pages and is much too
technical for the scope of this paper.

In other words, outputs qx such that
px
g
≤ qx ≤ pxg. (15)

This is a powerful theorem because, in general, the
task of computing px exactly can be #P–complete.
Let us illustrate that with an example. Consider again
problem 3, i.e. the problem of finding a perfect matching
between the two sets of students. Let M be the set
of all possible ways to pair the students, regardless of
their preferences. Some of these will be valid perfect
matchings (where no student is paired with another they
despise), others will not. Consider now the probability
distribution PM = {p, 1−p}, where p is the probability
that, by choosing a pairing of the students uniformly at
random, we happen to find a valid one. To produce a
sample of this distribution on a classical computer is a
very simple task: we just choose a pairing at random, and
check whether it is valid, which can be done efficiently.
However, the value of p corresponds to the fraction of all
pairings that are valid, and so computing p is equivalent
to counting the number of perfect matchings, which is
#P–complete.

What Stockmeyer’s theorem then shows is that some
#P–complete problems, if we allow a modest amount of
error, can be solved approximately within very low levels
of the polynomial hierarchy. An alternative formulation
[14] makes it more transparent that the #P problems
amenable to this approximation are those equivalent to
estimating the sum of exponentially many nonnegative
real numbers. One such example is counting the number
of perfect matchings, as described above, or equivalently
computing the permanent of a (0, 1) matrix.

It is important to emphasize that theorem 2 does not
mean that these #P quantities can be approximated
efficiently on a classical computer (though some of them
can), only that this can be done within PH, but at a level
above NP. Why do we care that approximating these
quantities has been moved from the extremely-hard class
#P into the still-extremely-hard PH? As we will see, the
relations between these unrealistic classes can produce
relevant claims for more realistic ones, like P.

The observant reader might expect that, since we just
demoted approximating some permanents to a lower
complexity class, this suggests BosonSampling might
not be that hard either. However, that is not so. The
permanents amenable to Stockmeyer’s theorem are those
of matrices with nonnegative entries. In fact, they are
even easier to compute than theorem 2 suggests, since
it was shown by Jerrum, Sinclair and Vigoda that they
can be approximated efficiently on a classical computer.
Luckily for bosons, the matrices that describe their tran-
sition probabilities [cf. equation (14a)], have complex-
valued coefficients. And those permanents remain #P–
complete even to approximate, in the multiplicative
sense of equation (15), as shown in [14].

We now have all the ingredients to describe the
seminal result for (exact) BosonSampling.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403 Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021

e20200403-18 Bosons vs. Fermions – A computational complexity perspective

Theorem 3. [Hardness of exact BosonSampling [14]]
The exact BosonSampling problem is not efficiently
solvable by a classical computer, unless P#P = BPPNP,
in which case the polynomial hierarchy collapses to its
third level.

The proof of this result can be outlined as follows13.

(i) First, it was shown that approximating (per X)2

to within multiplicative error, for an arbitrary real
n× n matrix X, is #P–complete.

(ii) Then, it was shown that it is always possible to find
a 2n×2n unitary matrix U that contains εX as its
top left submatrix (where ε is a rescaling factor).

(iii) Now use the matrix U from step (ii) as the interfe-
rometer in a linear-optical experiment, and use as
input the state where the n photons each occupy
one of the first n modes. From equation (8a), the
transition probability to the same output state is
proportional to (per X)2.

(iv) Suppose that there is a classical algorithm that we-
akly simulates BosonSampling, i.e. that produces a
sample from the output distribution predicted for
the linear-optical experiment.

(v) By Stockmeyer’s theorem, the existence of the
classical algorithm of point (iv) implies that it
is possible to compute the transition probability,
and hence (per X)2, within the third level of the
polynomial hierarchy14.

(vi) Combining steps (i) and (v), we have concluded
that a #P–complete quantity can be computed
within the third level of PH. By the discussion
of section 3.2, in particular using Toda’s theorem,
we conclude that PH collapses to its third level.

This proof outline uses all the ingredients we described
up until now, and can be quite dense, so feel free to
read it again carefully. In essence it proves that, though
linear-optical devices cannot themselves compute #P–
complete quantities, the fact that their transition ampli-
tudes are #P–complete implies that they are performing
in fact a quite complex task. Since the collapse of
PH is considered unlikely, this is regarded as evidence
that it is hard for a classical computer to simulate a
BosonSampling experiment. As promised, we used the
relations between the up-in-the-sky complexity classes
to produce a concrete claim about the power of real-
world devices, namely classical computers, on one hand,
and very rudimentary bosonic computers on the other.

The contribution of Aaronson and Arkhipov goes
much beyond theorem 3. The main limitation of this

13 Readers familiar with quantum computing might be interested
in an alternative version of this argument, based on post-selection
and the Knill-Laflamme-Milburn protocol for universal quantum
computing with linear optics, see [14, 48].
14 For technical reasons, while Stockmeyer’s algorithm mentions
the second level of the hierarchy, the final conclusion refers to
its third level. This comes from the fact that we need to compare
problems in PH to P#P. This does not change the final conclusion
too much.

theorem is that it only considers the task of exact
sampling, which a realistic linear-optical device cannot
perform either. It can be trivially extended to allow
the bosonic and the classical computers to incur some
multiplicative errors, as in equation (15). However, since
the transition probabilities can be exponentially small,
a multiplicative approximation implies an exponentially
small error, which is still beyond the capabilities of a
realistic device.

A more realistic notion of approximation is to consider
an error in total variation distance. In this case we are
satisfied if the weak classical simulator produces samples
from some distribution B′ = {qx}x such that

‖B′ − B‖ = 1
2
∑
x

|px − qx| < ε,

where B = {px}x is the ideal BosonSampling distribu-
tion, and ε > 0 is a small error parameter. Unfortunately,
the proof of theorem 3 is not strong enough to provide
hardness that is robust in this sense. The reason is
that it relies on the #P–completeness of one particular
probability (which we chose to be the transition between
|1, . . . , 1, 0, . . . , 0〉 and itself). Suppose now that we have
a classical simulator that decides to cheat by declaring
that this particular event has zero probability, while
estimating the probabilities of all other outcomes very
well. This simulator would produce a distribution that is
not multiplicatively close to B, but that might be close
in total variation distance.

In order to circumvent this issue, Aaronson and
Arkhipov replace the matrix U [obtained by embedding
the #P–hard matrix X in step (ii) of the proof], with a
uniform (i.e. Haar-random) matrix. They showed that,
if the number of modes m is sufficiently larger than the
number of photons n, all n × n sub-matrices of U look
“identical”, in the sense that they look like matrices of
elements drawn independently from a complex Gaussian
distribution. This serves as a protection against the
cheating classical simulator described in the previous
paragraph. Since all sub-matrices look very similar, the
classical simulator cannot tell which of them to corrupt.
Therefore, in order for it to produce a distribution close
to B, it has to get most of the probabilities right, and
so it is likely to approximate the one we care about very
well.

The downside of this more experimentally-friendly
version of the argument is that it requires considering the
complexity of permanents of random matrices, rather
than just worst-case matrices, which requires a daunting
amount of technical details and two additional conjectu-
res beyond what we describe here.

To finish this Section, I need to address an issue I
have been neglecting until now, namely the fact that
classical (distinguishable) particles also evolve according
to permanents, as in equation (10). Does this mean
that weak simulation of classical particles is also hard
for a classical computer? Of course not. The transition

Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403

Brod e20200403-19

probabilities for distinguishable particles are given by
permanents of nonnegative elements, and these are in
fact easy to approximate, as we discussed just before
theorem 3. It is also trivial to perform a weak simulation
in this case. To that end, we simply label the n particles,
simulate them passing through the interferometer one
at a time and reaching the output, and then erase
their labels. This will produce a sample from the
correct distribution with only a polynomial amount of
effort.

4.4. Quantum computational advantage

We have seen that bosonic linear optics, in contrast to
its fermionic counterpart, cannot be simulated efficiently
on a classical computer (unless PH collapses). This is
unfortunate if our main interest is to in fact simulate
these systems, for example to guide the design of a
future experiment or check whether our experimental
apparatus is working properly. However, the upside
is that this suggests a very simple experiment to
test quantum mechanics in the limit of high compu-
tational complexity. This is the concept of “quantum
computational advantage”, or “quantum computational
supremacy”.

The idea for a universal quantum computer, i.e.
one capable of displaying the entire power of quantum
computation, has been known in the literature for a
few decades [49]. However, actually building one has
so far proven to be a daunting technological task.
It requires very precise control of individual quantum
systems, and furthermore of a very large number of
them. To illustrate, consider the problem of factoring
integers. So far, the record for largest integer factored
by a classical computer is a 240-digit number [50], while
the largest integer factored by a quantum computer is
21 [51]. An implementation of Shor’s algorithm that
would actually compete with current classical computers
would require a quantum computer with millions of
qubits [52], whereas the largest quantum computer ran
to date, as far as I know, has 54 qubits [9].

By the laws of quantum mechanics, quantum com-
puters should be “simply” a technological challenge.
However, there are skeptics which claim that the noise
present in real-world systems makes quantum computers
fundamentally impossible [10, 11, 53]. The field of
quantum computational advantage arose, in some sense,
in response to these claims. It concerns the question of
what is the simplest and smallest quantum device that
we can build and control that solves some well-defined
computational task faster than the best known classical
computer. This task does not need to be particularly
useful, except as a demonstration of computational
strength. The hope then is that, by optimizing for raw
computational complexity rather than usefulness, we
might be able to give experimental evidence that quan-
tum computers outperform their classical counterparts
using substantially fewer than a million qubits.

The Aaronson-Arkhipov paper on BosonSampling is
arguably the first full-fledged proposal of quantum
computational advantage. It was not the first paper
to propose that rudimentary quantum computers may
have computational powers beyond classical computers
[54, 55], but it was done for a very simple and appealing
quantum system (namely linear optics) and with the
aim of making the argument more relevant for realistic
devices.

How many photons would be needed for a demons-
tration of quantum computational advantage? Recall
that, as far as we know, an n-photon BosonSampling
experiment, in order to be simulated, requires computing
permanents of n × n matrices. A typical laptop com-
puter struggles with computing permanents for n much
above 30. This suggests than a linear-optical experiment
with a few dozen photons in a few hundred modes would
already be performing a task (namely, sampling from the
BosonSampling distribution) that would pose a serious
challenge for a classical competitor. Improved classical
algorithms and analyses have revised this number up
to something like 90 photons [56]. Such an experiment
is still a challenge for present-day technology, but is
definitely more feasible than using millions of qubits to
factor a large number!

Since the original BosonSampling paper many diffe-
rent candidates of quantum advantage have been pro-
posed. A particularly notable one is the random circuit
sampling (RCS) model [9, 57]. In the RCS model the
hardware is in principle capable of universal quantum
computing15, but it is only run for a small number of
computation cycles. The idea is that the small number
of cycles allows for sufficiently high complexity whilst
maintaining the experimental errors under control. This
idea has already borne fruit. In 2019 a research group
used a quantum computer made of 53 qubits to run
an instance of the RCS model with a runtime of 200
seconds, performing a task which a current classical
supercomputer is expected to take orders of magnitude
longer16[9].

15 I should point out that linear optics is also universal for
quantum computing. It requires resources beyond BosonSampling,
such as the ability to perform projective measurements and
change the subsequent circuit depending on the outcome [58]. A
natural qubit present in these systems is the polarization of a
single photon, though any two modes that a photon may occupy
can be used to encode a qubit. This technological platform is
also currently being pursued as a viable candidate for quantum
computing [59, 60].
16 The authors claim that a classical supercomputer would take
ten thousand years to simulate this experiment. This has been
challenged in the literature, with claims that an optimized classical
algorithm would take in fact only a few days instead [61]. Some
debate remains whether the latter algorithm is a fair comparison,
as it requires such massive amount of data storage that it would
not work if the experiment had been a bit larger. In any case,
if the best classical supercomputer takes a few days to do what
the quantum device did in a few seconds, I would argue that a
quantum computational advantage is hard to dismiss.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403 Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021

e20200403-20 Bosons vs. Fermions – A computational complexity perspective

On the BosonSampling front, experiments have also
been steadily increasing in complexity, ranging from
3–4 photons soon after the original proposal [62–65], to
the largest experiment reported to date with 20 input
photons (though only 14 made it to the output) in a
60-mode interferometer [66].

Unfortunately, it is beyond the scope of this work
to describe in further detail all the developments, both
theoretical and experimental, in the field of quantum
advantage (and BosonSampling in particular). A non-
exhaustive list includes strengthened proofs more robust
against experimental imperfections [67–69], the deve-
lopment of better competing classical algorithms [70–
77], the raising of other important issues, such as how
to efficiently verify the output data to guarantee that
the device is working correctly [78–81], or proposal of
alternative models, such as BosonSampling with Gaus-
sian input states rather than Fock states [82, 83]. We
direct the interested reader to recent review articles
for more thorough overviews of these developments
[12, 13, 38, 84].

4.5. Fermions and bosons beyond linear optics

So far we have restricted our attention to linear optics,
which is the focus of this work. However, there are
some interesting connections to complexity theory to
be found beyond this setup, in particular when one is
interested in computing other quantities such as ground
state energies or partition functions. So in this Section I
will briefly discuss some of them. In particular, we will
see that computing the ground state of Hamiltonians
is, in general, a very hard problem, and interestingly
it tends to be harder for fermions than for bosons, in
contrast to our discussion so far.

Let us first, however, consider extensions of linear
optics. Can we boost the computational power of either
bosons or fermions by adding resources beyond those
defined in our linear-optical setup shown in Figure 3? Re-
call that linear-optical unitaries acting on m modes inha-
bit a space of dimension roughly m2, whereas the Fock
space of n particles in m modes, which we denoted by
Fm,n and Bm,n for fermions and bosons respectively, is
exponentially larger. Therefore, there could conceivably
be other interesting complexity regimes between linear
optics and arbitrary transformations. Interestingly, that
does not seem to be the case. It was shown in [85] that,
except for very fringe cases, when we supplement linear
optics (either bosonic or fermionic) with any number-
preserving Hamiltonian that is not quadratic in the
particle operators we already obtain universality, in the
sense that we can generate any transformation within
either Fm,n or Bm,n. That is, even a simple non-linear
Hamiltonian such as

H = χa1a
†
1a2a

†
2

is able to promote linear optics to all allowed transfor-
mations in the corresponding state space. Thus, there

might not be anything new in between these two limits,
as any supplementation of fermionic or bosonic linear
optics makes them equally powerful (and as powerful as
a general purpose quantum computer).

Another ingredient capable of boosting the power of
bosonic linear optics are adaptive measurements, which
consists of conditioning future beam splitters and phase
shifters on the outcomes of intermediate measurements.
It was shown in a seminal paper by Knill, Laflamme
and Milburn [58] that this ingredient allows universal
quantum computation with linear optics. Interestingly,
the same is not true for fermions, as they remain
classically simulable even in this case.

What if we are interested in other questions that
do not fit the scattering-based setup we considered so
far, such as finding the ground state of a Hamiltonian?
To investigate the complexity of this question, let us
momentarily set aside bosons and fermions and consider
the following problem: given N spins and a k-local
Hamiltonian acting on these spins, what is its ground
state energy? By k-local Hamiltonian we just mean one
that can be written as

H =
∑
i

Hi (16)

where each Hi acts non-trivially on at most on k spins,
though there is a priori no restriction that these spins
are physically close to each other.

How hard should we expect this problem to be? It is
easy to show that it must be at least as hard as NP pro-
blems. To prove this, consider again problem 2, where
the king wants to distribute N regions between his three
children. We encode this problem into a collection of N
3-level systems, each encoding one region of the map.
For each pair of neighboring regions, the Hamiltonian
has a term Hi given by

Hi = |00〉〈00|+ |11〉〈11|+ |22〉〈22|,

with identity implied on the remaining systems. In other
words, this Hamiltonian gives an energy penalty of +1
whenever two neighboring particles are in the same
state. If we now identify the state labels {0, 1, 2} with
the three heirs to the kingdom, it is clear that this
Hamiltonian will have a zero energy ground state if
and only if it is possible to divide the map such that
no two neighboring regions belong to the same person.
Since the latter problem is NP–complete, it follows that,
in general, deciding whether a Hamiltonian has a zero-
energy ground state is at least as hard as NP [86].

Could this problem be even harder than NP in
general? The answer in fact seems to be yes. Define the
k-local Hamiltonian problem as follows:

Problem 5. Given a k-local Hamiltonian17 as defined
in equation (16), determine whether

17 There is a further technical constraint that the norm of each
Hi be at most polynomially large in n.

Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403

Brod e20200403-21

(i) H has an eigenvalue less than a, or
(ii) all eigenvalues of H are larger than b,

promised that one of these is true, and where b − a ≥
1/poly(n).

This problem was proven to be complete for a com-
plexity class called QMA. The class QMA is the
quantum analogue of NP. Recall that, in the definition
of NP, we required that there exist a certificate y
that can be checked in polynomial time on a classical
computer. For QMA, we require instead that there
exist a quantum state |y〉 which acts as a certificate
that can be checked in polynomial time on a quantum
computer (note that, analogous to the case of NP,
we might need a court magician to prepare this state
as a quantum computer might not be able to do this
efficiently).

The k-local Hamiltonian is a natural candidate for
problem in QMA. Whenever H does have a low-energy
eigenvalue, we can use the corresponding eigenstate as
a certificate. A quantum computer that receives this
state as an input can act on it, efficiently estimate the
corresponding eigenvalue (a procedure known as phase
estimation [7]), and verify that condition (i) is satisfied.
In fact, the general k-local Hamiltonian problem was
proven by Kitaev [6] to be QMA–complete, and hence
one of the hardest problems in the class QMA. This
suggests that this problem cannot be solved efficiently
by a quantum computer, even though an answer can
be checked efficiently, for the same reasons that it is
believed that P6= NP.

The result of Kitaev was improved in several sub-
sequent works, most notably by Oliveira and Terhal
[87], who showed that it still QMA–complete to solve
this problem in the case where the Hamiltonians are
geometrically 2-local, if the particles are arranged on
a 2D square lattice, and if the particles are qubits, i.e.
two-level systems. For an overview of QMA–complete
problems, see [88].

Let us now return to our discussion on bosons and
fermions. What happens to the complexity of the k-local
Hamiltonian problem when we have (interacting) bosons
or fermions? Interestingly, for many cases there is an
inversion of complexity compared to what we saw so far.
That is, fermionic systems are typically harder to solve
than bosonic ones. This is known as the sign problem
in Quantum Monte Carlo simulations, so let us give an
idea of why this happens.

Suppose we wish to compute the expectation value
of some operator A in a thermal state with inverse
temperature β (the k-local Hamiltonian can be thought
of as the low-temperature limit of this problem when
A = H). This requires computing

〈A〉 = 1
Z

tr[A exp(−βH)],

Z = tr[exp(−βH)],

where Z is the partition function. One way to perform
this computation is to write a series expansion

Z = tr [exp(−βH)] =
∑
n

(−β)n

n! trHn

=
∑
n

∑
i1...in

(−β)n

n! 〈i1|H|i2〉 . . . 〈in|H|i1〉

=
∑
x

px,

where we inserted a resolution of the identity between
each copy of H in the second step, and {|i〉} forms a
basis for the entire system. Here, x runs through all sets
of configurations {i1, i2, . . . in}. Similarly, we can write

〈A〉 = 1
Z

∑
x

pxAx

for some coefficients Ax.
Suppose, for the moment, that all px were positive.

Then we could treat D = {px/Z}x as a (classical)
probability distribution. There are exponentially many
values of x, so we would not be able to compute
〈A〉 exactly by the sum above, but we could estimate
it via a Monte Carlo [89] method, which consists of
choosing a small set of configurations {x} according
to D, and estimating 〈A〉 using the sample mean from
this set.

The problem, of course, is that the px are not usually
all positive. If many of these are negative, then the
Monte Carlo procedure can incur an exponentially large
error, coming from the fact that the px will tend to
cancel each other and Z can be exponentially small.
This is the so-called sign problem [90], an issue well-
known in the condensed matter and quantum field
theory literatures. Interestingly, this closely resembles
our discussion that distinguishable particles are not hard
to simulate even though their transition probabilities
are given by permanents, since those permanents are of
matrices with only positive entries.

The sign problem is not exclusive to fermions, boso-
nic Hamiltonians can display negative values of px as
well [90]. However, it is much more prevalent in fermionic
Hamiltonians, due to the anti-commutation relations.
To illustrate, consider a generic quartic Hamiltonian
(either bosonic or fermionic) of the type

H =
∑
ijkl

Hijklaiaja
†
ka
†
l ,

where all Hijkl are positive. The bosonic version of this
Hamiltonian does not have a sign problem since, by
choosing {|i〉} as Fock states, when we work out each
〈i1|H|i2〉 term in the definition of px, we will use only
commutation of bosonic operators, and there is no step
where a minus sign could arise. On the other hand,
the equivalent fermionic Hamiltonian does have a sign

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403 Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021

e20200403-22 Bosons vs. Fermions – A computational complexity perspective

problem, since the anti-commutation relations can leave
residual minus signs in some terms.

It is possible that, for particular Hamiltonians, the
sign problem can be circumvented. For instance, it has
recently been shown that for some cases the sign problem
can be “cured” by performing a local basis change
[91], though the same authors showed that, in general,
even deciding whether this is possible is NP–complete.
In any case, it is considered unlikely that a general
solution to this problem exists. It was shown that the
2-local Hamiltonian problem is, in general, also QMA–
complete for both the fermionic [92, 93] and the bosonic
[94] cases. Therefore, even though bosonic simulations
tend to be easier in practice than fermionic ones, this is
not a general feature, as they can be equally hard for
generic Hamiltonians.

5. Conclusion

In this review, we discussed a few ways in which
computational complexity theory and quantum mecha-
nics come together. Their intersection leads to a very
active subfield, quantum complexity theory, and here we
discussed some of its inhabitants.

We saw how free particle dynamics–both in the bo-
sonic (i.e. linear optics) and in the fermionic cases–
defines a natural computational problem, which consists
simply of simulating the output distribution of the
corresponding experiment. The two problems, known
as BosonSampling and FermionSampling, respectively,
are quite similar from a physical point of view. In con-
trast, from a complexity theory perspective, they are
surprisingly different, and this difference can be tra-
ced back to their dependence on matrix functions of
quite disparate complexities. Fermions evolve according
to matrix determinants which, as we saw, are easy
to compute (in P), whereas bosons evolve according to
the much more complex matrix permanents (which as
#P–complete). The degree of separation between these
complexity classes can be measured by the existence
of the polynomial hierarchy (PH) between them, and
the very plausible conjecture that PH is infinitely
high.

Leveraging the distinction in complexity between de-
terminants and permanents to obtain meaningful claims
for the complexity of free fermions and bosons requires
quite a lot of work, since these functions are not
computed directly by a real-world experiment either.
To give evidence of the complexity of bosonic linear
optics, we had to argue that these experiments solve
some computational task that is hard for a classical
computer—a hardness which follow from the hardness
of the permanent even though the experiment cannot
actually compute them. This led to the different notions
of simulation described in section 4.1, and ultimately to
the main arguments of sections 4.2 and 4.3.

Beyond linear optics, in section 4.5 we discussed
differences and similarities between bosons and fermions
from the point of view of a different question: instead
of a scattering experiment, we considered the compu-
tational complexity of computing ground state energies
(or partition functions). This leads to the well-known
sign problem which plagues fermionic simulations (e.g.
based on Monte Carlo methods) in condensed matter
and quantum field theory. Though conventional wisdom
tells us that, in this case, bosons are easier to simulate
than fermions, that is not a general rule, as they are
both complete for the QMA complexity class.

The discussion of the k-local Hamiltonian problem
also led to an interesting instance where the influ-
ence between physics and complexity theory is rever-
sed. Rather than using classical complexity classes to
study quantum-mechanical systems, as in the case of
FermionSampling and BosonSampling, we now have a
complexity class that is directly defined in terms of a
quantum-mechanical problem. It is one of many such
quantum complexity classes that have earned their place
in the Complexity Zoo [3], and have since then started
to interact with their classical counterparts.

There are several interesting open problems that
remain in bosonic and fermionic complexity theory. The
most obvious one, to my mind, is whether we can
trace the difference in complexity of free bosons and
fermions to some fundamental physical property that
distinguishes them. Currently, the most straightforward
explanation of this is that fermions evolve according
to determinants, and the latter satisfy the property
that det(AB) = detAdetB. This property provides a
shortcut which allows us to compute the determinant
(and hence simulate free fermions) in polynomial time.
Permanents do not have this property, and so one seems
to be stuck taking an exponential time to compute them.
Can we trace this property to some interesting physical
aspect of fermions? On the physics side, fermions and bo-
sons are distinguished mainly by their commutation rela-
tions, but there might be a more compelling connection
between this and ease of simulation of fermionic systems.

As technological progress on quantum computing
advances, so does the need for understanding its foun-
dations and limitations. Linear optics provides a testbed
for the power of small-scale or restricted quantum
devices, a test of quantum theory itself in the limit of
increasing complexity, and a conceptual toolbox for in-
vestigating foundational aspects of quantum computers.
That the bosonic or fermionic nature of the identical
particles, a fundamentally quantum property, influences
so heavily on the resulting computational complexity is
a fascinating connection between two vast and (until
recently) mostly independent theories. I hope that these
connections continue to be unveiled, contributing to
trace the path for the future of quantum technologies,
but also benefiting both the communities of Physics and
Computer Science.

Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403

Brod e20200403-23

Acknowledgments

The author would like to acknowledge support from
Brazilian funding agencies CNPq and FAPERJ.

References

[1] S. Arora and B. Barak, Computational Complexity: A
Modern Approach (Cambridge University Press, Cam-
bridge, 2009).

[2] https://www.claymath.org/millennium-problems.
[3] https://complexityzoo.net/Complexity Zoo.
[4] S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor and J.

Tüxen, Phys. Chem. Chem. Phys. 15, 14696 (2013).
[5] D. Salart, A. Baas, J.A.W. van Houwelingen, N. Gisin,

and H. Zbinden, Phys. Rev. Lett. 100, 220404 (2008).
[6] A.Y. Kitaev, A.H. Shen and M.N. Vyalyi, Classical

and Quantum Computation (American Mathematical
Society, Rhode Island, 2002).

[7] M.A. Nielsen and I.L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, 2000).

[8] P.W. Shor, SIAM J. Comput. 26, 1484 (1997).
[9] F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin,

R. Barends, R. Biswas, S. Boixo, F.G.S.L. Brandao, D.A.
Buell, et al., Nature 574, 505 (2019).

[10] G. Kalai, arXiv:0904.3265 (2009).
[11] G. Kalai, arXiv:1106.0485 (2011).
[12] A.W. Harrow and A. Montanaro, Nature 549, 203

(2017).
[13] A.P. Lund, M.J. Bremner and T.C. Ralph, npj Quantum

Information 3, 15 (2017).
[14] S. Aaronson and A. Arkhipov, Theory of Computing 4,

143 (2013).
[15] B.M. Terhal and D.P. DiVincenzo, Phys. Rev. A 65,

032325 (2002).
[16] L.G. Valiant, SIAM J. Comput. 31, 1229 (2002).
[17] L.E. Ballentine, Quantum Mechanics: A Modern Deve-

lopment (World Scientific, Singapura, 1998).
[18] R.P. Feynman, Int. J. Theo. Phys. 21, 467 (1982).
[19] C.K. Hong, Z.Y. Ou and L. Mandel, Phys. Rev. Lett.

59, 2044 (1987).
[20] M. Reck, A. Zeilinger, H.J. Bernstein and P. Bertani,

Phys. Rev. Lett. 73, 58 (1994).
[21] S. Scheel, arXiv:quant-ph/0406127 (2004).
[22] S.A. Cook, in Proceedings of the Third Annual ACM

Symposium on Theory of Computing (Ohio, 1971).
[23] L.A. Levin, Problemy Peredači Informacii 9, 115 (1973).
[24] R.M. Karp, in Complexity of Computer Computations:

Proceedings of a Symposium on the Complexity of Com-
puter Computations, edited by R. E. Miller, J. W.
Thatcher and J. D. Bohlinger (Plenum Press, Boston,
1972), pp. 85–103.

[25] M.R. Garey and D.S. Johnson, Computers and Intrac-
tability; A Guide to the Theory of NP-Completeness
(W. H. Freeman and Co., New York, 1990).

[26] L. Fortnow, The Golden Ticket: P, NP and the Search
for the Impossible (Princeton University Press, New
Jersey, 2017).

[27] R.L. Rivest, A. Shamir and L. Adleman, Commun. ACM
21, 120 (1978).

[28] S. Toda, SIAM J. Comput. 20, 865 (1991).
[29] X.G. Fang and G. Havas, in Proceedings of the 1997

International Symposium on Symbolic and Algebraic
Computation (Hawaii, 1997).

[30] E.H. Bareiss, Mathematics of Computation 22, 565
(1968).

[31] R. Motwani and P. Raghavan, Randomized Algorithms
(Cambridge University Press, Cambridge, 1995).

[32] R. Zippel, in Proceedings of the International Symposiu-
mon on Symbolic and Algebraic Computation (Berlin,
Heidelberg, 1979).

[33] J.T. Schwartz, J. ACM 27, 701 (1980).
[34] R.A. Demillo and R.J. Lipton, Information Processing

Letters 7, 193 (1978).
[35] L. Lovász and M.D. Plummer, Matching Theory (North-

Holland Mathematics Studies, Holland, 1986), v. 121.
[36] L.G. Valiant, Theoretical Computer Science 8, 189

(1979).
[37] L. Troyansky and N. Tishby, in Proceedings of Physics

and Computation – PhysComp 96 (New England, 1996).
[38] D.J. Brod, E.F. Galvão, A. Crespi, R. Osellame, N.

Spagnolo and F. Sciarrino, Advanced Photonics 1,
034001 (2019).

[39] A. Arkhipov and G. Kuperberg, Geometry & Topology
Monographs 18, 1 (2012).

[40] M. Van den Nest, Quant. Inf. Comp. 11, 784 (2011).
[41] R. Jozsa and M. Van den Nest, Quant. Inf. Comp. 14,

633 (2014).
[42] P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).
[43] R. Jozsa and A. Miyake, Proc. R. Soc. A 464, 3089

(2008).
[44] S. Bravyi, M. Englbrecht, R. König and N. Peard, npj

Quantum Information 4, 1 (2018).
[45] Y. Suzuki, K. Fujii and M. Koashi, Phys. Rev. Lett. 119,

190503 (2017).
[46] A. Jahn, M. Gluza, F. Pastawski and J. Eisert, Science

Advances 5, eaaw0092 (2019).
[47] L. Stockmeyer, in Proceedings of the Fifteenth Annual

ACM Symposium on Theory of Computing (New York,
1983).

[48] D.J. Brod, arXiv:1412.7637 (2014).
[49] D. Deutsch, Proc. R. Soc. Lond. A. 400, 97 (1985).
[50] F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E.

Thomé and P. Zimmermann, in Proceedings of the
40th Annual International Cryptology Conference (Santa
Barbara, 2020).

[51] E. Mart́ın-López, A. Laing, T. Lawson, R. Alvarez, X.-Q.
Zhou and J.L. O’Brien, Nature Photonics 6, 773 (2012).

[52] C. Gidney and M. Eker̊a, arXiv:1905.09749 (2019).
[53] G. Kalai and G. Kindler, arXiv:1409.3093 (2014).
[54] B.M. Terhal and D.P. DiVincenzo, Quant. Inf. Comp. 4,

134 (2004).
[55] M.J. Bremner, R. Jozsa and D.J. Shepherd, Proc. R.

Soc. A 467, 459 (2011).
[56] A.M. Dalzell, A.W. Harrow, D.E. Koh and R.L.

La Placa, Quantum 4, 264 (2020).
[57] S. Aaronson and L. Chen, in Proceedings of the

32nd Computational Complexity Conference (Schloss

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403 Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021

https://www.claymath.org/millennium-problems
https://complexityzoo.net/Complexity_Zoo

e20200403-24 Bosons vs. Fermions – A computational complexity perspective

Dagstuhl – Leibniz-Zentrum fuer Informatik, Dagstuhl,
2017).

[58] E. Knill, R. Laflamme and G.J. Milburn, Nature 409,
46 (2001).

[59] T. Rudolph, arXiv:1607.08535 (2016).
[60] T.R. Bromley, J.M. Arrazola, S. Jahangiri, J. Izaac,

N. Quesada, A.D. Gran, M. Schuld, J. Swinarton, Z.
Zabaneh and N. Killoran, Quantum Sci. Technol. 5,
034010 (2020).

[61] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh and
R. Wisnieff, arXiv:1910.09534 (2019).

[62] M.A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove,
S. Aaronson, T.C. Ralph and A.G. White, Science 339,
794 (2013).

[63] J.B. Spring, B.J. Metcalf, P.C. Humphreys, W.S.
Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N.
Thomas-Peter, N.K. Langford, D. Kundys, et al., Sci-
ence 339, 798 (2013).

[64] M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A.
Szameit and P. Walther, Nat. Photon. 7, 540 (2013).

[65] A. Crespi, R. Osellame, R. Ramponi, D. J. Brod,
E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P.
Mataloni and F. Sciarrino, Nat. Photon. 7, 545 (2013).

[66] H. Wang, J. Qin, X. Ding, M.-C. Chen, S. Chen, X. You,
Y.-M. He, X. Jiang, L. You, Z. Wang, et al., Phys. Rev.
Lett. 123, 250503 (2019).

[67] S. Aaronson and D.J. Brod, Phys. Rev. A 93, 012335
(2016).

[68] A. Arkhipov, Phys. Rev. A 92, 062326 (2015).
[69] A. Leverrier and R. Garćıa-Patrón, Quantum Informa-

tion and Computation 15, 489–512 (2015).
[70] P. Clifford and R. Clifford, in Proceedings of the 29th

ACM-SIAM Symposium on Discrete Algorithms (New
Orleans, USA, 2018).

[71] P. Clifford and R. Clifford, arXiv:2005.04214 (2020).
[72] A. Neville, C. Sparrow, R. Clifford, E. Johnston, P.M.

Birchall, A. Montanaro and A. Laing, Nat. Phys. 13,
1153–1157 (2017).

[73] M. Oszmaniec and D.J. Brod, New J. Phys. 20, 092002
(2018).

[74] D.J. Brod and M. Oszmaniec, Quantum 4, 267 (2020).
[75] J.J. Renema, A. Menssen, W.R. Clements, G. Triginer,

W.S. Kolthammer and I.A. Walmsley, Phys. Rev. Lett.
120, 220502 (2018).

[76] J. Renema, V. Shchesnovich and R. Garcia-Patron,
arXiv:1809.01953 (2018).

[77] S. Rahimi-Keshari, T.C. Ralph and C.M. Caves, Phys.
Rev. X 6, 021039 (2016).

[78] C. Gogolin, M. Kliesch, L. Aolita and J. Eisert,
arXiv:1306.3995 (2013).

[79] M. Walschaers, J. Kuipers, J.-D. Urbina, K. Mayer, M.C.
Tichy, Klaus Richter and A. Buchleitner, New J. Phys.
18, 032001 (2016).

[80] J. Carolan, J.D.A. Meinecke, P.J. Shadbolt, N.J. Russell,
N. Ismail, K. Wörhoff, T. Rudolph, M.G. Thompson,
J.L. O’Brien, J.C.F. Matthews, et al., Nat. Photon. 8,
621 (2014).

[81] N. Spagnolo, C. Vitelli, M. Bentivegna, D.J. Brod,
A. Crespi, F. Flamini, S. Giacomini, G. Milani, R.
Ramponi, P. Mataloni, et al., Nat. Photon. 8, 615 (2014).

[82] A.P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph,
J.L. O’Brien and T.C. Ralph, Phys. Rev. Lett. 113,
100502 (2014).

[83] C.S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C.
Silberhorn and I. Jex, Phys. Rev. Lett. 119, 170501
(2017).

[84] S. Mullane, arXiv:2007.07872 (2020).
[85] M. Oszmaniec and Z. Zimborás, Phys. Rev. Lett. 119,

220502 (2017).
[86] M. Troyer and U.-J. Wiese, Phys. Rev. Lett. 94, 170201

(2005).
[87] R. Oliveira and B.M. Terhal, Quantum Information and

Computation 8, 900 (2008).
[88] A.D. Bookatz, Quantum Information and Computation

14, 361 (2014).
[89] K. Binder and D. Heermann, Monte Carlo Simulation

in Statistical Physics: An Introduction, Graduate Texts
in Physics (Springer, Berlin, Heidelberg, 2010).

[90] H. Fehske, R. Schneider and A. Weiße, Computational
Many-Particle Physics, (Springer, Berlin, Heidelberg,
2008).

[91] J. Klassen, M. Marvian, S. Piddock, M. Ioannou, I. Hen
and B. Terhal, arXiv:1906.08800 (2019).

[92] N. Schuch and F. Verstraete, Nature Physics 5, 732
(2009).

[93] J.D. Whitfield, P.J. Love and A. Aspuru-Guzik, Phys.
Chem. Chem. Phys. 15, 397 (2012).

[94] T.-C. Wei, M. Mosca and A. Nayak, Phys. Rev. Lett.
104, 040501 (2010).

Revista Brasileira de Ensino de F́ısica, vol. 43, e20200403, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0403

	Introduction
	The formalism of second quantization
	The states
	Fock space dimension

	Bosonic and fermionic linear optics
	Elementary linear-optical elements
	—ports

	Computational complexity theory
	P and NP
	The polynomial hierarchy and counting problems
	The determinant and the permanent

	Sampling of bosons and fermions
	Classical simulation
	FermionSampling
	BosonSampling
	Quantum computational advantage
	Fermions and bosons beyond linear optics

	Conclusion

