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Many have dedicated their time trying to determine the ideal conditions for a cylinder to have equal probabilities
of falling with one of its faces facing upwards or on its side. However, to this day, there is no concrete analysis of
what these conditions should be. In order to determine such circumstances, a theoretical analysis was conducted,
considering approaches from Rigid Body Dynamics and Statistical Mechanics. An experimental system was also
built to improve control over the launches, and a comparative analysis was performed between the results obtained
experimentally and the theory. It was concluded that the environment and other launching conditions have a
significant influence; nevertheless, it is possible, under controlled conditions, to determine, within certain limits,
the expected probabilities.
Keywords: Statistical Mechanics, Cylindrical Dice, Low cost experiments, Active learning, Scientific Olympiads.

1. Introduction

When studying probability and statistics, it is common
to encounter examples of a cubic die or of coins that
can be flipped to heads or tails. Although one can
consider cases of a biased die, where most of the mass
is concentrated near the face opposite to the one that is
more likely to end up facing upwards, there is no a priori
reason to expect that each face of the cube does not have
an equal probability of 1/6 of ending up facing upwards.
Similarly, in the case of a coin, if a large number of tosses
are performed, the common expectation is to obtain
heads for approximately half the number of tosses and
tails for the remaining half. However, in the case of
the coin, we can observe an interesting fact. Most coins
are cylinders that have a small thickness H compared
to their radius R. It is possible, with some care and
patience, to balance a coin with its side resting on a
horizontal flat surface, so that it is neither in the “heads”
nor “tails” state, but rather in a third state, which we
can call the “side” state. Much less likely, obviously, is
for the coin to end up in this position after an arbitrary
toss.

Just as the idea of a coin landing in the “side” state
after a toss seems extremely improbable, it may also
appear nonsensical to expect that a stick, which is
nothing more than a cylinder with H ≫ R, ends up
in a state equivalent to “heads” or “tails”, i.e., with one
of its faces facing downwards, after being thrown. Unlike
the case of the coin, therefore, the common expectation
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is for the stick to end up in the “side” state when landing
on a flat and horizontal surface.

The combination of the common expectations for the
coin and the stick, therefore, leads us to the ques-
tion proposed in the statement of Problem 7 of the
35th International Young Physicists’ Tournament 2022
(IYPT 2022) [1, 2] :

“To land a coin on its side is often asso-
ciated with the idea of a rare occurrence.
What should be the physical and geometrical
characteristics of a cylindrical dice so that it
has the same probability to land on its side
and one of its faces?”

In other words, for a cylinder, the probability of
obtaining “face” is PF ≈ 1, and the probability of
obtaining “side” is PS ≈ 0 for H ≪ R (coin). On the
other hand, these same probabilities become PF ≈ 0
and PS ≈ 1 for H ≫ R (stick). However, there could be
some ideal H/R ratio that, combined with a certain set
of specific physical conditions, would make PS = 1/3
and PF = 2PF1 = 2PF2 = 2/3. If the right set of
conditions could be determined, we would then have a
“fair cylindrical die”.

Besides the specific problem proposed in IYPT 2022,
which requires the analysis of a cylindrical die, the
idea could, in principle, be generalized to analyze the
conditions that allow the construction of fair dice with
different geometries. In role-playing games, for example,
it is common to use dice with shapes different from the
typical cubic form. An interesting mathematical analysis
concerning the alowed forms for convex polyedra to the
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considered suitable candidates to constitute “fair dice”
can be found in reference [3]. That study, though, does
not take into account the physics of a launch, but instead
will focus on symmetry group arguments. A comment
is made about other fair polyedra, including a solid
produced by cutting off the tips of a di-pyramid with 2n
identical triangular faces with two planes parallel to its
base and equidistant from it. Following that comment,
they point out that the location of those cuts would
possibly depend on mechanical properties of such a die
and also of the surface where it will land. To justify that
statement, they cite an early paper [4] that proposes to
analyze the motion of a tossed coin in order to seek for
its conections with the probabilities of getting heads or
tails, but restricted to the situation of vertical lauches
with landings on a plane surface which completely
absorbs the impact, as sand or mud. In this context, our
cylinders can be condirered an extended version of the
cutted di-pyramids described by [3] in a limit in which n
and the height of the di-pyramid are taken to be infinite,
but the two cuts are made at a finite distance from
each other, which will be the height H of the cylinder.
Also, instead of restricting ourselves to a complex yet
restrictive study on the mechanics of a cylinder’s motion,
we will move towards a statistical mechanical analysis,
therefore presenting a different perspective about this
matter.

This work is organized as follows. Section 2 will
present some of the technical aspects of the statistical
interpretation of results from cylindrical dice rolls, as
well as the theory associated with the motion of a
cylindrical rigid body. In Section 3, a general description
of the experimental apparatus used will be provided.
Next, in Section 4, the obtained data will be presented
along with their respective analysis and discussion.
Finally, in Section 5, the concluding remarks will be
presented.

2. Theoretical Foundations

2.1. Free motion of a cylinder falling under the
action of gravity

The position R⃗ of the Center of Mass (CM) of a rigid
body with respect to an inertial reference frame is
affected by external forces acting on the body. In the
case of the cylindrical die, during its flight motion, the
weight force and air resistance forces come into play. For
sufficiently small cylinders, launched at low heights to
avoid reaching high velocities, air resistance forces can
be neglected as a first approximation. These forces, in
addition to affecting the CM position, could also influ-
ence the angular velocity of the cylinder, particularly
around an axis contained in the plane defined by the
principal axes x1 and x2 (Fig. 1).

In this regard, a theory that does not consider the air
resistance forces is limited in not taking into account
the aerodynamics of the cylinder’s motion, which can

Figure 1: Fixed orientation system S′, body’s principal system
S, and the Euler angle convention to be used.

make the initial collision of “face” or “side” more or less
probable. However, unless a set of materials is chosen
for the cylinder and surface such that the cylinder sticks
to the surface upon collision, the final state will only
occur after a sequence of multiple collisions. On the other
hand, the weight force acts as if it were concentrated
entirely on the CM, not affecting the rotational motion
of the cylinder during its flight.

Therefore, in the approximation that neglects the
dissipative forces exerted by the contact with air, we can
analyze the flight motion of the cylindrical die as the free
rotational motion of a rigid body whose CM translates
by inertia in the horizontal direction and under the
influence of weight in the vertical direction. In this
motion, mechanical energy E and angular momentum
l are conserved quantities. The rotational motion is
governed by how mass is distributed within the cylinder.
For a homogeneous mass distribution in a cylinder with
radius R, height H, and mass M , the principal moments
of inertia will be:

I1 = I2 = I = MR2

4 + MH2

12 and I3 = MR2

2 (1)

and the mechanical energy can be written as:

E = MV 2

2 + I1ω2
1

2 + I2ω2
2

2 + I3ω2
3

2 + Mgh (2)

where V = | ˙⃗
R| is the velocity of the CM, h is the height

of the CM relative to the level of the horizontal plane
where the cylinder will land, and ω1, ω2, and ω3 are the
components of the angular velocity vector of the cylinder
in the principal axis system. An accessible treatment of
the dynamics of rigid bodies and its peculiarities can be
found in textbooks as [5].
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After the first collision, the energy will be
E1 = E0 + W1, where E0 is the total energy before the
first collision and W1 is the energy dissipated during that
collision. Therefore, after successive collisions, we have:

En = E0 + W1 + W2 + . . . + Wn = K + Mghn (3)

In the end, only the potential energy associated with
the height of the CM remains, plus an additional term
K that will be zero for the “face” states and equivalent
to a kinetic energy 1

2
(
MV 2 + I3ω2

3
)

for the “side” state.

2.2. The statistics of the results of cylinder tosses

Obviously, one can agree that it would be a terrible idea
to try to analyze the motion, even of a single die, from
a deterministic perspective. Small perturbations in the
initial conditions and the characteristics of the point
of contact with the surface of the landing plane would
already result in significant differences in the sequence
of movements.

Hence, given the dimensions of a given cylinder, it can
end up in a “side” state with energies ES(V ) or “face”
state with energy EF . Thus, a die is a two- level system.

If dice are placed on a plane that ejects them,
constantly shaking and causing a sequence of random
collisions, we can say that these dice receive an average
energy from this plane, which is partly converted into
potential energy, propelling the dice upward, partly into
translational kinetic energy, and partly into rotational
kinetic energy. Thus, the dice have a certain probability
of receiving energy from the landing/launching plane
and then retaining part of that energy according to
the discussion in the previous section. If we think of
a large number of identical copies of this system that
launch dice and where dice have a certain probability
of receiving energy, the comparison with a canonical
ensemble where multiple systems are in contact with a
certain thermal reservoir at temperature T is inevitable.
A canonical ensemble, in turn, follows a Boltzmann
probability distribution function [6, 7].

It is evident, however, that this idea, although aesthet-
ically appealing, is limited, especially because it would
be impractical to launch a large number of cylindrical
dice on the order of 1 mol. Nevertheless, we will work
with this hypothesis.

2.2.1. Statistics of free fall

We can start by revisiting Equation 2, which describes
the energy of a cylinder during free fall. Knowing this, we
can calculate the partition function and, subsequently,
the average energy of this system as a function of β =
1/(kbT ). For this purpose, we define Zpot, Zkin, and Zrot,
which, when multiplied, result in the desired partition
function Z.

Zpot =
∞∫

0

e−βMgh dh

Zkin =

 ∞∫
−∞

e−β MV 2
2 dV

3

(4)

Zrot =

 ∞∫
−∞

e−β Iω2
2 dω

2 ∞∫
−∞

e−β
I3ω2

3
2 dω3

The value of Zpot introduces the gravitational poten-
tial energy. The values of Zkin and Zrot introduce, each,
3 degrees of freedom related to translational and rota-
tional kinetic energies, respectively. After performing the
integrals, we can calculate Z:

Z = 8π3

I
√

I3β4gM
5
2

(5)

The average energy is given by:

⟨E⟩ = − 1
Z

dZ

dβ
= 4

β
(6)

By isolating β, it is possible to find this value as a
function of the average energy of the system. However,
this energy depends on time since there is dissipation
due to collisions. Thus, we have:

β (t) = 4
⟨E (t)⟩ (7)

Note that in Zpot, the height h was integrated with
a lower limit of 0. This means that the reference for
gravitational potential energy was shifted from the
ground to the minimum height, which is half the cylin-
der’s height, i.e. H/2, making the involved calculations
simpler. Therefore, this energy present in the β formula
is actually an energy variation, i.e., the energy received
by the plane minus the dissipated energy in collisions.

However, even after making these calculations, it is
extremely important to note that there is a conceptual
problem involved: the state of free fall is not an equilib-
rium state. Even so, this section was carried out with the
aim of obtaining an expression that relates the energy
with the β value. With that in mind, we assumed that,
in the interval between two collisions, the cylinder, as
its energy is constant, must reach a momentary state
of equilibrium. Moreover, the transition between each
equilibrium state is not made smoothly, due to the
collisions, which could, in principle, create problems in
the use of statistical mechanics.

Nevertheless, the β value was strictly necessary to
calculate the probabilities and the relation found in
this section makes it possible to estimate it further in
Sec. 2.2.4. With these considerations, we can say that
the final state is just a sequence of the free fall states,
when the number of collisions tends to infinity – hence,
we can use the same expression for β in both states. This
approach, although unusual, will lead to consistent and
interesting results as will be shown ahead.
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2.2.2. Statistics of the final state

Having done that, it is necessary to consider the final
state. Unlike free fall, the cylinder is forced to assume
one of the two previously mentioned states: “face” or
“side”. Knowing the energies of each state, we can write
a new Boltzmann distribution, with different partition
function and probabilities from the previous section.

The energy of the “side” state is given by:

ES = MghS + K = MgR + 3MV 2

4 (8)

where the value of kinetic energy K was calculated
considering a rolling without slipping constraint. How-
ever, the kinetic energy must be understood as a second
possibility, meaning that the cylinder can fall into this
state with only potential energy or with the presence of
kinetic energy.

The energy of the “face” state is:

EF = MghF = MgH

2 (9)

Thus, we can calculate the respective probabilities.
Let PS be the probability of observing the die in the
“side” state, then:

PS = 1
Z

 1
Z ′ CS

∞∫
0

2πV e
−β
(

MgR+ 3MV 2
4

)
dV

+ CSe−βMgR

 (10)

where CS is a coefficient related to the multiple ways of
finding the “side” state with the same energy, and Z ′ is
a proportionality constant, which will be both discussed
later.

Since a velocity vector of magnitude V can point in
different directions in space, we also needed to consider
these possibilities, and for that, we think in terms of
velocity space. An area element dA in this space can be
calculated as:

dA =
∫ 2π

0
dθ

∫ V +dV

V

r dr = 2πV dV (11)

thus, the term 2πV present in the expression was
explained.

However, upon analyzing the dimension of the term
resulting from the integral, it is noticed that it has
units of velocity squared. As a probability must be
dimensionless, we added the element 1/Z ′, with Z ′

having the same unit as the term in question, so the
dimensions cancel out.

Traditionally, velocity space would be used for com-
parisons between restricted areas or volumes and the
total. A clear example is the calculation of the probabil-
ity of finding a particle in a gas within a certain range

of velocity magnitudes, by comparing a specific volume,
represented by a sphere, with respect to the total volume
of space. It is evident that neither the total volume
nor the partial volume represents the actual number of
microstates, but they are proportional to these values,
enabling the calculation of probabilities.

In the discussed case, we have to compare a term
calculated using velocity space with another in which
this was not used, which is, at first, incompatible.
However, we know that the quantity of microstates is
proportional to the result of the integral, so the sought-
after value must be this result multiplied by a constant
1/Z ′. Although we do not know the value of Z ′, we can
speculate that it represents an area in velocity space:

Z ′ = π V 2
Z′ (12)

in which VZ′ can be something like the typical or the
maximum velocity reached by the cylinders.

The expression for the probability of the “face” state
is considerably simpler, due to the absence of kinetic
energy:

PF = 1
Z

CF e−βEF (13)

and here, once again, CF is a coefficient related to the
multiple ways of finding the “face” state with the same
energy.

Having done that, we are in a position to solve
the integral of PS , calculate the partition function by
normalization, and write the probabilities. However, the
coefficients of multiplicity to be calculated still remain.
Hence, the expression for PS becomes:

PS =
CSe−βMgR + 1

Z′
4π

3βM CSe−βMgR

CF e−β MgRq
2 + CSe−βMgR + 1

Z′
4π

3βM CSe−βMgR

(14)
where we defined q = H/R.

2.2.3. Calculation of CS and CF

Before we proceed with the calculation itself, let’s
elaborate a bit more on the need for these coefficients.
Imagine that, instead of cylinders, the solids in question
were pyramids. Intuitively, we know that it is impossible
for such a pyramid to come to rest balanced on its
vertex without piercing the surface or being glued to it.
This is due to the lack of stability of this state, which
would quickly transform into a state balanced on one
of the faces of the pyramid. However, if we were to
write the probability of this state, it would be extremely
higher than what is observed experimentally because the
multiple ways of finding each state with the same energy
were not taken into account. To overcome this problem,
we introduce these coefficients.

For the calculation of these values, we will consider a
sphere circumscribed around the cylinder (see Figure 2).
Imagine a cylinder in free fall, but in the reference

Revista Brasileira de Ensino de Física, vol. 46, e20240247, 2024 DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0247



Brustelo et al. e20240247-5

Figure 2: Sphere circumscribed around the cylinder.

frame of the object itself. In this case, the ground
would be approaching, and all the different ways that
could happen would form a sphere around the cylinder.
Certain parts of the sphere are associated with a collision
on the face part, AF , and others on the side part, AS .
Thus, we will propose that the area corresponding to
each part, divided by the total area of the sphere, is
equivalent to the coefficient of the respective state.

AF = 2
∫ 2π

0
dϕ

∫ θL

0
R2 sin θ dθ (15)

AS = 4πR2 − AF (16)

Thus, we can write the coefficients:

CS = AS

4πR2 =
(

q√
q2 + 4

)
(17)

CF = AF

4πR2 =
(

1 − q√
q2 + 4

)
(18)

Note that these values are normalized, i.e., they range
from 0 to 1 and sum up to 1. Mathematically, CF +CS =
1.

2.2.4. Estimating β

According to Equation 7, the final value of β occurs when
t → ∞. To calculate this value, we need to know the final
average energy, which can be written as follows:

⟨Ef ⟩ = ⟨E0⟩ + ⟨W ⟩ (19)

where ⟨E0⟩ is the average energy received from the plane
and ⟨W ⟩ is the sum of the energies dissipated after
successive collisions.

In order to estimate the value of ⟨W ⟩, we will propose
that there are two types of collisions. The first type is
related to a collision in the AF region, while the second
type is related to a collision in the AS region. Thus,
we will also assume the existence of two types of work,
related to a series of collisions in each of these areas.
If ⟨W ⟩ = WF , only collisions in AF have occurred. On
the other hand, if ⟨W ⟩ = WS , only collisions in AS have
occurred.

It is clear that these two cases are unreal, and a
combination of these two types of collisions is expected.
The coefficients of multiplicity, calculated earlier, can
indicate the contribution expected from each type of
work. For example, if CS = 0.7 and CF = 0.3, it is
expected that 7 out of 10 collisions have occurred in the
AS region. Similarly, we can use the same relationships
for the works:

⟨W ⟩ = CF WF + CSWS (20)

However, it is obvious that this proposal is only an
approximation. It is evident that there is variation in
the values of WS and WF even if the collisions are
in their respective regions, i.e., depending on how this
collision occurs, there will be more or less dissipation.
This estimation method will be more efficient in cases
where a higher collision rate is not forced in any of
the regions, which is valid for the experiment of the
plane ejecting cylinders. However, if the cylinders are
horizontally launched and always in the same way, there
will be a greater tendency for collision in a specific
manner, causing the coefficients to have values that
diverge from what is observed, requiring a correction.

Furthermore, it is important to note that the absolute
value of WF should be greater than the absolute value
of WS . This occurs because the “side” state allows for
rolling, dissipating less energy as it remains in the form
of rotation.

3. Experimental Description

3.1. Used equipment and experimental setup

As described in the theoretical fundamentals section,
the launch conditions of the cylinder greatly affect
PS and PF . Therefore, it is necessary to develop an
experiment to standardize each repetition. Considering
the need for a large data sample, the solution found
was the construction of a machine using Arduino and,
subsequently, a program in the Python programming
language to recognize the two possible states, “face” and
“side”, and calculate their respective probabilities.

A box made of medium-density fiberboard (MDF) was
used to house the entire experiment. The base, with a
thickness of 6 mm, has a cavity with a depth of 3 mm,

DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0247 Revista Brasileira de Ensino de Física, vol. 46, e20240247, 2024



e20240247-6 A statistical mechanical analysis on the possibility of achieving fair cylindrical dice

Figure 3: Cylinders used in the experiments.

where the protoboard (a board used for circuit assembly)
was inserted. The side walls of the box were made of the
same material as the base and half the thickness, i.e.,
3 mm. Structures for support and connection between
the walls were 3D printed using polylactic acid (PLA).
Two cardboard sheets, one covered with sulfite paper
and the other with suede, were also prepared as surfaces
for launching the cylinders.

The cylinders used, which can be seen in Figure 3,
were 3D printed in white PLA with a 25% infill, and
each face of the same cylinder was painted blue and red,
respectively, for recognition purposes. The radius was
kept constant at 7.5 mm, and the H/R ratios varied from
0.3 to 2.5 with intervals of 0.1.

For the assembly of the electrical system (Figure 4),
an Arduino UNO board was used, as well as 8 JF-0530B
model solenoids, each with a force of 5 N, controlled
by relays (electromechanical switches). To provide the
necessary voltage for the motor operation, a regulated
DC power supply with a voltage of 22 volts was used.
For image capture, a Logitech C920 camera positioned
above the box, fixed on a universal stand, was controlled
by a computer program.

With all the mentioned components, the system was
assembled (Figure 5), with the solenoids reaching the
cardboard plate, lifting it and performing a launch.

3.2. Procedure

With the system assembled, a Python program was
executed to control the Arduino and, consequently, the
movement of the solenoids through serial signals. The

Figure 4: Electrical schematic of the system for a single solenoid.

Figure 5: (a) Front view of the system; (b) Complete view of
the system with the camera.

solenoids hit the cardboard plate on which the cylinders
were placed, launching them. After the launch, the
program waited for 5 seconds to allow the cylinders to
stabilize and then activated the camera to capture an
image (Figure 6(a)) of the cylinders in their respective
final states (“face” or “side”).

This process was repeated two hundred times for each
H/R ratio (ranging from 0.3 to 2.5).

Through this procedure, it was possible to auto-
matically obtain hundreds of photos per hour, thus
obtaining a large sample. To analyze the final state of
each cylinder, a second algorithm was programmed to
recognize circles and colors (Figure 6(b)) and identify
whether they were in the “face” or “side” state.

Knowing the number of times the final result was
“face” or “side” and the total number of launches, the
probability of each state was calculated, and experimen-
tal graphs of PS and PF as a function of the H/R ratio
(which can also be expressed solely as a function of H
since R was kept constant) were created using these data
points.
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Figure 6: (a) Image captured by the camera; (b) Circle
recognition by the algorithm.

By modifying the system for the setup with the
front-facing camera (Figure 7(a)), the average height
(h̄) was determined. A millimeter grid paper was used
on the back wall of the box (Figure 7(b)) to enable
measurement.

3.3. Secondary experiment: horizontal launch

Although the developed theory is much more adapted to
the machine case, we also created a second experiment
to test the limits of this formulation. For a horizontal
launch, there is a significant increase in velocity in that
direction, inducing collisions in a specific region. This
situation falls into what was discussed in the estimation
of β (Section 2.2.4) and requires a correction in the
multiplicity coefficients.

For this experimental setup, an equipment similar to
a catapult was used (see Fig. 8), which operates based
on a counterweight. In this way, it is possible to ensure
the same initial energy for all cylinders, which will be
horizontally launched.

Figure 7: (a) Image of the system with the front-facing camera
positioned; (b) Image captured by the camera with the position
of the grid paper.

Figure 8: Image of the experimental setup for horizontal launch.

4. Discussion and Data Analysis

4.1. Obtained results

To analyze the probabilities of each state for each
H/R ratio, the first step was to determine h̄. The
experimentally obtained result was: h̄ = 3.8 cm for q = 1.
With this value, it is possible to calculate the energy
supplied by the plane to the cylinders.
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e20240247-8 A statistical mechanical analysis on the possibility of achieving fair cylindrical dice

The second step would be to calculate the values of
WS and WF . However, the calculation of these numbers,
both theoretically and experimentally, remains as a topic
for future research. Thus, an adjustment was made for
these values, and for better understanding, they were
normalized by dividing them by E0. To perform the
adjustment, the computer program starts with both
values set to 0.5 and adjusts them in small increments
until the standard deviation of the theoretical and
experimental values is minimized.

Starting with the results obtained with sulfite paper,
the fit resulted in the values given in (21).

WS = 0.475 ± 0.001
WF = 0.999 ± 0.001

(21)

from which we have graphs of W and β as functions of
q (Fig. 9).

Moving on to the results obtained with suede fabric,
the fit resulted in the values given in (22), with the

Figure 9: Graphics for sulfite paper in the machine displaying
(a) W , and (b) β as functions of q.

Figure 10: Graphics for suede fabric in the machine displaying
(a) W , and (b) β as functions of q.

corresponding graphs shown in Fig. 10.

WS = 0.836 ± 0.001
WF = 0.878 ± 0.002

(22)

Finally, in Figure 11, we have the graphs of PS as
a function of q being compared with the experimental
results obtained.

4.2. Horizontal launch

With the help of the software Tracker [8], we can
calculate the velocity and height at which the cylinders
are ejected and, therefore, the energy supplied. The fits
for the values of WS and WF are as follows for each
surface.

For sulfite paper, we found the values given in (23).

WS = 0.00 ± 0.01
WF = 1.142 ± 0.001

(23)

and, as we did before for the machine, we produced the
resulting graphs for these values, which can be seen in
Figure 12.
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Figure 11: Graphics of PS as a function of q in the machine for
(a) sulfite paper, and (b) suede fabric.

For suede fabric, the values found were those given
in (24).

WS = 0.000 ± 0.005
WF = 1.3118 ± 0.0005

(24)

with resulting graphs shown in Figure 13.
The respective results for PS as a function of q can be

seen in Figure 14.

4.3. Discussion of results

Analyzing the results of the experimentally obtained
probabilities and adjusting the theoretical curves, it can
be observed that the data, in general, behave as expected
for the machine. However, there are deviations, as
expected, considering that 200 launches were performed
for each H/R ratio, with 16 cylinders in each launch,
resulting in a total of 3200 cylinders launched for each
ratio, which is still a small number compared to 1 mol.

These deviations are mainly due to experimental
errors, limitations, and theoretical approximations. Pos-
sible sources of experimental errors include problems

Figure 12: Graphics for sulfite paper in the horizontal launch
displaying (a) W , and (b) β as functions of q.

with computational recognition or, perhaps, wear and
deformation of materials due to repeated use. Addi-
tionally, the experiment with the suede material was
conducted after the one with the sulfite paper, which
means that the materials were much more worn, and it is
precisely in this experiment that the largest divergences
from the expected results occurred. As for the limitations
in theory, they are due to certain factors that were not
considered in the calculation of E and, of course, the
fact that the number of data points is small compared
to the statistical limit (N ∼ 1 mol).

Thus, by analyzing the behavior of the experimental
data and the adjusted curve, it is possible to determine
the ideal H/R ratio for specific conditions, such as
materials and launching methods.

For the secondary experiment, the discrepancies are
significant for two main reasons. Firstly, only 200
launches were performed for each ratio, which is a much
smaller number of repetitions compared to the machine
experiment and further away from 1 mol. Secondly, this
launching method favors certain forms of collision, which
means that the calculated multiplicity coefficients are
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Figure 13: Graphics for suede fabric in the horizontal launch
displaying (a) W , and (b) β as functions of q.

not appropriate. This is reflected in the fact that the
values of WF are greater than 1, which should not
occur since the dissipation cannot be greater than the
initial energy. However, this unexpected value exists
to compensate for a very low value of CF . Despite
these anomalies, which generate peaks in the graphs,
the probabilities reasonably correspond to what was
theoretically predicted for larger ratios.

Last but not least, it is interesting noting that, for
horizontal launches, higher values of PS are achieved
for smaller ratios H/R compared to the lauches in the
box. This is an expected result, since for horizontal
launches, the interaction of the cylinder with the ground
will favour rolling over flipping, therefore, increasing the
cylinder’s angular momentum around its symmetry axis,
so that additional torque would be required for it to fall
to the “face” state.

5. Conclusions

Therefore, it can be concluded that the developed
theory provides a reasonable approximation for the

Figure 14: Graphics of PS as a function of q in the horizontal
launch for (a) sulfite paper, and (b) suede fabric.

probabilities of final states of a cylinder based on its
H/R ratio, through experimental adjustments. However,
it would be possible to obtain the theoretical values of
the factors used in the adjusted function by improving
the experimental conditions and extending the data
analysis to consider other aspects. This would enable
a comparison between the adjusted values and the
corresponding theoretical curve.

Furthermore, it remains to explore more thoroughly
various possible variations of the system, such as dif-
ferent surfaces (beyond the two already used), thus
modifying the coefficients of friction and restitution,
which should be taken into account in a more detailed
future analysis. These factors can likely be considered
after further development of the theory. Additionally,
limitations of the theoretical approach through Statisti-
cal Mechanics persist.

The horizontal launch clearly demonstrates the lim-
itations of what has been developed so far. In future
analyses, as a way to complement what has already
been done, a more detailed calculation of the multiplicity
coefficients and the work done in collisions is needed.
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Despite its limitations, the theory discussed has appli-
cations that go beyond a specific solid. For example,
if a solid has a symmetry such that the energy of
each state is the same and the multiplicity coefficients
are also the same, it is possible to affirm that this
solid is a “fair die” regardless of the initial energy and
the launching method. In other words, it presents the
same probabilities of falling for all faces (provided that
collisions are not induced in a specific region, altering the
multiplicity factors). An example of this is RPG dice,
which are Platonic solids and exhibit this symmetry,
including, of course, the case of the traditional six-
sided die.

Last but not least, it is worth to mention that this
investigation was completed as part of the authors’ par-
ticipation in the International Young Physicists’ Tour-
nament (IYPT), a competition that seeks to encourage
high school students to solve open physics problems
which consist of small paragraphs defining a specific
situation or phenomenon, and then establish some task
that will not have a final or closed answer but will lead
students to find creative and deep explanations for that
situation. Ordinary high school physics will certainly
not be enough to accomplish those tasks and, therefore,
those students will learn much more than what is usually
taught in regular curricula. These are, therefore, typical
characteristics of an active learning method.
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