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Abstract

Seasonal precipitation forecasts are essential for water resource management, agricultural activities, and the operational
planning of hydropower systems. Any methodological advancement that enhances the accuracy of precipitation predic-
tions will yield considerable societal benefits. In this context, this study proposes and evaluates two approaches for
refining seasonal precipitation forecasts in Brazil, using simple data-based models, such as multiple linear regression
(MLR) and nonlinear support vector machine (SVM). These models employ climate indices related to different tele-
connection patterns that affect seasonal precipitation in Brazil, the unified gauge-based analysis of global daily pre-
cipitation from the Climate Prediction Center (CPC), and the precipitation forecasts from the Seasonal Forecast System
5 (SEASS) as input variables. Both MLR and SVM models were validated from Jan-2017 to Dec-2020 using precipita-
tion from the CPC as ground truth. The results suggest that, compared to SEAS5, MLR and SVM models enhance pre-
dictive accuracy and reduce bias in precipitation forecasts for the Southeast, Midwest, and North regions of Brazil
during the austral summer. However, the performance of the models was found to be on par with the original predictions
of SEASS in the Northeast and South regions, sectors of Brazil where the climate is significantly influenced by the El
Nifio-Southern Oscillation.

Keywords: data-driven models, SEASS, seasonal precipitation forecast, teleconnection patterns, time series forecast-
ing.

Aprimorando a Previsao de Precipitacdo Sazonal no Brasil Usando Técnicas
Simples Baseadas em Dados e Indices Climéticos

Resumo

As previsdes sazonais de precipitagdo sdo essenciais para a gestdo dos recursos hidricos, a atividade agricola e o plane-
jamento operacional de sistemas hidroelétricos. Avangos metodoldgicos capazes de aprimorar a acuracia das previsoes
de precipitagdo geram beneficios significativos para a sociedade. Diante desse contexto, este estudo propde ¢ avalia
duas abordagens para o refinamento das previsdes sazonais de precipitagdo no Brasil, utilizando modelos matematicos
simples ¢ baseados em dados, como a regressdo linear multipla (MLR) e a maquina de vetores de suporte ndo linear
(SVM). Nas abordagens propostas, os modelos MLR e SVM sdo alimentados com indices climaticos relacionados a
diferentes padrdes de teleconexdo que afetam a precipitagdo sazonal no Brasil, dados da andlise de precipitacdo diaria
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global do Climate Prediction Center (CPC) e previsdes de precipitagdo do Seasonal Forecast System 5 (SEASS). Ambos
os modelos MLR e SVM foram validados de janeiro de 2017 a dezembro de 2020, usando a precipitagdo do CPC como
referéncia. Os resultados sugerem que, em comparagdo com o SEASS5, os modelos MLR e SVM melhoram a precisdo e
reduzem o viés nas previsdes de precipitacdo para as regides Sudeste, Centro-Oeste ¢ Norte do Brasil durante o verdo
austral. No entanto, o desempenho dos modelos em consideragdo foi equivalente ao do SEASS nas regides Nordeste e
Sul, setores do Brasil onde o clima ¢ significativamente influenciado pelo El Nifio-Oscilagdo Sul.

Palavras-chave: modelos baseados em dados, SEASS, previsao de precipitacdo sazonal, padrdes de teleconexao, pre-

visdo de séries temporais.

1. Introduction

Weather and climate are natural factors that influ-
ence a variety of human activities, including agriculture,
river transport, and renewable energy production (Smith,
1993; Schweighofer, 2014; Chavez et al., 2015; Shannon
and Motha, 2015; Sivakumar, 2015). In Brazil, the elec-
trical matrix of the available sources for electricity gen-
eration is primarily hydraulic. Power generation is heavily
reliant on streamflows, which are significantly affected by
variations in precipitation (Fan et al., 2014; Pontes et al.,
2013; Dias et al., 2017). Therefore, accurate precipitation
forecasting is crucial for hydropower generation, manage-
ment of available water resources (Ali et al., 2020; Car-
bone, 2005), agricultural activities (Lipper et al., 2014;
Ingram et al., 2002), and flood and drought predictions
(Brunner et al., 2021). Fundamentally, precipitation fore-
casting can be classified as a weather or a climate fore-
casting problem depending on the forecast horizon
considered. Weather forecasts aim to predict the spatio-
temporal progression and the impacts of atmospheric sys-
tems, such as the resultant effects triggered by the
incursion of a cold front. In contrast, climate forecasts
focus on simulating the climate system over extended
timeframes to provide a comprehensive outlook of climate
variables (Toth and Buizza, 2019), which helps predict
whether upcoming seasons will be rainier or drier, warmer
or cooler compared to the climatological normals (i.e.,
long-term average values of climate variables).

Deviations from the usual seasonal patterns occur
due to changes in the basic state of the atmosphere. These
changes modulate the intensity and frequency of the atmo-
spheric systems. For a clearer understanding, imagine
anomalies in sea surface temperature (SST) causing dis-
turbances in the atmosphere. When the basic state of the
atmosphere is disturbed, it creates waves that propagate
and influence the location, intensity, and frequency of
atmospheric systems in distant regions, thereby affecting
climate variables. The link between events occurring in a
particular part of the globe and the subsequent changes
they induce in remote regions’ climates is termed tele-
connection patterns (Liu and Alexander, 2007; Reboita
et al., 2021; Grimm and Dias, 1995). In the case of Brazil,
several studies (Reboita et al., 2021; Goddard et al., 2001)
indicate that SST anomalies strongly affect the climate of
the North, north coast of the Northeast, and the South

regions of Brazil, while the remaining regions (Midwest
and Southeast) show a weaker response to SST anomalies.
Therefore, monitoring SST anomalies is essential for cli-
mate prediction in Brazil because they drive climate varia-
bility on a seasonal scale through teleconnection patterns
(Nobre and Shukla, 1996).

Climate forecasts are typically generated using three
methods (Goddard et al., 2001): (a) meteorologists study
current oceanic conditions, identify the active climatic dri-
vers, and extrapolate these slow-changing forcings into the
future to evaluate how they could potentially impact the
climate; (b) applying numerical dynamical models, which
are physically based models made up of equations that
represent the physical processes found in nature. This
modelling approach is employed to forecast the evolution
of intricate dynamic systems over time, given certain
initial conditions and assumptions, and (c) using data-dri-
ven models (also known as statistical models), that are
designed employing explanatory variables and machine
learning algorithms to forecast, for example, precipitation
or surface air temperature. In this case, incorporating SST
data from pertinent oceanic regions, such as the Central
Pacific Ocean, is a common practice, given the significant
influence of this explanatory variable over remote regions
(Folland et al., 2001; Diro et al., 2008; Zeng et al., 2011;
Coérdoba-Machado et al., 2015; Choubin et al., 2018;
Pezzi et al., 2000).

Despite the advanced methodologies employed to
create climate forecasts, including both numerical and
data-driven-based ones, it is important to recognize that
the intricate nature of the climate system introduces a
layer of complexity in the modeling process that cannot be
ignored. Uncertainty in seasonal climate forecasts stems
from the complex and chaotic nature of the climate sys-
tem, influenced by numerous interacting factors, including
atmospheric conditions, ocean currents, and human activ-
ities (Palmer, 2000). This complexity means that, even
with advanced modeling and data acquisition techniques,
forecasting seasonal precipitation remains a significant
challenge. Among the many sources of uncertainty impac-
ting these forecasts, two types receive greater attention: a)
uncertainties of the initial conditions, associated with
errors or inaccuracies in the input data, potentially leading
to less reliable forecasts (Slingo and Palmer, 2011); and b)
uncertainties related to the models’ structure, due to limi-
tations in modelling the climate system, such as the
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imperfect representation of physical processes and inter-
actions between the system’s components (Palmer et al.,
2005). For a), the most common approach to representing
uncertainties is the introduction of perturbations to the
model’s initial conditions, generating multiple scenarios
(Tracton and Kalnay, 1993; Molteni et al., 1996). This
approach facilitates exploring the sensitivity of climate
forecasts to different initial conditions, providing a
method to quantify uncertainty and enhance understanding
of the potential range of climate evolutions. In the case of
b), ongoing research is focused on refining the representa-
tions of physical processes and interactions. In this con-
text, refined climate models with diversified structures
compose multimodel ensembles. This strategy, involving
the exploration of outcomes from multiple models, aims to
address the structural uncertainties of the forecasting pro-
cess and assist in identifying more consistent and robust
forecasts across different models (Hagedorn ef al., 2005).

1.1. Data-driven models in seasonal precipitation
forecast

The advent of machine learning techniques has
played a substantial role in the evolution of climate pre-
diction over the years. Such algorithms can handle vast
amounts of data and recognize complex and nonlinear pat-
terns that are beyond human analysis or conventional
computational models. They can learn from the data and
improve their predictions over time, without explicit pro-
gramming. In the specialized literature on data-driven
models, many studies have explored the application of
machine learning techniques to predict precipitation for
months ahead. For example, Quan et al. (2006) analyzed
the predictive performance and identified the sources of
the forecasting skill of four atmospheric general circula-
tion models (AGCMSs) alongside a collection of forced
linear regressions (using SST data from 1950 to 1999).
The results indicate that the ability of AGCMs to forecast
U.S. precipitation and surface air temperature largely
depends on the linear atmospheric signal of the El Nifio-
Southern Oscillation (ENSO), a performance that is on par
with the regression models. Regardless of this outcome,
the authors believe we still need dynamic models to make
enhanced seasonal forecasts, given that statistical meth-
ods, even those trained on 50 years of data, can experience
notable performance fluctuations over decades. Later, and
following a similar line of research, Diro et al. (2008)
designed statistical models to forecast seasonal rainfall
within eight homogeneous precipitation zones in Ethiopia.
The authors used data from both tropical and extratropical
SSTs around the world as predictors and implemented
techniques such as multiple linear regression (MLR) and
linear discriminant analysis. The statistical models exhib-
ited enhanced accuracy during years of extreme precipita-
tion, illustrating their effectiveness in predicting anoma-
lously high and low rainfall levels.

Still in 2006, Coelho et al. introduced an approach
aimed at enhancing seasonal rainfall predictions in South
America through an integrated forecasting system. This
system merges two distinct forecasting strategies: an
empirical model (data-driven multivariate linear regres-
sion) using sea surface temperature anomalies from the
Pacific and Atlantic Oceans, and a multi-model ensemble
incorporating European models from 3 climate centers
(Centre National de Recherches Météorologiques -
CNRM, European Centre for Medium-Range Weather
Forecasts - ECMWF, and United Kingdom Met Office -
UKMO) that simulate both oceanic and atmospheric con-
ditions. By applying Bayesian statistical techniques, this
method refines the forecasts, particularly for the austral
summer, yielding more reliable predictions. The findings
indicate that this integrated approach significantly
improves the accuracy of rainfall predictions across the
Tropics and in specific regions of southern Brazil, Uru-
guay, Paraguay, and northern Argentina, especially during
El Nifio or La Nina events, although its accuracy dimin-
ishes in their absence.

In 2014, Badr ef al. explored the use of artificial
neural networks (ANN) to predict precipitation anomalies
in Africa’s Sahel region using SST and surface air tem-
perature anomalies as predictors. The study emphasizes
the superior accuracy of ANN algorithms compared to
other statistical models, attributing their effectiveness to
their ability to encapsulate the nonlinear influences that
large-scale climate forcings exert on precipitation. Later,
in 2016, Gerlitz et al. proposed a data-driven model based
on the random forest algorithm to forecast seasonal pre-
cipitation anomalies in Central and Southern Asia. A cor-
relation analysis study conducted to select predictors
revealed a strong influence of ENSO on precipitation in
both regions, with the central region additionally sig-
nificantly impacted by the North Atlantic Oscillation
(NAO) and East Atlantic (EA) patterns. The random forest
model effectively forecasted wet conditions and moderate
droughts in Central Asia; however, the prediction of
severe dry spells proved to be a challenge yet to be over-
come.

Dabernig et al. (2017) introduced a novel approach
to improve weather prediction titled “Spatial Ensemble
Post-Processing with Standardized Anomalies”. This
method improves the accuracy of weather predictions,
specifically for temperature 2 meters above ground, by
applying ensemble post-processing techniques across spa-
tial domains instead of individual locations. By standar-
dizing anomalies, this technique accounts for and removes
seasonal and location-specific characteristics through cli-
matological adjustments. This enables more precise fore-
casting in areas with limited observational data and often
outperforms traditional methods. The approach uses non-
homogeneous Gaussian regression models, modified to
work with standardized anomalies, addressing challenges
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related to spatial coherence and computational efficiency.
The methodology’s effectiveness is particularly high-
lighted in complex terrains, such as the Alps, where it sig-
nificantly improves the forecast accuracy.

Xu et al. (2020) compared the performance of
numerical dynamical and statistical models in precipita-
tion forecasting (including linear regression, long short-
term memory - LSTM neural networks, SVMs, and ran-
dom forests, as well as the climate models from the North
American Multi-Model Ensemble - NMME). The pre-
dictors considered in the data-driven modeling process
included climate indices and wavelet-decomposed and
non-decomposed historical precipitation data, along with
mean, minimum, and maximum surface air temperatures.
Wavelet-based models showed superior performance
compared with other data-driven models and NMME. This
result suggests the presence of nonlinear effects in pre-
cipitation that are revealed through wavelet decomposi-
tion, which in turn enable data-driven models to enhance
their performances. Later, and following a similar line of
research, Anochi ef al. (2021) created and assessed a self-
organized multilayer perceptron ANN for precipitation
forecast in South America, benchmarking its performance
against the Brazilian Global Atmospheric Model (BAM).
The neural network model demonstrated superior perfor-
mance over BAM in most regions, particularly reducing
the forecast error from 8 mm to 2 mm in the central region
during winter. However, larger errors were observed dur-
ing the austral summer (rainy season). This was attributed
to local processes and the abundant energy of this season,
which pose a challenge for neural networks due to the
spatiotemporal resolution limitation of the training data.

Gibson et al. (2021) presented a study on enhancing
seasonal precipitation forecasts through the application of
machine learning models trained on climate model out-
puts. Focusing on the Western United States, a region
characterized by its challenging forecasting conditions due
to low precipitation totals and high variability, the study
leverages the potential of machine learning to interpret
complex interactions among various sources of seasonal
predictability, such as ENSO, tropical diabatic heating
anomalies, and jet stream variability. The study’s results
demonstrate the skillfulness of machine learning models,
such as Random Forest and Neural Networks, in forecast-
ing seasonal precipitation with greater accuracy than tra-
ditional methods. Furthermore, the study advances
interpretability in machine learning through variable
importance analysis, revealing key predictors and offering
insights into the physical processes driving seasonal pre-
cipitation. This research marks a step forward in seasonal
forecasting, suggesting that machine learning models,
especially when coupled with large climate model ensem-
bles, can provide more accurate and interpretable predic-
tions, thereby offering valuable tools for managing climate
and weather risks.

Also in 2021, Wu et al. presented a novel hybrid
model for predicting monthly precipitation in northeastern
China. The authors emphasized that due to the nonlinear,
stochastic, and highly complex nature of precipitation,
accurate precipitation forecasting remains a major chal-
lenge. Models based on the autoregressive integrated
moving average (ARIMA) and ANNs, which are com-
monly employed to forecast precipitation, have particular
limitations. ARIMA lacks the capacity to emulate the non-
linear structure inherent to precipitation, whereas ANNs
operate under the assumption of independence between
the input and output variables. As a solution, the author
proposed a combination of the aforementioned models
with wavelet-based multiresolution analyses to form a
more robust hybrid model. The results revealed that the
proposed hybrid model outperformed ARIMA and LSTM
in predicting the monthly precipitation. This enhanced
performance may be ascribed to the integration of the
strengths inherent in each model within the ensemble,
thereby yielding forecasts that are more comprehensive
and robust.

More recently, Pinheiro et al. (2023) conducted a
study on the utilization of an ensemble of artificial neural
networks (EANN) for short lead seasonal precipitation
forecasting in Ceara, northeastern Brazil, for the Februa-
ry-April period. This research aimed to assess the fore-
casting skill of EANN using indices of low-frequency
climate oscillations and to explore the integration of
EANN with dynamical models into a hybrid multi-model
ensemble (MME). Through leave-one-out cross-valida-
tion over four decades of data, the study compared the
performance of EANN against traditional statistical
models and dynamical models currently used in Ceard’s
seasonal forecasting system. The findings revealed that
EANN outperformed in both deterministic and probabi-
listic forecasting skills, showcasing lower root mean
squared error and ranked probability score across most
regions of Ceara. Additionally, EANN demonstrated bet-
ter calibration and resolution for predicting above-normal
and below-normal rainfall categories compared to its
counterparts. The integration of EANN with dynamical
models into a hybrid MME resulted in improved relia-
bility by reducing overconfidence in extreme forecasts.
This study underscores the potential of EANN in enhan-
cing seasonal rainfall forecasts in regions like Ceara,
leveraging low-frequency climate oscillations, and high-
lights the advantages of adopting hybrid modeling
approaches for refining forecast accuracy and reliability
amidst the challenges posed by the region’s climate varia-
bility and forecasting intricacies.

1.2. Purpose of this study

Especially for Brazil, the refinement of seasonal pre-
cipitation forecasts using data-driven models is a relevant
research topic that holds national significance, given the
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critical role of water resources in power generation and
agricultural operations. Most literature is limited to spe-
cific sectors or does not detail the Brazilian geographical
regions (Li et al, 1996; Ward and Folland, 1991; Paz
etal.,2010; Anochi and Velho, 2016; Milléo and Almeida,
2021), and only some new comprehensive studies have
considered the entire country (Anochi et al., 2021; Mon-
ego et al., 2022). Our study fits precisely into this line of
research. Our primary goal is to refine seasonal precipita-
tion forecasting by using simple, yet effective, data-driven
models and predictors with relevant information for cli-
mate forecasting. For this, we propose a new framework
based on MLR and support vector machine (SVM) that
explores a) climate indices related to teleconnection pat-
terns affecting Brazil, b) the statistical relationship
between future and past precipitation anomalies, and c)
predictions from the Seasonal Forecasting System 5
(SEASS), a numerical dynamical system developed by the
European Centre for Medium-Range Weather Forecasts
(ECMWF).

The MLR and SVM methods were chosen for the
present study due to their straightforwardness in imple-
mentation, lack of need for large datasets compared to
ANNs s (i.e., ANNSs need extensive datasets to work effec-
tively, primarily due to their complexity and the require-
ment for extensive feature learning), and ability to provide
satisfactory results, which are even equivalent to those
obtained with sophisticated models according to studies
developed in China (Xu et al., 2020).

In fact, the use of machine learning and classical sta-
tistical methods in climate forecasting is not recent in Bra-
zil. As mentioned earlier, several studies propose seasonal
precipitation forecasting models for specific regions of the
country, while only a few attempt to cover the entire terri-
tory. The reason behind this might be the substantial chal-
lenges posed by constructing data-driven models for a
country as vast as Brazil. Brazil features a variety of cli-
mates and precipitation patterns, which can respond dif-
ferently to large-scale phenomena such as ENSO. In this
study, we developed data-driven models to address this
challenge. For each grid cell within Brazil, considering
both the annual season and forecast horizon month, we
developed a machine learning model using climate indices
and precipitation anomalies to estimate seasonal precipita-
tion for the next seven months. The set of predictors effec-
tively used by the models varies spatially, depending on
the specific grid cell considered. Consequently, climate
indices related to teleconnection patterns that affect only
specific sectors of the country were employed in the mod-
els corresponding to those grid cells. In this way, our study
distinguishes itself from previously proposed works not
merely because of the use of MLR and SVM data-driven
models, but because it jointly explores a broader range of
climate indices, SEASS5 forecasts, as well as historical
precipitation data in a systematic way, for each grid cell,

generating specialized forecasts for a country of con-
tinental dimensions while considering the unique char-
acteristics of each area.

This paper is structured as follows. In Section 2, we
provide an overview of the case study, where we detail the
data sources, describe the rainfall forecasting models
employed, and explain the implementation process of
these models. Section 3 presents the results of the SEASS
predictive performance evaluation for each Brazilian
region, comparing it with the MLR and SVM models.
Finally, in Section 4, we summarize the main conclusions
drawn from our analysis and suggest potential avenues for
future research.

2. Methods and Data

The framework outlined in this study is depicted in
Fig. 1. It encapsulates the sequential procedures for refin-
ing seasonal precipitation forecasts in Brazil using ma-
chine learning methodologies. The process is delineated as
follows: Study Area — 1. Inputs — 2. Input Selection — 3.
Models — 4. Outputs. The following subsections provide
details about the case study, datasets (climate indices,
SEASS precipitation, and CPC precipitation), input selec-
tion methods, machine learning techniques, and evaluation
metrics applied to assess seasonal precipitation forecasts
from MLR, SVM, and SEASS.

2.1. Study area

This study focuses on Brazil, a vast country situated
in the eastern portion of South America. Extending from
34° S to 6° N in latitude and from 35° W to 74° W in
longitude, its boundaries are outlined with a bold polygon
in Fig. 2. Due to its vast area, Brazil is geopolitically divi-
ded into five regions (i.e., North, Midwest, Northeast,
Southeast, and South regions) and several other sub-re-
gions with different climates (Reboita et al., 2010).
Despite the variety of climates within individual geopoli-
tical zones, each region is primarily distinguished by a
dominant climate. According to Quadro et al. (1996), the
North region (N) is characterized by an equatorial climate
with high precipitation levels and a short dry period. The
climatology of annual rainfall ranges between 1500 and
2500 mm in most sectors of this region, but values above
2500 mm are observed in the northwestern area. In the
northern part of the South American continent, rainfall
predominates during the austral autumn months. The hea-
viest rainfall begins in the austral spring in Central Brazil
and then progresses northward. Consequently, the wettest
season closer to the equator occurs in March-April-May,
or even later (Grimm and Zilli, 2009; Grimm, 2011).

The Northeast region (NE), on the other hand, has a
semi-arid climate in its central area. The rainy season
(austral summer) is short-lived, and the climatological
mean ranges from 200 to 800 mm in this sector, whereas a
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Figure 1 - Overview of the framework to improve seasonal precipitation forecasts using data-driven models.
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Figure 2 - The Average annual rainfall across Brazil was computed using the CPC unified gauge-based analysis of global daily precipitation (from Jan-
uary 1993 to December 2016). A bold polygon marks the boundaries of Brazilian territory. The acronyms N, CO, NE, SE, and S denote the North, Mid-

west, Northeast, Southeast, and South regions of Brazil, respectively.

rainier climate is verified in the northwest area and along
the east coast. The rainy season in the NE occurs from
March to May when the Atlantic Intertropical Con-
vergence Zone (ITCZ) (i.e., a non-static zone of increased
convection, cloudiness, and precipitation encircling the
Earth, near the equator) is at its southernmost position

(Grimm, 2011). Rainfall variability in this region is sig-
nificantly influenced by anomalies in the Pacific Ocean
SST. During the negative phase of ENSO (La Nifia), the
NE and parts of eastern N experience positive rainfall
anomalies, while these anomalies reverse during the posi-
tive phase (El Nifio). However, in the NE region, pre-
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cipitation variability is not only linked to the Pacific
Ocean but also to anomalies observed in the Atlantic
Ocean. The anomalous SST gradient between the North
Tropical Atlantic and the South Tropical Atlantic affects
the position of the ITCZ, which in turn dictates the rainy
season in the NE and exerts a significant influence on
rainfall anomalies (Grimm and Zilli, 2009; Grimm, 2011).

Regarding the Midwest (CO) and Southeast (SE)
regions, well-defined dry and rainy seasons are evident in
their precipitation time series. Their climates are influ-
enced by tropical and mid-latitude atmospheric systems,
which result in annual rainfall levels between 1200 and
1500 mm, with a reduction in this range to the north of the
Southeast region (500 to 1200 mm) and an increase in the
north of the Midwest region (1500 to 2000 mm). The hea-
viest rainfall starts in the austral spring in Central Brazil
and gradually extends to both the southern and northern
Brazil. The next season, the austral summer, is the rainy
season in the CO and SE due to a summer monsoon
regime. The strongest variability occurs near the South
Atlantic Convergence Zone (SACZ) (i.e., a zone analo-
gous to the ITCZ, extending diagonally from the south-
eastern coast of Brazil to the central-southern Amazon),
one of the most important features of the South American
monsoon system (Grimm and Zilli, 2009; Grimm, 2011).

Lastly, the South (S) region is influenced by frontal
systems throughout the year, which are the main drivers of
rainfall in this area of higher latitudes. The climatology of
annual rainfall ranges between 1500 and 2000 mm in
almost the entire area, resulting in a uniform spatial dis-
tribution of precipitation. Spring marks the advent of the
rainy season in many regions of Brazil, where the mon-
soon regime prevails, with precipitation concentrated in
the hottest months of the year. Even in the S Region,
which does not fit into the typical monsoon regime, spring
brings a significant amount of precipitation. Much of this
precipitation comes from the Mesoscale Convective Com-
plexes (MCC) (i.e., large, organized, and long-lasting
clusters of thunderstorms). These convective systems are
frequent and contribute substantially to the total rainfall,
especially during the transition between seasons. The most
intense precipitation progresses from central Brazil
towards southern South America from spring onwards, so
that the wettest season in the S region peaks in January-
February-March (JFM) (Grimm and Zilli, 2009; Grimm,
2011).

2.2. Data
2.2.1. CPC precipitation analysis

The CPC gauge-based analysis of global daily pre-
cipitation (Xie et al., 2007; Chen et al., 2008) is a gridded
precipitation product. Daily accumulated precipitation
data are gathered from approximately 30,000 weather sta-
tions (from 12:00 to 12:00 UTC of the next day) and com-

bined using interpolation techniques (Sun, 2018). The
resulting gridded data cover the continental land area and
are available at a resolution of 0.5° (NOAA, 2023).
According to Silva et al. (2011), Carvalho et al. (2012),
Almeida ef al. (2018), and Torres et al. (2020), the CPC
precipitation analysis has shown consistent and satisfac-
tory accuracy in representing measured in situ precipita-
tion. However, Hirata and Grimm (2018) noted that,
compared to gauge station precipitation, CPC data usually
underestimate the extreme rainfall in part of the South
American monsoon core region (a sector within south-
eastern Brazil). According to the authors, this is a draw-
back that does not compromise the application of this
dataset in validation analysis. For this reason, it is con-
sidered a suitable product for monitoring synoptic systems
and climatic patterns at different time scales, such as the
monsoon system, as well as for the validation of rainfall
predictive models. In the present study, we use the daily
CPC precipitation analysis to estimate the monthly accu-
mulated rainfall from January 1992 to December 2020
across all grid cells within the study area depicted in
Fig. 2. We then used this compiled rainfall data to both
develop and validate the models proposed in our research.

2.2.2. SEASS precipitation forecast

SEASS (ECMWEF, 2017; Johnson et al., 2019) is a
global and coupled general circulation system developed
to predict the evolution of the ocean and atmosphere on a
seasonal timescale. The system was developed by the
ECMWF and supplanted the former System 4 (S4) on
November 5, 2017 (Stockdale et al., 2018). SEASS runs
are initialized on the first day of the month at 00 UTC,
generating seasonal precipitation forecasts with a spatial
resolution of 36 km. Datasets are made available to the
public at no cost, featuring a 1° spatial resolution and a
forecast horizon of 215 days (approximately seven
months). Since becoming operational, SEAS5 monthly
generates an ensemble of 51 predictions. The first one of
them is the control member, while the remaining 50 are
created by perturbing the initial conditions of the atmo-
sphere and sea surface temperature. Additionally, SEAS5
has produced a set of 25 monthly-based ensemble mem-
bers via re-forecasting simulations (also known as hind-
casts) from January 1993 to December 2016, a dataset
applied for model calibration and anomaly computation.
To reduce the extensive volume of data from SEASS, we
chose to work with the mean of the ensemble members
rather than considering each member individually. The
precipitation data from the hindcast (January 1993 to
December 2016) and forecast (January 2017 to December
2020) simulations, available on the Copernicus data store
(Copernicus, 2021), were downloaded, regridded to the
same grid of the CPC precipitation analysis using bilinear
interpolation, and then accumulated on a monthly basis.



8 Aprimorando a previsdo de precipitacdo sazonal no Brasil usando técnicas simples

2.2.3. Climate indices

SST anomalies are the primary drivers of climate
variability. In order to predict medium-range climate vari-
ables, such as seasonal precipitation, a comprehensive
understanding of the ocean-atmosphere interaction pat-
terns that impact remote regions’ climates is crucial (Liu
and Alexander, 2007; Reboita ef al., 2021; Sacco, 2010).
Among the existing teleconnection patterns, some have a
notable impact on the Brazilian climate, including: the El
Nifio - Southern Oscillation, Tropical Atlantic SST Dipo-

Table 1 - Climate indices and their data sources.

le, Indian Ocean SST Dipole, Subtropical Atlantic SST
Dipole, Pacific-South America Pattern, SST Anomalies on
the south coast of Brazil and Uruguay, as well as the South
Atlantic Anticyclone Variability (Souza and Reboita,
2021). These climate forcings are monitored through cli-
mate indices available online, with periodic updates pro-
vided by meteorological and climate centers. All climate
indices used in this study (time series from June 1992 to
December 2020), together with their corresponding data
sources, are detailed in Table 1.

Index

Details

Link

Nifio 142, 3,3.4 and 4

The four climate indices are defined as the anomaly of the average
SST in specific regions of the Tropical Pacific Ocean, based on the
ERSST v5 data (Huang et al., 2017), according to the following spe-
cifications: Nifio 1+2 in the region (0° - 10° S, 90° W - 80° W), Nifio
3 in the region (5° N - 5° S, 150° W - 90° W), Nifio 3.4 in the region
(5°N-5°8S,170° W - 120° W), and Niflo 4 in the region (5° N - 5° S,
160° E - 150° W) (Trenberth, 1998; Trenberth and Stepaniak, 2001).

https://psl.noaa.gov/data/correlation/ninal.anom.
data
https://psl.noaa.gov/data/correlation/nina3.anom.
datahttps://psl.noaa.gov/data/correlation/nina34.
anom.data
https://psl.noaa.gov/data/correlation/nina4.anom.
data

Oceanic Niflo Index (ONI)

ONI (Glantz and Ramirez, 2020) is an index based on the three
months moving average of the SST anomaly in the Nifio 3.4 region,
calculated using the ERSST v5 data (Huang et al., 2017).

https://psl.noaa.gov/data/correlation/oni.data

Southern Oscillation Index
(SOI)

SOI (Ropelewski and Jones, 1987) is an index defined as the differ-
ence between the standardized sea level pressure anomalies in Tahiti
and Darwin. More information on the computation process can be
found in (Shi, 2007).

https://psl.noaa.gov/data/correlation/soi.data

Multivariate ENSO Index
(MEI)

MEI (Wolter, 1987; Wolter and Timlin, 1993) is the first component
derived from the principal component analysis of several variables in
the Pacific Ocean. These variables include anomalies of sea level
pressure (SLP), sea surface temperature, zonal and meridional com-
ponents of the surface wind, and outgoing longwave radiation (OLR)
(30°S-30°N, 100° E - 70° W).

https://psl.noaa.gov/enso/mei/data/meiv2.data

Bivariate ENSO Time Series
(BEST)

BEST (Smith and Sardeshmukh, 2000) is calculated by combining
the standardized time series of SST anomalies in the Nifio 3.4 region
with the SOL

https://psl.noaa.gov/data/correlation/censo.data

Trans-Nifio Index (TNI)

TNI (Trenberth and Stepaniak, 2001) is calculated by the difference
between the standardized time series of SST anomalies in the Nifo 1
+2 and Niflo 4 regions.

https://psl.noaa.gov/data/correlation/tni.data

Tropical Northern Atlantic
(TNA) Index

TNA (Enfield et al., 1999) is an index defined as the anomaly of
average SST in the region (5.5° N - 23.5° N, 15° W - 57.5° W), based
on HadISST and NOAA OI 1x1 product data.

https://psl.noaa.gov/data/correlation/tna.data

Tropical Southern Atlantic
Index (TSA)

TSA (Enfield e al., 1999) is an index defined as the anomaly of the
average SST in the region (0° - 20° S, 10° E - 30° W), based on
HadISST and NOAA OI 1x1 product.

https://psl.noaa.gov/data/correlation/tsa.data

Dipole Mode Index (DMI)

DMI (Saji et al., 1999; Saji and Yamagata, 2003) is calculated as the
difference between the anomalies of average SST in the western (50°
E-70°E, 10° S - 10° N) and southeast (90° E - 110° E, 10° S - 0°)
regions of the Equatorial Indian Ocean, based on the HadISST data.

https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/
dmi.had.long.data

South Atlantic Ocean Dipole
Index (SAODI)

SAODI (Nnamchi et al., 2011) is defined as the standardized differ-
ence between the anomalies of average SST in the northeast (15° S -
0°, 10° E - 20° W) and southeast (25° S - 40° S, 10° W - 40° W) sec-
tors of the South Atlantic Ocean, calculated with ERSST v5 data
(Huang et al., 2017).

https://meteorologia.unifei.edu.br/teleconexoes/
indice?id=saodi

South Atlantic Subtropical
Dipole Index (SASDI)

SASDI (Morioka et al., 2011) is defined as the standardized differ-
ence between the anomalies of average SST in the northeast (15° S -
25° S, 0° - 20° W) and southwest (30° S - 40° S, 10° W - 30° W) sec-

https://meteorologia.unifei.edu.br/teleconexoes/
indice?id=sasdi

(continued)
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Table 1 - continued

Index Details

Link

tors of the South Atlantic Subtropical Ocean, calculated with ERSST

v5 data (Huang et al., 2017).

Pacific South American 1
(PSA1)

PSA 1 (Mo and Higgins, 1998; Kidson, 1999; Mo, 2000) is the sec-
ond component obtained with the application of the principal compo- indice?id=psal

https://meteorologia.unifei.edu.br/teleconexoes/

nent analysis technique to seasonal anomalies of geopotential height

at 700 hPa.

Pacific South American 2
(PSA2)

PSA 2 (Mo and Higgins, 1998; Kidson, 1999; Mo, 2000) is the third  https://meteorologia.unifei.edu.br/teleconexoes/
component obtained with the application of the principal component indice?id=psa2

analysis technique to seasonal anomalies of geopotential height at

700 hPa.

Region 2 SST Index
(RG2SSTI)

RG2SSTI (Reboita et al., 2021; Reboita et al., 2010; Jesus, 2021) is
the anomaly of the average SST in the region (40° S - 30° S and 57° - indice?id=itsmrg2

https://meteorologia.unifei.edu.br/teleconexoes/

47° W) between southern Brazil and Uruguay, calculated with

ERSST v5 data (Huang et al., 2017).

South Atlantic Subtropical

SASAI (Reboita et al., 2019) is the difference between the atmo-

https://meteorologia.unifei.edu.br/teleconexoes/

Anticyclone Index (SASAI) spheric pressure anomalies at mean sea level in the Southeast (25° S - indice?id=iasas
15° S, 50° W - 40° W) and South (37.5° S - 27.5° S, 60° W - 50° W)

Brazilian regions using the ERA 5 reanalysis.

2.3. Data driven models
2.3.1. Data structure and pre-processing

In this study, the data described in Section 2. 2. -
including CPC precipitation analysis, SEASS precipitation
forecasts, and the climate indices - compose the input
datasets of the data-driven models developed here. How-
ever, the way these datasets are processed and used to feed
the models is not uniform. Rather, it varies according to
the data type and the specific month ahead for which we
aim to predict precipitation, as detailed below.

The first input dataset consists of indices related to
climate forcings from the Indian, Atlantic, and Pacific
Oceans that affect the Brazilian climate remotely. During
the forecasting process, climate indices for the upcoming
months are unavailable, as their calculation requires
observational data such as sea surface temperature (SST)
and atmospheric pressure at sea level. For this reason, cli-
mate indices data from previous months, which are
already part of the historical time series, have their lagged
relationship with the precipitation anomaly explored. In
this study, we use up to the last seven months from the
indices’ time series as inputs to data-driven models (see
Fig. 3a). For instance, if the forecast horizon ranges from
January to July 2016 (considering predictions made in
January 2016), the data-driven model uses index data from
June to December 2015 for the January 2016 prediction
(lags 7 to 1), from July to December 2015 for the February
2016 prediction (lags 7 to 2), and so on. For the final
month of the forecast horizon (July 2016), only the data
from December 2015 (lag 7) is used.

Concerning the second dataset of predictors, Fig. 3b.
illustrates the application of the results from the ECMWF
dynamic system runs. The time series of differences
between SEASS predictions and the CPC monthly normal

precipitation provides information on how much more or
less rainfall the climate model is forecasting for the next
seven months, taking as a reference the average rainfall
over the last years. As shown in Fig. 3b., data-driven
models explore this time series, taking into account the
specific forthcoming month for which the precipitation is
being forecasted.

The CPC precipitation anomalies comprise the third
input dataset. Similar to the climate indices case, the lag-
ged relationship between the predictor and the forecast
variable is explored here. To achieve this, we use data
from the last months of the CPC precipitation time series
to calculate the precipitation anomalies of the last 12
months. Fig. 3c. provides an example of how the post-pro-
cessed CPC data from January 2015 to December 2015 are
used by the data-driven models to make predictions for the
next seven months, from January 2016 to July 2016. Note
that as the lead time increases from one to seven months,
less short-term information becomes available to feed the
data-driven models.

In summary, the data are processed in the following
way to generate the predictors:

e [ndices time series for each grid cell, lagged by 1, 2, 3,
4,5, 6, and 7 months: (18 indices) x (7 lags) = 126 fea-
tures;

e SEASS precipitation anomalies, predictions for 1, 2, 3,
4,5, 6 and 7 months ahead: 7 features;

e CPC precipitation anomalies for each grid cell, lagged
by 1,2, 3,4, 5, 6, through 12 months: 12 features.

2.3.2. Multiple linear regression

MLR (Hocking, 1976) is a classical data-driven
model widely used in forecasting science. It has applica-
tions in predicting, for instance, seasonal precipitation (Xu
et al., 2020), hydrological droughts (Seibert et al., 2017),


https://meteorologia.unifei.edu.br/teleconexoes/indice?id=psa1
https://meteorologia.unifei.edu.br/teleconexoes/indice?id=psa1
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https://meteorologia.unifei.edu.br/teleconexoes/indice?id=iasas
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Figure 3 - The data-driven models take the following as inputs: (a) lagged climate indices (lags from 1 to 7), (b) SEASS5 precipitation anomalies (lead
time of 7 months), and (c) lagged precipitation anomalies from CPC gauged analysis (lags from 1 to 12).

streamflow (Jozaghi et al., 2021; Moradi et al., 2020), and
wind power generation (Gupta and Saraswat, 2020). In the
MLR model, the dependent variable y is expressed as a
function of a set of independent variables x;,x;, -+, x,, as
shown in Eq. (1). Here, f3, is the constant term, while £,
By, -+, p, are the linear coefficients associated with the
predictors, and e represents the residual. In this linear
regression approach, the angular coefficients assign
weights to the predictors, determining the influence of
each independent variable on y(¢). These beta terms are
computed through the least-squares method (Miller,
2017), which identifies the coefficients that minimize the
sum of the squared residuals.

y(0) =P+ Brxi () + Poxa(t) + -+ Brxa(t) + () (1)

2.3.2.1. MLR input variable selection

Regarding the predictors included in the MLR mo-
dels, the final set was fine-tuned for each grid cell within
the study area, as depicted in Fig. 2. This optimization was
performed using the stepwise method, a systematic
approach where significant predictors are identified via

Fisher’s Hypothesis Testing (F-test) (Pope and Webster,

1972). In this method, independent variables undergo ri-

gorous scrutiny; they are sequentially added (in forward

iterations) or removed (in backward iterations) based on
their statistical significance to the regression model, con-
figuring a bidirectional process of input selection. This
ensures that the final model comprises only those pre-
dictors that provide meaningful and statistically relevant
contributions. The objective is to strike a balance between
model simplicity and predictive accuracy, eliminating any
superfluous variables that do not enhance model perfor-
mance.

A detailed description of the bidirectional stepwise
regression algorithm is provided below:

e Initialization: Start with an empty model and choose
the significance levels for entering and removing pre-
dictors from the model. These are typically denoted as
alpha-to-enter and alpha-to-remove (e.g., a=0.05 in
both cases);

e Forward selection step (addition of predictors):
Rank the predictors according to certain criteria, such as
the Pearson correlation between the set of predictors
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and the forecast variable. Add the first predictor from
the rank to the MLR model if the related p-value is less
than the alpha-to-enter (the p-value is computed using
the F-test). Repeat this step, considering the remaining
predictors from the rank, until no more variables meet
the criterion for entry;

e Backward step (removal of predictors): Remove the
predictor that shows the least contribution to the model
(often the one with the highest p-value) if its p-value is
greater than alpha-to-remove. Repeat this step until no
more variables meet the criterion for removal;

e Iterate: Alternate between forward and backward
steps. At each step, reevaluate the model and the sig-
nificance of each variable;

e Stopping criterion: The process stops when no pre-
dictors outside the model have a p-value lower than
alpha-to-enter, and no predictors in the model have a p-
value higher than alpha-to-remove. At this point, the
model is considered optimized according to the step-
wise criteria.

2.3.3. Support vector machine

SVM (Cortes and Vapnik, 1995; Vapnik, 2000) is a
machine learning algorithm originally devised to solve
data classification problems and later extended to address
regression problems. It has been widely applied in fore-
casting applications. Examples include the prediction of
seasonal precipitation (Xu et al., 2020), short-term wind
speed and power generation (Li ef al., 1996; Yang et al.,
2015; Wang et al., 2018), streamflow (Rasouli ef al., 2012;
Bhandari et al., 2019), and urban flash floods (Yan et al.,
2018). The SVM method relies on determining the support
vectors (i.e., data points influencing the regressive model),
represented by w, and the hyperplane y; = w'x + b (i.e., the
regressive model) that maximizes the margin &, as shown
in Fig. 4a.

The SVM approach aims to produce a regression
model that best fits the training dataset and minimizes the
generalization error, using the outermost points from the
dataset as a reference. Eq. (2) illustrates the SVM mathe-
matical programming problem, where w is a vector per-
pendicular to the optimal hyperplane, b is a constant, and
y; and x; represent the training data, respectively. The
objective function in Eq. (2) seeks to maximize the margin
depicted in Fig. 4a. (which is proportional to 1/w), with
constraints forming the frontier hyperplanes, where the
errors remain below e.

yi—-wxi—-b<e

. 1
mznw,bEHW”z, S't'{wtx.+b—y-<s =

The term w? in Eq. (2) is referred to as Ridge penali-
zation. It is frequently employed in machine learning and
statistical modeling for regularization purposes. Central to

the SVM methodology, its essence lies in penalizing
weight magnitudes, guiding SVMs to simpler and more
generalizable models with minimized weight vectors. This
regularization technique is also essential in moderating the
impact of correlated predictors by introducing a penalty
based on the squared magnitude of coefficients, ensuring
that models remain resilient to minor data fluctuations, and
sidestepping the challenges of multicollinearity.

2.3.3.1. Handling non-linearities using kernel functions

Compared to MLR, SVM stands out for being sui-
table for nonlinear mathematical problems without requir-
ing large datasets. When the training dataset is nonlinear,
we can use a function @, as illustrated in Fig. 4b. and c., to
map the data x; from a low-dimensional space to a high-
dimensional space, denoted as @(x;). This transformation
enlarges the feature space where regression can be more
effectively performed. The new formulation of the SVM
mathematical programming problem is provided in
Eq. (3), where slack variables £; and &* (whose purpose is
to avoid model overfitting) and a parameter C (which con-
trols the relationship between error and margin) are also
considered.

1 N .
minype e S IWIE+CY(&+E),
i=1

Vi—-wWo(x;) —b<e+¢
5.8 WOx;)+b-y; <e+ & 3)
51’75;( ZO

The new mathematical programming problem from
Eq. (3) can be solved through its dual version (Mangasar-
ian, 1994), a reformulated problem that was first proposed
by Smola and Schélkopf (2004). The solution is detailed
in Eq. (4), where f(x) is the resulting SVM regression
model, o and o; are dual variables (i.e., Lagrange multi-
pliers) and the product @(x;)'®(x) is called kernel function
K(x;,x), a term responsible for transforming the dataset
implicitly (i.e., without detailing the exact mathematical
form of the function @, but only the resulting expression

D(x;)' D(x)).

N
fx)= ZN(ai—ai*)K(xi,x)—Fb (4)
i=1

In the study discussed here, the sigmoidal kernel
function K (x;,x) = tanh(yx'x + co), with parameters y and
co, was chosen after performing tests with linear, poly-
nomial, and radial basis kernel functions. The optimal
values of the SVM calibratable parameters, namely y and
co, were determined through a heuristic process using the
tune.svm function from the e1071 package in R. The tune.
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Figure 4 - SVM regression diagrams. In (a) we illustrate the basic concepts behind the SVM methodology (i.e., support vectors, optimal hyperplane, and
margin of error). (b) and (c) exemplifies the use of kernel functions to remap the data x; from a low- to a high-dimensional space ®(x;) where the regres-

sion process is easier to be accomplished.

svm function employs a 5-fold cross-validation strategy to
fine-tune the parameters of SVM models, by segmenting
data from 1993 to 2016 into five distinct parts. In each
iteration, four parts are used for model training while the
remaining one serves as validation, ensuring each segment
is validated once. This iterative approach facilitates a
comprehensive evaluation of the model’s effectiveness and
adaptability to different data subsets. Once this process is
finished, the function provides the best-tuned model, mak-
ing it ready for use in predictions.

2.3.3.2. SVM input variable selection

Correlation-based feature selection is a method used
in machine learning to select the most relevant predictors
for a model based on their correlation with the target vari-
able. This method is particularly useful in reducing the
dimensionality of a dataset and improving model perfor-
mance. In our precipitation forecast problem, the final set
of predictors effectively considered was optimized for
each grid cell using as a selection criterion the correlation
between the time series of each predictor and the CPC
precipitation anomalies. Only predictors with correlations
above 0.2 or below -0.2 make up the input set for SVMs.
This range encompasses predictors with varying degrees
of correlation strength, extending from weak to extremely
strong, as classified in the work of Evans (1996). The
rationale for adopting a relatively low threshold value
stems from the observation that correlations between pre-
cipitation anomalies and climate indices typically do not
achieve substantial magnitudes.

At first glance, this value may not appear highly
selective. However, it grants the SVMs greater freedom to
explore the set of predictors, focusing on the most promis-
ing ones, and reduces the dimension of the problem by
discarding those with an absolute correlation value below

the threshold. In addition, it is important to remember that
SVMs also have a regularization term in the objective
function (Ridge penalization w?) (see Section 2.3.3.),
which minimizes the weights attributed to any other pre-
dictor that does not prove to be relevant to the model and
helps in dealing with multicollinearity by avoiding over-
reliance on any single feature.

2.3.4. Arrangement of models

In Section 2.3.1., we introduced three sets of predic-
tors for seasonal precipitation forecasting: CPC precipita-
tion anomalies, climate indices, and SEASS5 precipitation
anomalies. However, it is important to note, as detailed in
Sections 2.3.2 and 2.3.3, that not all the predictors listed in
Section 2.3.1 are incorporated into the data-driven models.
The exclusion of candidate predictors stems from the fact
that not all of them can explain the variability in seasonal
precipitation at the grid cells considered in this study. This
limitation becomes particularly apparent with climate
indices tracking teleconnection patterns that affect specific
Brazilian regions. In such cases, not all grid cell precipita-
tion anomalies are related to each climate index. There-
fore, a pre-selection process is necessary to determine the
most relevant predictors for the input dataset of each grid
cell.

In the process of constructing the MLR-based mod-
els, the Fisher Hypothesis Test is applied to refine the final
set of predictors by selecting those that have a statistically
significant relationship with the predicted variable (i.e.,
only those that significantly enhance the quality of the
regression model’s fit are retained). Conversely, for SVMs,
predictors are considered only if they have a correlation
greater than 0.2 or less than -0.2 with the recorded pre-
cipitation anomalies in each grid cell. Table 2 ranks the
predictors detailed in Section 2.3.1. according to their
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Table 2 - Ranking of key predictors used by MLR and SVM models for seasonal precipitation forecasting in Brazil (only for DJF months).

13

Data-driven model =~ Rank SE [320 grid cells] CO [542 grid cells] S [207 grid cells] NE [512 grid cells] N [1259 grid cells]
Variable % Variable % Variable % Variable % Variable %
MLR 1 CPC 54.7 CPC 47.5 CPC 342 CPC 29.0 CPC 31.1
MLR 2 SEASS 12.5 SEASS5 12.4 SEASS 14.4 PSA1 19.4 RG2SSTI 6.7
MLR 3 RG2SSTI 8.0 RG2SSTI 11.3 Nifo 1+2 6.7 SEAS5 13.0 SEASS 6.4
MLR 4 SAODI 6.1 TNA 5.5 RG2SSTI 54 SASDI 5.9 TNA 5.2
MLR 5 PSA1 5.8 PSA1 3.6 PSA2 4.1 RG2SSTI 52 ONI 5.0
MLR 6 TNA 3.2 Nino 1+2 2.9 Nifo 3 4.0 Nifio 3 4.8 Nifio 3.4 4.5
MLR 7 PSA2 3.0 SASAI 2.4 MEI 3.9 TSA 33 Nifio 4 4.1
SVM 1 CPC 67.3 CPC 63.7 CPC 47.4 CPC 522 CPC 374
SVM 2 SEAS5 13.5 SEASS5 12.7 SEAS5 9.5 SEAS5 10.4 SEAS5 7.5
SVM 3 PSA1 4.1 RG2SSTI 4.8 Nifo 1+2 43 PSA1 59 Nifio 4 4.6
SVM 4 TNA 34 TNA 3.2 Nifio 3 4.2 TSA 3.2 Nifio 3.4 4.2
SVM 5 RG2SSTI 3.0 PSA1 1.7 BEST 3.9 Nifio 3 3.0 RG2SSTI 4.0
SVM 6 SAODI 2.6 SASAI 1.5 SOI 3.8 Nifio 3.4 2.9 ONI 4.0
SVM 7 SASDI 1.0 Nifio 142 1.5 Nifio 3.4 3.8 SASDI 2.7 BEST 3.8

level of participation in data-driven models related to the
five geographical regions of Brazil. The percentage speci-
fied in this context illustrates the contribution of each pre-
dictor to the set of models developed for the grid cells
within SE, CO, S, NE, and N regions, with the table high-
lighting only the seven predictors most commonly used by
the models. The results reveal that CPC and SEASS pre-
cipitation anomaly data are commonly exploited across all
regions. In particular, CPC precipitation anomalies stand
out due to their substantial percentage in the input dataset
of both MLR and SVM models. This pattern indicates the
existence of autocorrelation in the precipitation anomalies
time series, a feature that is highly relevant to the data-dri-
ven models.

Regarding climate indices, there are noticeable re-
gional variations in those that are commonly employed. In
both the SE and CO regions, the indices RG2SSTI, TNA,
and PSAI, derived from SST anomalies in the Atlantic
Ocean and geopotential height anomalies at 700 hPa, are
commonly employed by the models. In the case of the NE
region, the models rely not only on PSA1 and Atlantic
Ocean indices such as SASDI, TSA, and RG2SSTI, but
also include a substantial number of indices associated
with the ENSO phenomenon, specifically Nifio 3 and Nifio
3.4. This pattern is even more pronounced in the S region,
where indices such as Nifio 1+2, Nifio 3, Nifio 3.4, BEST,
and SOI are notably prevalent. In the N region, the models
similarly feature a selection of indices that includes ONI,
Nifio 3.4, Nifio 4, and BEST.

The frequent integration of large-scale climate indi-
ces from both the Pacific and Atlantic Oceans underscores
the essential role of the oceanic conditions in forecasting
seasonal precipitation. In the Pacific, well-studied phe-

nomena like El Nifio and La Nifia exert a significant
impact on rainfall patterns in the S, NE, and N regions,
and are classified as the most influential teleconnection
patterns affecting South America (Reboita et al., 2021).
Conversely, in the Atlantic, SST anomalies and oceanic
dipoles influence the positioning of the ITCZ (Nnamchi
et al.,2011; Morioka et al., 2011; Mo and Higgins, 1998),
a key component that shapes the rainfall regime in the NE.

2.3.5. Framework of data-driven models

Figure 1 illustrates the key components of the seaso-
nal rainfall forecasting framework presented in this paper.
In this approach, data-driven models were constructed for
the grid cells within the entire Brazilian territory, incor-
porating time series of climate indices and precipitation
anomalies from the CPC and SEASS as predictors. The
parameters of the MLR and SVM models were tuned
using data from the period between January 1993 and
December 2016. In order to take into account the unique
characteristics of each annual season and the models’
diminishing predictive accuracy as the lead time extends,
individual models were developed for each month of the
forecast horizon and for each meteorological season
(MAM, JJA, SON, or DJF). This yielded a total of 28
data-driven models (four quarters x seven months) per
grid cell. As a result, the precipitation forecast for a spe-
cific grid cell is determined by adding the predicted pre-
cipitation anomaly (generated by the model created for a
specific season and month ahead) to the precipitation cli-
matology. The forecast for the next seven months is made
by executing the aforementioned procedure for each
month of the forecast horizon.



14 Aprimorando a previsao de precipitagdo sazonal no Brasil usando técnicas simples

2.3.6. Validation and evaluation metrics

To validate the MLR and SVM data-driven models,
we conducted a series of monthly backtest simulations
from January 2017 to December 2020, consistently fore-
casting precipitation up to seven months ahead. We chose
this particular time interval to align with the availability of
real-time SEASS forecast data, thereby establishing a
standardized timeframe that enables more straightforward
comparisons with the European seasonal forecast system.
While evaluating the models, precipitation forecast data
from MLR, SVM, and SEASS5 were initially segregated
based on the specific month (denoted as ‘month n’) within
the forecast horizon, and subsequently categorized by sea-
son (MAM, JJA, SON, and DJF). The segregation of data
is justified because forecasts for the initial months of the
time horizon are expected to be more accurate, and it is
relevant to assess how this performance diminishes over
time. Moreover, we aimed to examine the models’ perfor-
mance during the rainy season in the Southern Hemi-
sphere, specifically during the austral summer (DJF). This
objective led us to segregate the data by season, as illu-
strated by Fig. 5.

The datasets, organized by both the specific month
within the 7-month forecast horizon (represented as n,
where n =1, 2, ..., 7) and the season (MAM, JJA, SON,
and DJF), were evaluated to understand the models’ regio-
nal performance for bias and predictive accuracy. This
assessment employed two specific metrics: Mean Abso-
lute Error (MAE) and bias, along with a hypothesis test, as
proposed by Diebold and Mariano (Diebold and Mariano,
1995). A detailed explanation of these metrics and the
mathematical expressions used is provided in Table 3.

3. Results and Discussion

3.1. SEASS hindcast precipitation skill (1993-2016)

Figure 6 illustrates the spatiotemporal patterns of
MAE for precipitation forecasts made by SEASS (from
January 1993 to December 2016) for the austral summer
(DJF quarter) and months 1, 3, and 7 of the forecast hor-

izon. The main goal of this set of maps is to reveal for
which Brazilian regions the precipitation forecasts have
high or low predictive accuracy.

The results reveal that regions with the largest
MAE values are those where the SACZ affects the pre-
cipitation regime, from the Amazon Rainforest towards
the southeastern Brazilian coast, encompassing N, CO,
and SE. The SACZ is a meteorological system characte-
rized by the emergence of a large band of clouds when
stationary weather frontal systems, enduring for more
than three days, interact with tropical convection over
South America (Oliveira, 1986; Grimm et al, 2021;
Grimm, 2019). When active, the SACZ generates sig-
nificant levels of precipitation, and for this reason, it is
considered an essential meteorological system for the
precipitation regime of the SE and CO regions during the
rainy season. Regarding the S and NE regions, the pre-
cipitation forecasts are more accurate than those made for
the rest of Brazil. This is especially true for the NE sec-
tor, where the lowest MAE values are observed. How-
ever, as the forecast horizon progresses from month 1 to
3 and then to 7, the absolute errors become more pro-
nounced across Brazil. This trend indicates a marked
decrease in SEASS5’s predictive performance when the
forecast is made further in advance, particularly in the SE
region. To further illustrate this point, the corresponding
average of the MAE values for each region of Brazil is
shown in Table 4.

Figure 7 illustrates the spatiotemporal patterns of the
bias for the SEASS precipitation forecasts. The primary
aim of this second set of maps is to identify the regions of
Brazil where SEASS underestimates or overestimates total
precipitation, a feature that is crucial for understanding
how model performance varies across Brazil during the
rainy season. The results reveal that SEASS tends to over-
estimate precipitation in the S, SE, and parts of the CO and
N regions of Brazil, especially in sectors affected by the
SACZ, where the highest bias values are observed. Con-
versely, an opposite pattern is observed in the eastern N
and northern CO sectors, where the precipitation forecasts
tend to underestimate rainfall. In the case of the NE region
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n=6 | n=7 | [ n=5 |
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Figure 5 - Segregation of the seasonal rainfall forecasts according to the month of the forecast horizon (n =1,

>

2, ..., 7) and the season (MAM, JJA, SON,

and DJF). As an illustrative example, the figure shows the segregation procedure applied to the dataset related to the fifth month (rn = 5).
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Table 3 - Evaluation metrics and hypothesis test.
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Metric Description

Equation

Mean Absolute The Mean Absolute Error (MAE), as described by Mon-
Error (MAE) tgomery et al. (2008), measures the accuracy of a model by
determining the closeness between the predicted and observed
values of a variable. This is achieved by averaging the abso-
lute errors across a set of predictions. Since MAE is a metric
that directly compares forecasts to observed data, an ideal
value for this measure would be close to zero.

1
MAE = 737 s = (5)

where x,,; is the prediction made by model m for time ¢, and y; is the
measured value of the predicted variable for time .

Bias Bias is a metric that measures the average difference between
predicted gnd measured values o'f a vz.iriable (Pal, 20 }6). Si.nce bias = l Z[T . (xm.’t _ J/t) (6)
bias takes into account the resulting sign from the arithmetic T
operation, the metric can indicate whether the predicted vari- . . . .
able is systematically overestimated (positive bias) or under- where x;,,; is the prediction made by model m for time # and y; is the
estimated (negative bias) by the model. Ideally, the value of =~ measured value of the predicted variable for time 7.
bias should be close to zero. However, caution must be exer-
cised when analyzing this metric, as errors with opposite signs
and similar magnitudes can cancel each other out, as illu-
strated in Eq. (6).
Diebold-Ma-  The Diebold-Mariano test (Diebold and Mariano, 1995) is a Hy : E(d,)=0
riano Test hypothesis test largely used to compare the predictive accu- H, : E(d,)#0
(DMT) racy of two time series of forecasts A and B. The time series
of absolute (or quadratic) error, loss(e4,) and loss (e, ), are
compared along the time axis by the differential loss function DMTcare = (7)
d, = loss (eA_,) — loss (eB,,). If the expectation of d; is zero, A
and B have the same level of predictive accuracy (null
hypothesis Hy); otherwise, one of them is more accurate than
the other one (alternative hypothesis H,). The result of such a p-value =2 x [1 = CDF(DMT cqc)]
test is given by analyzing the p-value, a probability based on ~ where CDF is the cumulative distribution function of the DMT statistic;
the cumulative distribution function of the DMT statistic, h is the forecast horizon; y, is the autocovariance of d at lag k; n is the
according to Eq. (7). If p-value is lower (bigger) than the sig- 1 yumber of data points of each time series; and d is the mean value
nificance level a, we reject H, (accept Hy) and accept H, . . .
. of the differential loss function.
(reject H,).
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Figure 6 - Spatiotemporal pattern of MAE [mm/month] for SEASS precipitation forecasts in the austral summer (DJF). The precipitation data from the
hindcast simulations (January 1993 to December 2016) were accumulated and assessed according to the months of the forecast horizon (months 1, 3, and 7).

of Brazil, the bias sign alternates according to the month
of the forecast horizon, and can be predominantly negative
or positive, as shown in Fig. 7b. and c., respectively.
Table 4 not only supports these maps, but also indicates
that the SE, CO, and N regions exhibit an almost con-
tinuous increase in positive bias as the month of the fore-
cast time horizon advances from 1 to 7, particularly in the
SE and CO regions where the highest mean bias values are
found.

The results presented herein are similar to those
reported by Gubler ef al. (2020). The authors were the first
to investigate the performance of the SEASS temperature
and precipitation forecasts in South America using data
from rain gauge stations as the ground truth. Although
precipitation forecasting is a challenging task to perform
for reasons such as the intermittent nature of precipitation,
the strong dependence of rainfall on local factors, and the
absence of proper equations for this variable (Lopez,
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Table 4 - Average MAE and bias for SEASS precipitation forecasts (January 1993 to December 2016) in the rainy season (DJF), by region and month of
the forecast horizon.

Region Month of the forecast horizon
1 2 3 4 5 6 7 1 2 3 4 5 6 7
MAE [mm/month] Bias [mm/month]
S 58.79 62.71 62.71 63.01 61.36 62.26 62.55 24.70 11.94 13.97 12.75 5.30 4.34 4.17
SE 62.73 80.12 79.08 80.03 83.67 84.51 84.51 20.06 33.20 35.33 34.70 39.70 38.24 38.74
N 69.06 76.19 75.84 76.69 76.83 78.51 79.55 8.64 11.25 12.38 14.40 16.67 17.21 21.97
NE 43.93 54.86 54.48 57.10 58.37 59.54 61.79 3.65 1.05 -0.25 1.21 6.47 12.06 21.34
CcO 69.35 77.62 77.42 76.70 78.81 79.96 78.87 22.55 32.74 34.30 3291 36.50 36.51 36.55
Value
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Figure 7 - Spatiotemporal pattern of bias [mm/month] for SEASS precipitation forecasts in the austral summer (DJF). The precipitation data from the hind-
cast simulations (January 1993 to December 2016) were accumulated and assessed according to the months of the forecast horizon (months 1, 3, and 7).

2007), SEASS presents a high performance in the NE and outlined in Fig. 1. This approach combines data-driven
S regions of Brazil, which are regions where ENSO has a models with information from climate research centers to
strong influence on rainfall variability. The skill of SEASS refine precipitation forecasts in Brazil.

forecasts in regions influenced by ENSO underlines the

model’s ability to represent one of the main teleconnection 3.2. DJF precipitation forecast skill of SEASS, MLR,

patterns affecting the seasonal precipitation in Brazil. and SVM (2017-2020)

In the case of western Amazonia and other extra- The present section provides a comprehensive over-
tropical sectors in Brazil, disregarding the southern sector view of the validation results derived from the simulations
of the S region (Rio Grande do Sul), the performance of conducted from January 2017 to December 2020, using
the SEASS precipitation forecasts is low according to MAE and bias as evaluative metrics. The primary objec-
Gubler ef al. (2020), a result that was again validated in tive is to evaluate the predictive accuracy of MLR and
this study. The dynamical system performs poorly in the SVM data-driven models, comparing them with SEASS5 to
N, CO, and SE regions of Brazil during the rainy season. It identify which model yields better performance for the
produces high MAE values and tends to overpredict rain- DJF quarter. A secondary aim is to examine the regional
fall in these regions. Notable exceptions to this pattern are variations in the skills of these models.
the eastern part of the N region and the northern area of Figure 8 presents the spatiotemporal pattern of MAE
the CO region, where the biases are negative. for predictions made by SEASS and the data-driven mod-

Considering the aforementioned results and given els (MLR and SVM). The set of maps shows that the NE
the importance of seasonal rainfall predictions for society, and S regions have the lowest MAE values, with slight
it is clear that there is a pressing need for ongoing differences in the predictive performance of the models.
improvements to forecasting models. With this in mind, Such outcomes suggest that in regions where seasonal

the following sections discuss the results of the framework rainfall variability heavily relies on ENSO, data-driven
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Figure 8 - Spatiotemporal pattern of MAE [mm/month] for SEAS5, MLR, and SVM precipitation forecasts in the austral summer (DJF). The precipita-
tion data from the forecast simulations (January 2017 to December 2020) was accumulated and assessed according to the months of the forecast horizon

(months 1, 3, and 7).

models do not significantly increase forecast accuracy
compared to SEASS5. This can be attributed to SEASS5’s
ability to reproduce the teleconnection patterns that impact
the NE and S regions during ENSO events. The model
also exhibits a robust capacity to forecast precipitation in
these areas, a finding previously confirmed by Gubler
et al. (2020) and Ferreira (2021). This skill is thus reflec-
ted in the MLR and SVM data-driven models, as they
employ ENSO-related climate indices and SEASS pre-
cipitation anomalies as predictors.

However, in the case of the SE, CO, and N regions
of Brazil, there is a noticeable difference in the predictive
performance between the data-driven models (MLR and
SVM) and SEASS. The ECMWF’s dynamic system main-
tains the same spatial pattern of errors observed in the
hindcast simulations, although it is accompanied by
increased MAE values. A potential explanation for these

elevated MAE values could be that in the SE region, as
well as in certain parts of the CO and N regions, surface-
atmosphere interactions occurring from spring to summer
exert a significant influence on the seasonal evolution of
precipitation. These interactions may not be adequately
captured by dynamical models. Grimm et al. (2007)
uncovered a significant connection between the peak
summer monsoon rainfall in Central-East Brazil and the
preceding spring conditions, with a notable inverse corre-
lation, especially during ENSO years. This relationship
has been attributed to a proposed surface-atmosphere
feedback mechanism that factors in spring soil moisture.
Lower rainfall in the spring leads to reduced soil
moisture and higher surface temperatures by the end of the
season, triggering anomalous convergence and cyclonic
circulation over Southeast Brazil. This, in turn, increases
the moisture flux from northern and central South America
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into Central-East Brazil, contributing to heightened pre-
cipitation levels in this region. As shown in Fig. 8 (a., b.,
and c.) and Table 3 in the previous section, the largest
increase in MAE is observed in the SE and CO regions
during the early months of the forecast horizon. This may
result from shifts in precipitation anomalies from spring to
the subsequent summer, which are driven by regional sur-
face-atmosphere interactions. Such interactions are inade-
quately represented in dynamical models, which tend to
exhibit persistent anomalies from spring to summer. Data-
driven models, which leverage observed precipitation
from prior periods as predictors, may more effectively
capture these interactions.

The escalation in forecast error observed from the
first to the third month, compared to the moderate increase
from the third to the seventh month, as depicted in Fig. 8
(d. through 1i.), suggests that certain regional processes
introduce a significant error in December-February (DJF)
forecasts based on initial spring conditions. However, this
error does not significantly magnify with longer forecast
lead times. This pattern, observed in both MLR and SVM
models, highlights the critical impact of early-season con-
ditions on short-term forecast accuracy without a propor-
tional increase in error for forecasts extending further into
the future. When it comes to data-driven models, despite
their predictions showing higher error values, it is note-
worthy that they consistently outperform SEASS across all
forecast horizon months. This suggests that machine
learning techniques, whether linear (such as MLR) or non-
linear (such as SVM), have the potential to enhance the
accuracy of seasonal precipitation forecasts in Brazil.

To further supplement the findings in Fig. 8, Fig. 9
displays the boxplot distributions of the MAE for the
SEASS, MLR, and SVM models. The boxplots depict the
MAE distributions for each Brazilian region and month
within the forecast horizon. Each boxplot illustrates the
MAE distribution for grid cells within the Brazilian
regions, whereas the seven sets of boxplots (n=1, 2, ..., 6,
and 7) correspond to the respective months of the forecast
horizon. The results show that the data-driven models
consistently outperform SEASS in terms of average error
across the N, SE, CO, and S regions for nearly all months
of the forecast horizon, especially in the case of the CO
region, where the disparity is most notable. When it comes
to the S region, the difference in predictive performance
between the models is less pronounced compared with the
N, SE, and CO regions. However, in the NE region, the
MLR model exhibits a higher average MAE and falls short
of surpassing SEASS5 in terms of predictive accuracy.
Considering the overall performance of these models
across all regions and months, the SVM consistently
yields more accurate precipitation forecasts. This outcome
suggests a nonlinear relationship between the precipitation
anomalies and the selected set of predictors, effectively
captured by the SVM using a sigmoidal kernel function.

To complement the analysis previously presented,
Fig. S1 in Supplementary Material displays the MAE cal-
culated considering the precipitation anomaly forecasts
from the SEASS5, MLR, and SVM models. Specifically for
the SEAS5 model case, the anomalies were computed by
subtracting the hindcast long-term mean of total precipita-
tion from the forecasts of total precipitation. Regarding the
spatial distribution of errors, maps in Fig. S1 exhibit a pat-
tern that mirrors the one observed in the analysis of the
MAE based on total precipitation data (see Fig. 8). Higher
errors are observed in the SE, CO, and N regions of Brazil,
while in the NE and S the error magnitude is diminished.
The average MAE and bias values by region and model in
Table S1 from Supplementary Material reinforce the
results from the maps, and also provide new insights.
When comparing models across regions, SVM forecasts
are found to be more accurate in all regions and months of
the forecast horizon, except for months 1, 2, and 3 in the S
region, where SEASS5 outperforms the others.

According to specialized literature (Willmott, 1981;
Wilks, 2011; Robeson and Willmott, 2023), MAE and
other error metrics can be decomposed into systematic and
unsystematic components. This decomposition allows
researchers and analysts to better understand the nature of
the errors generated by their models, facilitating more tar-
geted improvements. The systematic component, denoted
as MAE;, represents the portion of the error that is con-
sistent across different observations and reflects biases in
the model’s predictions, such as consistently overestima-
ting or underestimating the actual values. Conversely, the
unsystematic component, denoted as MAE,, includes the
random errors that remain after the systematic errors have
been accounted for. These errors vary from one observa-
tion to another, illustrating the inherent uncertainty in the
model’s predictions that cannot be easily corrected through
model adjustments.

The process of decomposing MAE into its systema-
tic and unsystematic components involves statistical tech-
niques such as regression analysis. Specifically, this
decomposition employs the ordinary least squares (OLS)
regression (x) of the model predictions (x) on the observa-
tion (y). For the systematic component, the mathematical
definition is given by MAE; = + ZtT 15 e = yi|, where
s, = |X; — yy| is the difference between the OLS predictions
and the actual observations. Conversely, the unsystematic
component is given by MAE, = lTEtTZI b=yl In
this context, u, = |x, — X,| quantifies the difference between
the model’s raw predictions and its OLS-adjusted predic-
tions, at each time step ¢. Table S2 in Supplementary
Material displays the outcomes of the MAE decomposi-
tion, conducted using precipitation anomaly data for each
Brazilian region (SE, CO, S, NE, and N). Note that the
values displayed in Table S2 are the systematic and unsys-
tematic components of the MAE values from Table S1.



Torres et al.

19

a.S
100 e 8 8
=
15 >
g %0 S8 O] o w[ O B o[ € b ©f € b © ©l » ©l ©
= <
1 2 3 4 5 6 7
b. SE
300
5200 ‘
= o} ] ) @ e )
g 8 [ 7 8 [ 1 b
ElOO < ©l n ol Rl © N é ~ QO o, ©
& i R[] ®| P o © © o ® K o @ T o o 2 o o L
o $ :
1 2 3 4 5 6 7
c.N
300 a s i (
5 g 2
_20 g § : s PV i § ¢ 8 0 5 | Model
g QN3 R @ o NI - Lol © o O = -0 2 Qo o E SEASS
=
O ]
1 2 3 4 5 6 7
d. NE
i i ° ‘
100 ° 9 ' § 9
E= To)
= . | SR -
é . %m 10 2_1 i o Gl o 5
: |
1 2 3 4 5 6 7
e.CO
250 . P o @ °
200 H 0 : § o 3 8 ° 3 i
150 p ¢ : 8 § 8 i ¢ :
=] = [2) I~ I~
g100 E
= — - B S — i
E 50!l ~ ~ o @ @ @ @ e @ %)
1 2 3 4 5 6 7

Figure 9 - Boxplot distributions of MAE [mm/month] for SEASS, MLR, and SVM precipitation forecasts in the austral summer (DJF). Each boxplot
encompasses the errors computed for the set of grid cells within the Brazilian regions and the seven sets (n =1, 2, ..., 6, and 7) correspond to the months of

the forecast horizon.

These integral MAE values from Table S1 indicate that
SVM forecasts exhibit higher accuracy across all regions
when both systematic and unsystematic components are
combined. Expanding on this point, Table S2 further
reveals that, through the lens of MAE,, the MLR model

stands out for its higher accuracy in S, SE, N, and CO
regions (in the NE region SVM performs better), which
means that the MLR is more proficient in reducing sys-
tematic errors. However, when it comes to unsystematic
errors, MAE,, the results change. The SVM model stands
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out for providing the lowest values of MAE, in the SE,
NE, and CO regions, while the SEAS5 model outperforms
in the S and N regions. This indicates that the performance
of SVMs, as observed in Table S1, arises from their ability
to reduce unsystematic errors.

Multiple studies have already confirmed the effec-
tiveness of nonlinear models in addressing seasonal pre-
cipitation forecasting challenges (Xu et al., 2020; Darji
et al., 2015; Choubin, 2016; Xu et al., 2018; Fan et al.
2023). They excel in capturing intricate and nonlinear
relationships between predictors and precipitation, thereby
providing a more accurate representation of complex pat-
terns and dynamics. The flexibility of nonlinear models
allows for the incorporation of additional predictors, such
as climate indices and soil moisture, enabling an adaptable
and nuanced representation of the underlying processes

v SEAS5-1

Latitude
Latitude

that drive precipitation variability. However, it is crucial to
acknowledge that employing nonlinear models alone does
not guarantee enhanced predictions. The selection of a
suitable set of predictors that explain at least part of the
precipitation variability within a region plays a critical
role in the nonlinear modeling process. For this reason, in
this research study, we selected climate indices that are
associated with teleconnection patterns affecting rainfall
in Brazil, and also explored the relationship between pre-
sent and past precipitation anomalies.

The spatiotemporal pattern of bias for SEASS5, MLR,
and SVM precipitation forecasts is depicted in Fig. 10.
The set of maps shows that SEASS has an intense positive
bias in the N, CO, and SE regions, indicating a systematic
tendency to overestimate the precipitation during the rainy
season. This finding agrees with the results of the hindcast
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assessment (January 1993 to December 2016) and is also
supported by the evaluation conducted by Ferreira (2021).
However, it is noteworthy that the positive bias intensifies
during the forecast period (January 2017 to December
2020) in comparison to the hindcast period. The strength-
ened positive bias observed during the forecast period can
be attributed to the nature of hindcast simulations. Hind-
casts, according to Risbey et al. (2021), operate under per-
fect conditions compared to real-time forecasts. They
enable a more comprehensive incorporation of initial con-
dition data, along with the tuning and calibration of the
model based on events that are part of the model’s testing
phase. These aspects mean that the skill observed in hind-
casts may not accurately reflect the true skill of real-time
forecasts. Hindcasts have some kind of “artificial skill,”
which refers to a skill that would not be attainable in a
real-time forecast due to some aspect of the idealized nat-
ure of the hindcast. Thus, the higher skill of the SEASS5
hindcast dataset over the SEASS real-time forecast dataset
is an expected result, given that the circumstances under
which forecasts are conducted in a hindcast scenario are
more advantageous.

In addition to the reduction in predictive accuracy
between 2017 and 2020, the collection of maps from
Fig. 10 further shows that SEASS may increase the fre-
quency or intensity of the SACZ during the DJF quarter.
This may account for the high bias values detected in the
N, CO, and SE regions. As previously mentioned, the
influence of regional processes over central-eastern Bra-
zil was established in studies by Grimm and Zilli (2009)
and Grimm et al. (2007). Interactions between surface
and atmosphere tied to late spring soil moisture have
profound effects on the rainfall patterns during the aus-
tral summer. This leads to marked changes in the impact
of teleconnection patterns, such as ENSO, in this region
during the monsoon season. The authors also argue that
dynamic models fall short in accurately reproducing this
effect in precipitation forecasts, often indicating a con-
tinuity of rainfall anomalies from spring into summer.
Unlike SEASS, the MLR and SVM models generally
show less pronounced positive biases, especially in the N
region, where the bias is nearly neutral. When it comes
to the NE and S regions, both the data-driven models and
SEASS predominantly display positive biases, but less
pronounced than those in the remaining regions of Bra-
zil.

The boxplots in Fig. 11 corroborate Fig. 10 and
reveal new information about the precipitation forecasts.
The data-driven MLR and SVM models manage to reduce
the average bias throughout Brazil, particularly in the SE,
CO, and N regions, where the proposed models demon-
strate a superior performance compared to SEASS. For the
S region, we also notice a trend of increasing positive bias
throughout the forecast horizon, whereas a contrasting
trend is evident in the NE region. Comparing the outcomes
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of the SEASS5, MLR, and SVM models, it is clear that the
SVM outperforms the other models by producing the least
biased predictions for nearly all regions and months within
the forecast horizon. Exceptions are observed in the N
region, where the MLR model outperforms the SVM in
some months.

3.3. General precipitation forecast skill of SEASS,
MLR and SVM models (2017-2020)

Figure 12 shows the spatial pattern of the Diebold-
Mariano test for the precipitation forecast of the SEASS,
MLR, and SVM models. This hypothesis testing process is
designed to identify the regions of Brazil where predic-
tions from a specific model are significantly more accurate
than those from a competing model. The analysis takes
into account a lead time of seven months ahead, with
simulations initialized every month from January 2017 to
December 2020.

Maps a. and b. show that both the MLR and SVM
models produce more accurate precipitation forecasts than
SEASS in the N, SE, and CO regions. This is particularly
evident with the SVM model, which has more green grid
cells in map b. These regions are strongly impacted by the
SACZ during the austral summer. This meteorological
system is responsible for much of the total precipitation
observed over an extensive part of South America. For the
other regions, it is worth noting that the MLR model typi-
cally delivers predictions that are less accurate than
SEASS, whereas the SVM model’s precipitation forecasts
are akin to those generated by the ECMWF dynamic sys-
tem. Similarly, the S region in Brazil is a sector where
none of the models particularly stands out. In fact, there
are grid cells within the S region for which one or another
model presents better predictive performance.

Regarding map c. from Fig. 12, which compares the
predictions of the two proposed data-driven models, we
observe a distinct result. The SVM model generates sig-
nificantly more accurate predictions in approximately half
of the grid cells over Brazil, highlighted in green. For the
remaining grid cells (colored in yellow), there is no sig-
nificant difference in predictive performance between the
models. Taking these observations into account, it
becomes evident that the SVM model is especially suited
for enhancing the accuracy of seasonal precipitation fore-
casts over Brazil, as it outperforms the competing models
in a majority of the grid cells.

In Fig. 13, the time series of the CPC precipitation
analysis is presented alongside the one-month-ahead pre-
cipitation forecasts derived from MLR, SVM, and SEASS.
Each time series in the figure represents the average pre-
cipitation related to the grid cells within the N, NE, SE,
CO, and S regions. The graphs indicate that the three
models accurately represent the precipitation regime
throughout Brazil. The N, NE, CO, and SE regions have
clearly defined precipitation patterns, allowing for easy
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encompasses the errors calculated for the set of grid cells within the Brazilian regions, while the seven sets (n =

respective months of the forecast horizon.

identification of the months corresponding to the rainy
(from October to April) and dry (remaining months) peri-
ods in Brazil. In contrast, the S region exhibits a more uni-
form rainfall distribution throughout the year. The SEASS5
precipitation forecasts for the rainy period in the N, SE,
and CO regions typically exceed the values recorded by
the CPC. This result agrees with maps a., b., and c. in
Fig. 10, where a strong positive bias can be observed. On
the other hand, the precipitation time series from the MLR
and SVM models are more adherent to the CPC precipita-

1,2, ..., 6, and 7) correspond to the

tion analysis, indicating a superior predictive performance
compared to SEASS. This trend continues into the dry
period, where forecasts from all models generally align
closely with the CPC data, with the exception of the
SEASS forecasts for the N region, which tend to over-
estimate the precipitation. In the specific case of the S
region, predicting monthly precipitation variability is a
unique challenge, independent of the annual season. This
difficulty highlights the complexity of forecasting in this
area, stemming from the region’s dependence on the
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the sectors of Brazil for which

i

months ahead, and the monthly predictions made from January 2017 to December 2020. The set of maps depicts, in colors

the predictions made by a specific model are significantly more accurate than those made by the competing model.

Model

—— CPC-Global

— MLR
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Figure 13 - Time series of precipitation forecasts for January 2017 to December 2020 from MLR, SVM, and SEASS models. The average precipitation

for each Brazilian region is computed considering the results for the first month of the forecast horizon.



24 Aprimorando a previsao de precipitagdo sazonal no Brasil usando técnicas simples

occurrence of high-frequency transients, as noted by
Reboita et al. (2010).

The results demonstrate that, in general, data-driven
models refine precipitation forecasts in Brazil, especially
in the N, CO, and SE regions. Despite the advantage of
having equations with physical interpretation, numerical
dynamical models like SEASS are affected by uncertain-
ties related to initial conditions, parameters, deficiency of
model physics, and model structure. On the other hand,
models based on MLR and SVM, which are also affected
by several sources of uncertainty, have a crucial advantage
over numerical dynamical models: the ability to identify
relationships between inputs and outputs and use them
with new input data to make predictions. This character-
istic of data-driven models provides an even greater
advantage when explored using a set of predictors whose
relationships are physically sustained, such as in the case
of climate indices related to teleconnection patterns affect-
ing precipitation in Brazil (Reboita et al., 2021), and other
important variables not yet considered in our study, such
as soil moisture (Grimm et al., 2007; Grimm and Zilli,
2009). Regarding the assessed models, the results reveal
that the model based on SVM generates more accurate
predictions than MLR, which suggests the existence of
nonlinear relationships between the precipitation and the
selected predictors. In fact, the linear model suffers from
major disadvantages, as mentioned before by Fan et al.
(2023), such as the inability to map nonlinear dependen-
cies between predictors and the variable that is being pre-
dicted, which results in the loss of the nonlinear
components of this relationship in the modeling process.
Conversely, data-driven models based on nonlinear
approaches, such as the SVM implemented here, do not
suffer from such a deficiency and are consequently able to
provide better predictions. Therefore, in future research,
emphasis should be placed on investigating other non-
linear data-driven approaches, as well as optimizing the
pre-processing of predictors to effectively explore the
relationship between dependent and independent vari-
ables.

4. Conclusion

In this study, we present a MLR- and SVM-based
framework designed to refine seasonal rainfall forecasts in
Brazil, employing climate indices and precipitation
anomalies from CPC and SEASS as predictors. Unlike
dynamic models, in which equations encapsulate physical
processes, models grounded in machine learning employ
mathematical expressions that do not provide a direct
interpretation of physical phenomena. Data-driven models
extract information from a set of predictors, learn the rela-
tionship between them and the forecast variable, and then
apply this learned relationship to generate forecasts using
novel input data. Consequently, their ability to make a

prediction that meets physical expectations depends on
both the correct choice of predictors and the utilization of
a suitable mathematical structure to model the relation-
ships.

Considering the aforementioned issues, the data-dri-
ven models developed in this study were designed to
explore a base of predictors that varies spatially, depend-
ing on the relevance of the relationship with the precipita-
tion anomalies observed for each grid cell in the study
area. To illustrate, a model specifically tailored for a parti-
cular grid cell in the Northeast region of Brazil incorpo-
rates predictors capable of explaining at least part of the
rainfall variability in that sector. It assimilates information
intrinsic to climatic teleconnection patterns (e.g., the influ-
ence of ENSO on the precipitation regime of Northeast
Brazil) as well as local processes, subsequently applying
this acquired knowledge to generate predictions from a
new set of input data.

The findings presented in Section 3 of this study
demonstrate that the models introduced herein enhance the
accuracy of precipitation forecasts for some grid cells.
This enhancement is particularly notable in several Brazi-
lian regions, including the North (N), Southeast (SE), and
Central-West (CO). These regions, which are notably
influenced by the SACZ, a primary atmospheric system
that triggers precipitation during the austral summer, exhi-
bit a persistent positive bias. This result suggests that the
SEASS, MLR, and SVM models may tend to increase the
frequency or intensity of the SACZ. A potential explana-
tion for this could be the regional surface-atmosphere
interactions related to soil moisture in late spring, which
influence the precipitation regime (including the SACZ) in
central-eastern Brazil (SE and parts of CO) (Grimm ef al.,
2007; Grimm and Zilli, 2009). This regional aspect may
not be adequately represented in the models, notably in the
case of SEASS, which displays a distinct positive bias.

The performance of the models, compared to the
other regions, particularly stands out in the NE and S
regions. In the DJF quarter, the accuracy of precipitation
forecasts made by SEASS5 and the data-driven models
does not show a significant disparity. However, the SVM
model outperforms SEASS in both cases. It is important to
note that precipitation in these sectors is strongly asso-
ciated with the ENSO phases (Reboita et al., 2021), a cri-
tical climate driver that impacts Brazil’s precipitation
regime. These findings suggest that SEASS5 effectively
encapsulates the impact of these climate forcings on the
precipitation forecasts. This characteristic is also reflected
in the MLR and SVM models, as they use SEASS data and
climate indices related to ENSO as predictors.

When the predictions from SEASS and the data-dri-
ven models are assessed and compared, we observe that
SVM makes more accurate and less biased predictions
than the remaining models for the austral summer. This
result suggests the existence of nonlinear relationships
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between the predictors and precipitation anomalies, which
the MLR model cannot capture. Furthermore, upon con-
ducting a more stringent statistical analysis using the Die-
bold-Mariano hypothesis test (o = 0.05) across predictions
made for all seasons, it is confirmed once again that
SVM'’s precipitation forecasts are either significantly more
accurate or on par with those generated by SEASS for the
SE, CO, and N regions. However, it is critical to note that
SVM’s performance is also a function of the selected pre-
dictors, as they account for a substantial portion of the
precipitation variability.

In future research, the primary goal is to refine pre-
cipitation forecasts for Brazil by exploring advanced tech-
niques for ensemble prediction generation, input variable
selection, as well as time-series decomposition (such as
wavelet multiresolution analysis). A key focus will be on
probabilistic forecasting to better represent the uncertain-
ties in precipitation forecasts. One approach we are con-
sidering is Bayesian model averaging, which is a
sophisticated approach to explore different data-driven
models (including models beyond SVMs and MLR, like
Ridge regression and random forest) based on their pos-
teriori probability distributions.
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Supplementary Material

Figure S1 - Spatiotemporal pattern of MAE [mm/month] for
SEASS, MLR, and SVM precipitation anomaly forecasts
in the austral summer (DJF). The precipitation anomaly
data from the forecast simulations (January 2017 to
December 2020) were accumulated and assessed accord-
ing to the months of the forecast horizon (months 1, 3, and
7).

Table S1 - Average MAE and bias for precipitation anomaly
forecasts (January 1993 to December 2016) in the rainy
season (DJF), by region and month of the forecast horizon.
The smallest error values are colored in green.

Table S2 - Average MAE for precipitation anomaly forecasts
(January 1993 to December 2016) in the rainy season
(DJF), by region and month of the forecast horizon. The
smallest error values are colored in green.
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