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Abstract

Research around the world has focused on developing ways to predict hydraulic parameters in water distribution systems. The 
application of  these forecasts can contribute to the decision-making of  water distribution systems managers, aiming to ensure that 
the demand is met, and even to reduce water losses. The present work sought, among two data prediction models (ARIMA and Multi-
Layer Perceptron Artificial Neural Networks), to assess which one can perform best predictions of  pressure and discharge rate data. 
To reach the stipulated goal, real data were obtained from a water supply network provided by NUMMARH - Nucleus of  Modeling 
and Simulation in Environment and Water Resources and Systems of  the Federal University of  Itajubá, Brazil. These data initially 
underwent an adjustment so that it was possible to develop a computer program. The results showed that the best prediction model for 
the data in question was ARIMA, presenting a mean absolute percentage error (MAPE) of  8.54%. Thus, it is concluded that ARIMA 
models are easy to build and apply, being an advantageous tool to predict such hydraulic parameters.
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Resumo

Pesquisas ao redor do mundo vem se concentrando em desenvolver maneiras de prever parâmetros hidráulicos em sistemas de 
distribuição de água. A aplicação destas previsões pode contribuir para a tomada de decisão dos gestores dos sistemas de distribuição 
de água, visando a garantia do atendimento da demanda, e até mesmo a redução de perdas de água. O presente trabalho buscou, dentre 
os modelos ARIMA e Redes Neurais Artificiais do tipo “Perceptron” de múltiplas camadas, identificar qual é capaz de realizar a melhor 
previsão de dados de pressão e vazão. Primeiro foram obtidos dados reais de uma rede de abastecimento de água em região de topografia 
irregular, que foram coletados pelo grupo de pesquisa NUMMARH - Núcleo de Modelagem e Simulação em Meio Ambiente e Recursos 
e Sistemas Hídricos, e fornecidos para execução deste trabalho. Os resultados mostraram que o melhor modelo de previsão para os 
dados em questão foi o ARIMA, apresentando erro médio percentual absoluto (MAPE) de 8,54%. Como conclusão identificou-se 
que os modelos ARIMA são de fácil construção e aplicação, sendo assim uma vantagem para se prever tais parâmetros hidráulicos.

Palavras-chave: Redes neurais artificiais; ARIMA; Parâmetros hidráulicos; Previsão.
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INTRODUCTION

In water resources, data prediction models are applied 
in researchs to make different predictions in supply systems in 
numerous cities around the world, being the basis for optimizing 
the operation, planning and management of  water distribution 
networks (Zubaidi et al., 2019). There are a vast number of  
stochastic (linear) prediction models as well as models based on 
artificial intelligence (non-linear) that can have diverse applications 
in water distribution networks according to Jetmarova et al. (2017), 
and neural network models of  the Multi-layer Perceptron (MLP) 
type and integrated regressive models such as the autoregressive 
integrated moving average (ARIMA), objects of  study in this paper.

Perceptron Multilayer Neural Networks (MLP) are tools 
with great potential for use in water distribution networks. Jang & 
Choi (2017) compares the use of  MLP with multiple regression 
analysis to estimate non-revenue water in Incheon, selecting 
173 measurement and control districts (DMA) to apply the techniques, 
in addition to six parameters, two of  which operational (energy 
demand rate and number of  leaks) and four physical (average 
diameter of  pipes, length of  pipes, water sent to the network and 
index of  deteriorated pipes), obtaining with the MLPs an average 
absolute error of  6.2, being better than multiple regression model 
with mean absolute error of  10.0, recommending its use instead 
of  multiple regression.

Ghosal et al. (2019) adopt MLPs as the basis of  a new 
multivariable prediction platform for modeling water distribution 
networks, while Kamiński et al. (2017) carried out an evaluation 
of  a water distribution network through neural networks in their 
work, while Awad & Zaid-Alkelani (2019) used MLP and statistical 
models to predict urban water demand, since forecasts allow 
better planning of  network operation and maintenance, reducing 
operational costs and shortages due to failures.

Lorente-Leyva et al. (2019), also presented the application 
of  an artificial neural network model to forecast water demand with 
time series. This method provided a forecast without the need to 
include factors such as number of  consumers and meteorological 
indices. This model was compared with traditional forecasting 
methods such as ARIMA and proved to be better for this type 
of  application as it approaches real consumption behavior, since 
ARIMA tends to adjust and attenuate forecasts, making them 
more constant.

Lopez Farias et al. (2018) list a set of  models, such as 
the autoregressive integrated moving average model (ARIMA), 
MLP, among others, used to predict demand in water distribution 
networks, while Gharabaghi et al. (2019) used the ARIMA model 
in the city of  El Paso, Texas, United States, to predict the city’s 
monthly water consumption. Using climatic and economic variables 
and water disposal rate as input data into the model, they were able 
to identify that climatic and economic issues have more influence 
on water consumption than the hydraulic variables themselves. 
However, for the MLP approach, the need to improve the quality 
and accuracy of  the models was identified.

Another application of  the ARIMA model is presented 
at Guarnaccia et al. (2020), which they used in the case study of  
a distribution network reservoir in the Benevento area, in the 
Campania region, in Italy. The study consisted of  applying the 
ARIMA model to data collected from May 2018 to January 2019, 

finding the best adequacy of  the data to meet the demand and 
seasonality of  the system. For the authors, the model applied in this 
case study proved to be efficient, as the residual data analyzed by 
its simulation are in accordance with those observed in the system.

The use of  ARIMA in conjunction with other models has 
already been developed, as seen in Xu et al. (2019), which brought a 
new water level prediction model, based on the interaction between 
the ARIMA model and the RNN (Recurrent Neural Network) 
model. The experiment was applied to Lake Taihu, in China, where 
water level data from a period of  30 days and environmental 
vectors were used to develop this method. The application of  this 
interaction occurs with ARIMA obtaining the predicted residual 
value of  the water level in the study area, and the RNN adjusts 
these residual sequences. According to the authors, this model 
is better used than traditional models, as it allows working with 
linear and non-linear data.

Still in the study brought by Du et al. (2020), they presented 
the use of  the autoregressive moving average model (ARIMA) to 
estimate daily consumption data, modified by the Markov chain, 
called ARIMA-M. This joint use makes it possible to correct 
the forecast error, reducing the overlap of  continuous errors, in 
addition to improving the estimation of  future daily consumption 
data. This model works by connecting historical data based on 
the ARIMA model to the Markov model to predict the trend of  
future data. Thus, ARIMA is modified, improving prediction error 
and predictability. To confirm the developed method, data from 
2016 to 2017 of  daily water demand in Guangdong province, 
China, were used.

Zubaidi et al. (2018) used a combination of  simple spectrum 
analysis and MLP as a new approach to predict monthly water 
demand using climate factors, proving to be a reliable and efficient 
model with R = 0.972 for seasonal data. Adamowski et al. (2012) 
compared several data forecasting models to predict daily demand 
in the city of  Montreal, Canada. Thus, they used the following 
prediction models: Multiple Linear Regression Model (MRLM), 
Multiple Nonlinear Regression Model (MRNLM), Autoregressive 
and Integrated Moving Average Model (ARIMA), Artificial Neural 
Network Model (MRNA) and finally the Coupled Wavelet Model. 
with Artificial Neural Networks (WA-MLP), the latter being the 
most promising.

It is observed that many papers use techniques involving 
different methods, including MLP (and its variants) or ARIMA, 
individually or together, to predict demand in networks (Bo et al., 
2021; Porto et al., 2021; Lopez Farias et al., 2018; Pandey et al., 
2021; Shirkoohi et al., 2021). However, for pressure prediction, 
the main concern of  this work is with the occurrence of  pressure 
peaks and the detection of  leaks, as this is an operational emergency, 
as can be seen in Alizadeh et al. (2019), Wu & Liu (2017) and 
Zhou et al. (2019).

Thus, Lima et al. (2018) show a model for near real-time 
estimation of  node pressures for water distribution networks using 
MLP fed by real-time pressure monitoring data. MLPs have shown 
the advantage of, in case of  possible data failures, reducing the 
chance of  estimation errors, as they have a large set of  input data 
for training that allows the prediction to be carried out. Xu et al. 
(2020) address pressure prediction based on deep learning through 
LSTM (Long-Short Term Memory) Neural Networks, obtaining 
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more accurate predictions and capable of  detecting abnormal events 
in the networks, but at the cost of  greater model complexity, with 
higher computational cost to obtain the prediction.

This paper, therefore, applies the comparison between 
two of  the main methods used for historical series forecasts 
(ARIMA and MLP) to carry out pressure and discharge forecasts 
in the network under study, whose data were obtained from the 
NUMMARH-UNIFEI research group in campaigns previous field 
trips. The novelty of  this article is to use only the ARIMA model, 
without combining it with other models, to carry out pressure 
forecasts in a real network sector in a mountainous terrain region, 
as it is usually used for forecasts of  historical series, and to carry 
out a comparison with the results obtained by the MLP. The MLP 
is the most common method of  pressure predictions, considering 
that in regions of  irregular topography, large pressure oscillations 
are expected to occur, with consequent difficulty in predicting 
such parameters. Thus, the objective of  this work is to identify 
which of  the two models obtained the best performance in a real 
and unfavorable situation, with a view to future development of  
software for use in water distribution networks.

METHODOLOGY

This work was structured based on the steps represented 
in the discharge rate graph in Figure 1, which will be detailed in 
the following topics.

Obtaining raw data from the study site

Pressure head (m) and discharge (l/s) data obtained by the 
NUMMARH research group at the Federal University of  Itajubá 
were used, in a measurement campaign that took place in 2014, 
from September 20 to 28, in a city in the south of  Minas Gerais, 

a region whose irregular topography proves challenging for all 
aspects of  the operation of  a water distribution network, especially 
pressure variations in the network due to topographic heights.

According to Vieira (2019), it appears that this city is 
touristic and had a population of  41,657 inhabitants in 2010, with 
the most recent projection being 45,448 inhabitants for the year 
2018. Furthermore, the population density of  the municipality 
is approximately 718 inhabitant/ m2 and its area is 58,019 km2.

Pressure meters were then installed in the homes of  network 
consumers and discharge meters were installed at the inlet and outlet 
of  the water supply network. Thus, Figure 2 presents a schematic 
of  the network used in this study, as well as the data collection 
points (defined as network nodes and identified by numbers).

Table 1 shows how the network nodes are distributed across 
neighborhoods and the number of  residences per neighborhood.

The information obtained about the distribution of  network 
nodes by neighborhood, as well as the number of  residences, is 
presented in Table 1. Pressure head data was gathered at 30 min, 
obtaining 350 readings per node, and flow was at 10 min, obtaining 
1152 readings per node.

Preliminary treatment of  data

After carrying out the measurement campaign, the pressure 
and discharge rate values   of  the measurement sensors, which 
collected data every 10 or 15 min, were stored in an electronic 
spreadsheet format, made available by the NUMMARH research 
group. Thus, this stage was characterized by obtaining this raw 
data and processing it so that the following steps could be carried 
out. The raw data can be found in the supplementary file of  this 
paper for consultation.

In the subsequent steps, all were carried out with the aid 
of  an algorithm developed in the R programming language, from 

Figure 1. Methodology followed in this research.
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organizing the dataset into dataframes (two dataframes, one for 
data measured every 10 min and the other for data measured every 
15 min), which is a large data matrix, where the measurement times 
were organized in rows, and the network nodes in columns, and 
then the pressure or discharge rate values   were filled into each 
cell of  the dataframes.

Multi-Layer Perceptron Artificial Neural Networks 
(MLP)

The Artificial Neural Network used in this article is of  the 
feed-forward Multi-Layer Perceptron (MLP) type, with input layers, 
a simple hidden layer and an output layer, as shown in Figure 3. 
The neurons in the input layer (17) distribute the signals for the 
neurons of  the hidden layer (9), being connected through weights, 
and the hidden and output layers have the activation function. 
1000 epochs were used for the MLP in question.

The importance of  the activation function comes from 
its ability to control the level of  activation and the strength of  
the output signal of  an artificial neuron. In general, we seek to 
use non-linear activation functions, as this characteristic allows 
greater competence in approximating functions (Amaral, 2020). 
The activation function used is sigmoidal, σ (z), which can be seen 
in Equation 1, where z is the input signal.

( ) ( )
1  

1 −
σ =

+ z
z

e  (1)

ARIMA model

The functioning of  the ARIMA model is explained by Equation 
2, where the moving average (MA) process is presented (Bueno, 2018).

1 t t ty µ ε θε −= + +  (2)

where tε  is a white noise that represents the stochastic process error, 
 µ is the parameters of  autoregressive portion of  model and θ  is 

parameters of  moving average. As the process ty  is a function of  
the contemporary error tε  at time t, and the immediately preceding 
error 1tε − , it is said that this is a process of  moving averages of  
order one, called MA (1), where q = 1. If  this same process 
depended on the error of  two previous steps 2tε − , it would be of  
order two, MA (2), where q = 2.

Still a process of  moving averages (MA) of  order q, that 
is, its generalized form for q lags is represented by Equation 
3 below (Bueno, 2018).

Figure 3. Structure of  a multilayer perceptron (MLP).

Figure 2. Location of  measurement points.
Source: Vieira (2019).

Table 1. Network nodes and the neighborhoods to which they belong.
Neighborhood Moradas da Serra Vale dos Pinheiros Palmela

No. of  residences 73 218 201
Nodes 62 85 108 114 115 51 103 11 112 113 109 116 117 14 105

Source: Vieira (2019).
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Evolving in the processes that constitute the prediction 
model, we have the autoregressive processes (AR), which are 
represented by Equation 4, where Φ is, like µ , parameters of  
autoregressive portion of  model and tε  is the contemporary error 
(Bueno, 2018).

1 y  ε−= +Φ +t t ty c  (4)

Thus, it is white noise that represents the error, but as 
this stochastic process depends on previous observations of  its 
time series, it is called autoregressive of  order one (p = 1), AR(1). 
If  this process depended on two previous observations this would 
be an AR(2), where p = 2, and so on. Finally, an autoregressive 
process of  order p is given by Equation 5.

1 1 2 2
1

 y y y   ε ε− − − −
=

= +Φ +Φ +…+Φ + = + Φ +∑
p

t t t p t p t j t j t
j

y c c y  (5)

By combining the two types of  processes, AR(p) and MA(q), 
we have the ARIMA (p,q) process, the so-called autoregressive 
moving averages, according to Equation 6.

1 0

  θ ε− −
= =

= + Φ +∑ ∑
p q

t i t i j t j
j j

y c y  (6)

In this way, a process is obtained in which it is possible 
to know the variable of  interest at time “t” based on errors from 
previous times and based on its own observed values, that is, from 
its own historical series (Bueno, 2018).

Development of  the program for time series analysis 
and data forecasting

After preliminary processing of  the data (pressure and 
discharge rate obtained from field tests), the construction of  the 
program began using the R language to perform a statistical analysis 
(with data prediction bias) and the prediction itself. Figure 4 shows the 
graph of  the discharge rate of  the algorithm developed in this work.

The entire program was developed in the RStudio 
programming environment. First, the data was imported, which 
was in .xls format, using the read.xlsx tool from the xlsx() library 
(Dragulescu & Arendt, 2020). The program then processed the data, 
transforming the data values   from each node in the network into 
a time series using the ts function that belongs to the prediction 
library (Hyndman et al., 2020).

Still at this stage, the time series were separated into testing 
periods (September 21st to 25th) and training periods (September 
26th and 27th), using the window() function. These datasets 
were stored in new variables. Subsequently, the entire time series 
was decomposed for statistical analysis, related to forecasting 
models. For this decomposition, the decompose function from 
the prediction library was also used.

Then, using the training data set of  all analyzed time series, 
the ARIMA model was created for each node in the network, 
using the auto.arima function also from the prediction library. 
With the models established, the prediction function of  the same 
library was applied to them. This has the function of  forecasting 
the data, based on the model created previously.

Then, using the precision function from the prediction 
library, statistical performance metrics were calculated, calculating 
the efficiency of  each ARIMA prediction model and observing 
the difference between the values   generated in the prediction and 
the separate values   for the test sets. This same sequence was used 
to create the MLP models (creation of  models using the training 
sets, and application of  the prediction function to predict the data), 
using the nntar function, and the precision function to calculate 
the performance metrics of  these models .

Figure 4. Operation diagram of  the program developed in this work to make predictions of  hydraulic parameters.
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Finally, all graphs were plotted, placing the original dataset 
in contrast to the predicted data, which was exported in figure 
format. Statistical performance metrics were also exported in the 
form of  tables. To evaluate the efficiency of  the models, statistical 
performance metrics were calculated, which can be observed in 
Chai & Draxler (2014), namely:

• MAE - Mean Absolute Error: This statistical performance 
metric calculates the difference between the values   presented 
by the forecast and the actual measured values   (in absolute 
terms) and then applies an average to this data set given 
by Equation 7 where n is the number of  samples and ei 
is the error obtained for each iteration i. Therefore, the 
lower the MAE value, the better;

1

1 
n

i
i

MAE e
n

=

= ∑  (7)

• RMSE - Mean squared error. Calculates the standard 
deviation of  the sample, that is, the difference between 
what was predicted and what was measured, therefore, 
the lower the RMSE value, the better. As can be seen in 
Equation 8, n is the number of  samples and is the error 
obtained for each iteration i;

2

1

1 
n

i
i

RMSE e
n

=

= ∑  (8)

• MAPE - Mean absolute percentage error, essentially being 
the mean absolute error (MAE) in percentage terms.

RESULTS AND DISCUSSIONS

Program created to generate the data prediction 
models

The result of  this research was a program used to generate 
data prediction models, as well as to perform the prediction. Thus, 
Figure 5 shows its structure in detail through a graph of  discharge rates.

This structure allowed the program to perform its function 
successfully, in an optimized way. The step that consumed the most 
time and processing was installing the library packages, but this step 
is only performed the first time the program uses these functions. 
Therefore, in general, this structure with its own programming language 
can be recommended for the development of  future applications, 
as it generates lightweight files that are quick to be executed even on 
notebook-type personal computers and is easy to implement and, 
due to its modularity, can be adjusted for other variables.

Simulations generated from the ARIMA model

For the nodes where pressures were measured (nodes 14 to 
116), the average, maximum and minimum of  the performance 
metrics were calculated.

With these data, it is observed that the ARIMA model 
constructed has a good representation, that is, it fits well to the data 
sets. This statement is based on MAPE, since taking the average 
of  this indicator across all nodes in the network that measured 
pressure, there is an error of  only 2.48% in the training period 
and there is still a maximum error of  5.93%.

In the training stage, the program itself  builds the model, 
using data from the training set as a reference. Therefore, as the 
program at this stage has this set as a reference, it is expected that 
the performance metrics will be low, since the main objective of  
the model is to minimize these metrics.

By analyzing the test set, the program generates the data 
prediction without having a reference to reach as an answer. 
The model generates the prediction and then the program calculates 
the difference between the generated prediction and the test set 
that was previously separated. Error measurements were higher 
as the model tries to predict data for an uncertain future. But even 
so, the data shows that good predictions were obtained, as average 
errors of  8.54% (MAPE) were calculated.

Considering all the analyzes provided above, the two best 
predictions generated by the ARIMA prediction model from 
the point of  view of  performance metrics were selected, which 
were node 14 and node 111, presented in Figure 6 and Figure 7. 
And the worst prediction (node   51), according to statistical metrics 
presented in Figure 8. It is important to highlight that there is 
uncertainty in the forecasts (blue line), explained by the light gray 
(95% of  confidence) and blue (90% of  confidence) shaded areas in 
the graphs, as well as remember that the comparison of  forecasts 
being better or worse is based on the metrics, which give an idea 
of    how well the model fits the predictions.

Combining the graphical analysis of  the data with the analysis 
of  statistical performance metrics, it was identified that the node 
that obtained the best result was 111, as the graph showed that 
the peak demand movements were well represented and between 
the nodes with the same characteristics as the forecast result, they 
obtained the lowest RMSE (1.97 m) and MAPE (1.65%).

It is possible to verify that the worst forecast from the 
point of  view of  statistical performance indicators was for node 
51. However, it is possible to notice that the actual measured 
data underwent a change because the behavior of  the measured 
pressure did not follow the trend of  the previous days. Otherwise, 
this forecast would likely have much better statistical performance 
indicators. This anomaly in the pressure behavior occurred due 
to the functioning of  the system at the time of  measurement, 
therefore the prediction was impaired due to such an event.

Simulations generated from the MLP model

To understand the dataset through an overview, you can 
check at supplemental material (tables), which show the average, 
maximum and minimum of  the statistical performance metrics, 
for the nodes where pressures in m were measured.

By observing in supplemental material (tables), it is possible 
to identify that the results obtained presented considerable errors, 
with an average value of  16.47% (MAPE), and a maximum 
value of  approximately 60%. By analyzing the statistics of  the 
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performance metrics, it is now possible to identify that the model 
did not fit the data set.

Furthermore, nodes 51, 72, 103, 112, 113, 116 and Vila 
Nova presented MLP models that were not able to make the 
forecast, that is, they did not follow the peak demand movements. 
Thus, the best predictions for the MLP models were selected, 
which were for nodes 14 and 109, represented in Figure 9 and 
Figure 10. The worst prediction generated by the MLP model 
was also selected, which was node 113, represented in Figure 11.

After analyzing all the data presented for the MLP models, 
it was verified that the same situation mentioned above, in the case 
of  the ARIMA models, occurred for node 14. In other words, 
this node was the one that presented the lowest RMSE (1.66 m) 
and MAPE (1.76%), however, from the graphical analysis, it 

Figure 5. Program developed in R language for data prediction.

Figure 6. Forecast generated by the mathematical model ARIMA, 
in node 14.
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was clear that this node was not the one that presented the best 
prediction. This was expected, as the data set from node 14 shows 
little variation and the forecast results were around the average, 
failing to represent peak demand movements.

Finally, it was possible to observe that the node with the 
best prediction was 109, as it was able to represent the peaks in 
demand of  network users, their consumption pattern and presented 
the lowest RMSE (3.63 m) and MAPE (36%), when compared to 
the other nodes. Node 113 had the worst forecast, but here again 
it was found that the forecast was hampered by events related to 
network operation, which caused anomalous pressure values   and 
generated data which, in turn, caused disturbances in the MLP mode.

Comparison of  performance of  ARIMA × MLP 
models

For better understanding, the results were separated into:
• Satisfactory: Forecasts that were able to express peak demand 

movements and consumption patterns of  network users;

• Unsatisfactory: Forecasts that somehow failed to represent, 
in one or more forecast periods, peak demand movements 
and consumption patterns of  network users;

• No significant forecast: The forecast results did not keep 
up with the data in the testing period and are considered 
non-significant.

Thus, it was possible to count the actions as shown in 
Figure 12.

In terms of  the volume of  forecasts considered satisfactory, 
the ARIMA model stands out, presenting more than twice as 
many good forecasts. As for unsatisfactory results, that is, those 
in which the forecasts came to follow the data measured in some 
period of  the forecast, but which in general did not go well, the 
number is very close. Therefore, it appears that the reason for 
the ARIMA model to stand out in relation to the MLP model, 
for this specific work, were the models that did not present a 
significant prediction.

Table 2 shows that the statistical performance metrics are 
in agreement with the visual analysis, as on average the RMSE and 
MAPE of  the MLP models are twice that of  the ARIMA models.

Figure 7. Forecast generated by the mathematical model ARIMA, 
at node 111.

Figure 8. Forecast generated by the mathematical model ARIMA, 
at node 51.

Figure 9. Forecast generated by the MLP model, at node 14.

Figure 10. Forecast generated by the MLP model, at node 109.

Figure 11. Forecast generated by the MLP model, at node 113.



RBRH, Porto Alegre, v. 29, e12, 2024

Silva et al.

9/11

Finally, taking into account all the analyzes presented above, it 
is possible to state that for this specific work, considering the applied 
artificial neural network (unidirectional with hidden layer, which is 
provided by the nnetar function, from the prediction package) the 
best model for prediction of  hydraulic parameters using only its 
own time series, this is the ARIMA model, given its simplicity of  
implementation through the prediction library in R language, standing 
out as a tool for evaluating losses caused by excess pressure on water 
distribution networks with potential for future development aimed 
at developing an application or computer program.

CONCLUSIONS

In general, it was possible to verify that these prediction 
techniques are viable for these types of  data. Furthermore, it was 
found that among the ARIMA models, the one that presented the 
best prediction was the model applied to node 111, as it obtained 
the lowest RMSE (1.97 m) and MAPE (1.65%) values. In the 
case of  the MLP models, it was node 109 with the lowest RMSE 
(3.63 m) and MAPE (3.36%) values.

Even so, the importance of  combining graphical analysis 
with the analysis of  performance indicators was justified, as for 
node 14 the lowest values   of  statistical performance indicators 
occurred. However, the graphs indicate that the forecast was 
unable to identify peak demand movements and consumption 
patterns. This fact was caused by the low pressure variation at 

the node, and the forecasts present values   close to the average 
pressure.

After all these steps, it appears that both techniques were 
able to generate data predictions and the ARIMA model was 
determined as the one that best represents the data prediction 
for this water supply network in question. It was also possible to 
observe that the MLP used in this work is not the best for this type 
of  forecast. Therefore, for future work, it is recommended to use 
more robust neural networks that allow adjusting the activation 
functions of  neurons, as well as the number of  hidden layers.

Finally, ARIMA models are simpler to generate, more 
tools can build this type of  model and they have been applied 
for longer, therefore they have the advantage of  having more 
knowledge added over the years. Therefore, this type of  model 
represents well the prediction of  a real water supply network, as 
it has an average MAPE of  8.54%.

For future work, it is suggested to evaluate the performance 
of  hybrid models such as the combination of  Genetic Algorithms 
and MLP. It is also suggested to use MLP models with a greater 
number of  hidden layers, since the nntar function uses only one 
hidden layer to create the model, as well as the possibility of  using 
Long Short-Term Deep Learning Neural Networks Memory type 
to evaluate new predictions against the ARIMA model.
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