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ABSTRACT

The pursuit of  efficient water distribution network (WDN) projects that reflect the complexities of  real systems has spurred the 
development and application of  various optimization techniques. Among these, multi and many-objective optimization hold particular 
significance due to the intrinsic interplay between variables within water distribution networks. Within this domain, evolutionary 
algorithms have emerged as a promising optimization option, offering a range of  methodologies documented in the literature. To 
systematically evaluate these approaches, a methodology was devised to compare six evolutionary algorithms in the context of  water 
distribution networks optimization: NSGA-II, NSGA-III, U-NSGA-III, R-NSGA-III, MOEA/D, and RVEA, using two distinct 
objective functions. The comparative analysis utilized as key metrics the efficiency criteria (E), cumulative distribution function (CDF), 
error statistics and algorithm complexity. The findings revealed that while most algorithms successfully converged to the known global 
optimum of  the employed case study, NSGA-II and NSGA-III exhibited superior performance, notably in minimizing costs. These 
results demonstrate the efficacy of  these algorithms in tackling the complexities inherent in water distribution networks optimization, 
positioning them as leading contenders in this field.
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RESUMO

A busca por projetos eficientes de redes de distribuição de água (RDA) que refletem as complexidades dos sistemas reais tem estimulado 
o desenvolvimento e a aplicação de diversas técnicas de otimização. Entre estes, a otimização multi e muitos objetivos possui particular 
importância devido à intrínseca interação entre variáveis   dentro das redes de distribuição de água. Dentro deste domínio, os algoritmos 
evolutivos surgiram como uma via de otimização promissora, oferecendo uma gama de metodologias documentadas na literatura. Para 
avaliar sistematicamente essas abordagens, foi desenvolvida uma metodologia para comparar seis algoritmos evolutivos no contexto de 
otimização de redes de distribuição de água: NSGA-II, NSGA-III, U-NSGA-III, R-NSGA-III, MOEA/D e RVEA, utilizando duas 
funções objetivo distintas. A análise comparativa utilizou como métricas principais o critério de eficiência (E), a função de distribuição 
acumulada (FDA), análises estatísticas de erro e complexidade de algoritmos. As descobertas revelaram que, embora a maioria dos 
algoritmos tenha convergido com sucesso para o ótimo global conhecido do estudo de caso empregado, o NSGA-II e o NSGA-III 
exibiram desempenho superior, principalmente na minimização de custos. Estes resultados demonstram a eficácia destes algoritmos 
em lidar com as complexidades inerentes à otimização de redes de distribuição de água, posicionando-os como competidores líderes 
neste campo.
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a

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3026-1773
https://orcid.org/0009-0006-4864-4077
https://orcid.org/0000-0003-1747-8441
https://orcid.org/0000-0001-8845-9745


RBRH, Porto Alegre, v. 29, e39,  2/14

Comparison of  evolutionary algorithms applied to optimal design of  water distribution networks

INTRODUCTION

The variability in water demand poses a persistent 
infrastructure challenge for water utilities, whether they’re 
rehabilitating existing networks or expanding new ones and their 
components. The integration of  artificial intelligence into water 
distribution network (WDN) problems has transformed project 
planning and operation, shifting the focus from mere cost reduction 
to a multitude of  objectives. These include minimizing hydraulic 
failures, reducing losses from leaks (Creaco & Pezzinga, 2015), 
and enhancing water quality (Farmani et al., 2006).

By incorporating multiple objectives into WDN design, 
the analysis of  water distribution systems (WDS) can delve 
deeper, better reflecting the vast variability and heterogeneity of  
real-world systems in pursuit of  optimal projects. Works such as 
those by Kapelan et al. (2003), Fu et al. (2013), and Xiong et al. 
(2018) employed from two to six objectives for the calibration 
of  network models with optimal sensor placement for flow and 
pressure, as well as optimal design of  water distribution networks, 
varying the objectives from operational cost data to greenhouse 
gas emissions. Rather than aiming for a single best outcome, the 
focus shifts to identifying the optimal set of  solutions, or Pareto 
fronts. These fronts are scrutinized and analyzed through the 
trade-offs between the objectives. It is worth noting that the 
increasing number of  objectives employed hinders the finding 
and the analysis of  the Pareto front.

Various multi and many objective methods have been 
developed to seek Pareto fronts, with genetic algorithms, particle 
swarms, and ant colonies among the emphasized approaches. 
Within WDS optimization, evolutionary algorithms stand out 
as one of  the most utilized and well-established metaheuristics, 
grounded in Darwinian principles of  natural evolution (Maier et al., 
2014; Garzón et al., 2022). However, the unique characteristics 
of  WDN, including conflicting objectives, hydraulic constraints, 
and discrete variables, present optimization challenges. These 
challenges encompass convergence towards the Pareto front as 
well as inherent traits of  evolutionary algorithms such as fitness 
function, population diversity, and elitism.

This study undertakes a comparison of  six evolutionary 
algorithms applied to a WDN case study. The performance of  
NSGA-II, NSGA-III, U-NSGA-III, R-NSGA-III, MOEA/D, 
and RVEA is examined by varying their initial parameters through 
a series of  simulations and analyzing computational costs in 
terms of  time and efficiency. Additionally, statistical analysis is 
conducted to assess the variability of  the final results obtained 
and the complexity of  algorithms is investigated to understand 
their equation. The objective of  this article is to evaluate the six 
evolutionary algorithms, highlighting their strengths and weaknesses 
when applied to WDN, listing those that obtained the best results.

The subsequent sections are structured as follows: Section 
2 provides background information and discusses related work, 
while Section 3 describes the optimization methods employed. 
The comparison proposal, including scenarios, the case study, and 
metrics used, is detailed in Section 4. Section 5 presents the results 
obtained along with their analysis, and finally, Section 6 concludes 
the study and outlines potential paths for future research.

BACKGROUND AND RELATED WORK

Background

Optimal WDN sizing involves the pursuit of  optimal 
solutions within a vast solution space, guided by one or more 
objective functions and their associated constraints. The search for 
solutions that mirror real-world systems implies considering their 
inherent complexity, demanding a greater number of  objectives to 
be analyzed. Hence, recent studies tend to base their solutions on 
multi-objective and even many-objective models, recognizing the 
richer insights derived from considering a spectrum of  objectives 
tied to WDN, as opposed to a singular objective.

One of  the challenges associated with the number of  
objectives is the exponential growth in the number of  non-dominated 
solutions required to approximate the entire Pareto front. As the 
number of  objectives grows, visualizing the front in its entirety 
becomes increasingly difficult. Fu et al. (2013) demonstrated 
this complexity by visualizing six objectives in optimal water 
distribution network designs, highlighting the challenges posed by 
high dimensionality. Nevertheless, incorporating more objectives 
enhances stakeholders’ decision-making capabilities, providing a 
more comprehensive understanding of  optimal network designs.

Several methods were used for optimal sizing in WDN, 
such as simulated annealing (Marques et al., 2018), particle swarm 
(Suribabu & Neelakantan, 2006), genetic algorithms (Walker & 
Craven, 2020 and Johns et al., 2020) and ant colony (Shokoohi et 
al, 2017). Despite this array of  techniques, evolutionary algorithms 
enjoy considerable popularity due to their capacity to tackle intricate 
mathematical challenges, exploring both local and global optima, 
and seamlessly integrate with simulation models, thereby obviating 
the need for problem simplification (Maier et al., 2014).

Evolutionary algorithms are a population-based metaheuristic 
inspired by the processes of  biological evolution. Firstly, an initial 
population is made up of  several possible solutions, which are 
recombined through crossover and mutation operators, giving 
rise to new generations. While the crossover operator generates a 
new solution from two or more initial solutions, mutation causes 
random changes in the generated solutions, introducing a variety 
component. In this way, new populations are created that evolve 
towards the set of  optimal solutions for the given problem. Notably, 
the literature features various types of  evolutionary algorithms, 
including genetic algorithms, particle swarm optimization, 
MOEA/D, RVEA, among others, each with distinct methodologies 
and contributions, as elaborated in the subsequent subsections.

Related work

Evolutionary algorithms have been comprehensively applied 
in WDN for decades (Savic & Walters, 1997, Kapelan et al., 2003, 
Farmani et al., 2006, Sharma et al., 2022). Johns et al. (2020) employed 
genetic algorithms NSGA-II (Deb et al., 2002), MOALCO-GA 
and MOPS-GA incorporating the identification and elimination of  
hydraulic bottlenecks in networks and the smoothing of  diameters 
in connected networks for WDN design. Among these, MOPS-
GA demonstrated superior performance over NSGA-II in terms 
of  both optimal solutions and convergence time.
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Similarly, Yazdi (2016) explored NSGA-II, SPEAD2 (Zitzler et al., 
2001) and MOEA/D for network sizing in large-scale systems, 
with MOEA/D emerging as the top performer in terms of  non-
dominance and solution diversity. Shokoohi et al. (2017) used a water 
quality indicator based on chlorine residual and water age applied 
to the ant colony algorithm for optimal WDN design. The results 
obtained presented a lower final cost than the original project.

NSGA-II has been widely used to solve problems related to 
WDN, such as cost minimization (Fu et al., 2013), loss reduction 
through the optimal location of  pressure control valves (Creaco & 
Pezzinga, 2015; Creaco & Haidar, 2019) and calibration of  network 
models using an optimal location of  flow sensors (Zheng et al., 
2016). Its reliability and efficacy in seeking optimal solutions 
position NSGA-II as a benchmark for comparative performance 
evaluations with other algorithms. Additionally, Sharma et al. (2022) 
utilized NSGA-III, an improvement of  NSGA-II to handle many 
objective problems, to optimize measurement and control district 
boundaries, aiming to manage pressures and monitor water losses.

The great diversity of  evolutionary algorithms in the literature, 
combined with the diverse possibilities of  application in different 
areas, arises a necessity to benchmark their performance. El-Ghandour 
& Elbeltagi (2018) undertook such a comparison, evaluating five 
algorithms: genetic algorithms, particle swarm, ant colony, memetic 
algorithm and a modification of  the shuffled frog leaping algorithm. 
The particle swarm was the top performer across various metrics, 
including solution quality, efficiency, evaluations of  objective functions, 
and convergence speed. The authors did not use specific algorithms 
found in the literature, instead, they implemented them in order to 
investigate the performance of  the most common parameters involved 
in the optimization process. Unlike El-Ghandour & Elbeltagi (2018), 
this study employs improved evolutionary algorithms with established 
convergence and efficacy in optimization tasks.

Zhao et al. (2019) conducted a comprehensive analysis 
and comparison of  multi-objective algorithms, categorizing them 
based on decomposition, dominance, indicators and objective 
reduction. NSGA-III, based on dominance and classification 
improvement, and RVEA, based on decomposition, emerged 
as standout performers across two case studies. In the first case, 
utilizing the Deb–Thiele–Laumanns–Zitzler (DTLZ) (Deb et al., 
2006), RVEA showcased superior convergence and solution 
diversity and in the second case, the Walking-Fish-Group (WFG) 
(Huband et al., 2006), NSGA-III stood out for its performance. 
Although the work of  Zhao et al. (2019) evaluated six algorithms, 
with emphasis on NSGA-III and RVEA, the algorithms considered 
in our study differ, and our case study entails unique objective 
functions and constraints specific to the area of  WDN.

Given this context, this research aims to compare six 
evolutionary algorithms within the context of  a specific water 
distribution case study, namely the Alperovitz and Shamir system. 
By doing so, we aim to provide insights into the relative efficacy 
and applicability of  these algorithms in addressing the challenges 
inherent to water distribution optimization.

OPTIMIZATION METHODS

In this study, six state-of-the-art multi- and many-objective 
problem-solving algorithms were chosen. These algorithms include 

NSGA-II, NSGA-III, U-NSGA-III, R-NSGA-III, MOEA/D, 
and RVEA. In this study, it has been provided a brief  overview 
of  each algorithm’s characteristics and methodologies.

NSGA-II

The Non-Dominated Sorting Genetic Algorithm II 
(NSGA-II), introduced by Deb et al. (2002), employs a quick non-
dominance ordering procedure. Initially, this approach classifies 
the population into dominance fronts, separating dominated from 
non-dominated individuals. Subsequently, the process iterates, 
progressively assigning new dominance levels until all individuals 
are appropriately ranked based on their dominance status.

The clustering distance estimation procedure consists of  
ordering the population according to each objective function’s 
value, arranged in ascending order of  magnitude. For each 
objective function, the frontier solutions are identified with an 
infinite distance value, while intermediate solutions are marked 
with distance values   equal to the normalized absolute difference 
in function values between adjacent solutions. This calculation 
is applied iteratively across all objective functions. Ultimately, 
NSGA-II normalizes objective functions and computes the total 
aggregation distance by summing distances corresponding to each 
objective (Deb et al., 2002).

This association of  non-dominance ordering strategies 
and algorithmic distance calculation makes NSGA-II an efficient 
algorithm in tackling optimization problems characterized by 
conflicting objectives, thereby preserving the best solutions while 
maintaining diversity.

NSGA-III

The Non-Dominated Sorting Genetic Algorithm III (NSGA-
III) algorithm, developed by Deb & Jain (2014) and Jain & Deb (2014), 
offers a novel approach to tackling many-objective problems, akin 
to NSGA-II. A key departure lies in its selection operator. NSGA-
III initially requires reference points, which, in conjunction with 
the origin, delineate directions in the solution space. The generated 
solutions are normalized and then associated with a direction using 
the orthogonal distance between them. As the algorithm converges, 
non-dominated solutions exhibit minimal distances.

NSGA-III’s strategy of  decomposing many-objective 
problems into a sequence of  single-objective subproblems, 
coupled with its adept selection operator facilitating Pareto front 
exploration, renders it an invaluable tool for navigating complex 
multi-objective problem optimization.

U-NSGA-III

The Unified Non-Dominated Sorting Genetic Algorithm 
III (U-NSGA-III), devised by Seada & Deb (2016), presents a 
unified approach for addressing single, multi, and many-objective 
problems. It introduces a selection operator grounded in reference 
direction niches, which dynamically adjusts solution selection 
based on the problem’s dimensionality. This adaptation stems 
from employing a larger population size relative to the reference 
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directions and a selection operator that fosters randomness, choice, 
and the identification of  optimal solutions.

U-NSGA-III’s proficiency in handling one-to-many problems, 
yielding Pareto optimal solutions contingent upon the number of  
objective functions employed, positions it as a valuable tool for resolving 
optimization challenges and dissecting trade-offs comprehensively.

R-NSGA-III

Vesikar et al. (2018) introduced the Reference Point Based 
Non-Dominated Sorting Genetic Algorithm III (R-NSGA-III) 
algorithm, leveraging multiple reference points to search in specific 
segments of  the Pareto front and their corresponding populations. 
This targeted approach allows for the integration of  user preferences 
regarding the many objectives under scrutiny, facilitating the 
discovery of  desired solutions within the algorithmic framework.

The incorporation of  reference points enhances the search 
process across diverse regions of  the Pareto front, providing a 
rich array of  solutions. Moreover, focusing the search within 
predetermined regions of  the Pareto front theoretically boosts 
computational efficiency, rendering R-NSGA-III an effective tool 
for tackling optimization challenges.

MOEA/D

The Decomposition-Based Multi-objective Evolutionary 
Algorithm (MOEA/D) (Zhang & Li, 2007) decomposes a 
multi-objective optimization problem into N subproblems. Such 
subproblems are solved simultaneously through the evolution 
and consequent optimization of  the population of  solutions. 
Notably, the optimal solutions for adjacent subproblems exhibit 
close proximity, with each subproblem benefiting from the optimal 
solution of  its neighboring counterpart. In essence, the algorithm 
effectively explores the neighborhood relationships inherent 
among its subproblems.

MOEA/D’s straightforward approach to handling multi-
objective problems, coupled with its adept exploration of  solutions 
along the Pareto front via decomposition, renders it applicable to 
a wide array of  optimization challenges

RVEA

The Reference Vector guided Evolutionary Algorithm 
(RVEA) developed by Cheng et al. (2016) employs a scalarization 
approach, known as penalized angular distance, to dynamically 
balance the convergence and diversity of  solutions according to the 
number of  objectives and generations. Convergence is evaluated 
by measuring the distance between the candidate solutions and the 
ideal point, tailored to the problem type, for example, maximization 
problems feature the maximum value of  each objective function as 
their ideal point. Diversity is quantified by the acute angle between 
the candidate solutions and the reference vectors.

The integration of  reference vectors enhances for diverse and 
well-distributed solutions along the Pareto front, positioning RVEA 
as a viable choice for effectively tackling multi-objective problems.

While the algorithms discussed enjoy a solid foundation in the 
literature, it’s crucial to delineate the similarities and distinctions among 
the six specific algorithms scrutinized in the study. Table 1 highlights 
the key characteristics of  each algorithm, including whether they are 
designed for single, multi-objective or many-objective optimization, 
the optimization strategy adopted, the initial parameters, as well as 
the main advantages and disadvantages of  each.This comparative 
analysis act as a guiding study, revealing the unique traits and shared 
features inherent in each approach, providing deeper comprehension 
of  their respective strengths and limitations.

COMPARISON PROPOSAL

The comparison of  the six algorithms considered different 
scenarios, presented in the subsection 4.1. Here the formulations 
of  the objective functions, imposed restrictions, simulation input 
variables and adopted case studies are discussed. Following this, 
subsection 4.2 explores the metrics employed to compare the 
performance of  the algorithms.

Scenarios

WDN optimization problems are commonly related to the 
design of  network diameters in order to achieve specified objectives. 
In this context, additional information such as the topology of  
the networks, the minimum pressure to be met, the demands on 
the nodes and the operation of  the reservoirs are available.

The hydraulic simulation necessary for optimization was 
carried out using EPANET Software v 2.0 (Rossman, 2000) with 
an extended simulation period. The multi-objective optimization 
problem was tackled using the Python programming language.

The optimal design of  the present study considers two 
objective functions: maximizing the Modified Resilience Index 
(MRI) while minimizing costs.

Objective 1: Maximizing MRI

The Modified Resilience Index was proposed by Jayaram & 
Srinivasan (2008) and represents the percentage of  excess load on 
the nodes in relation to the required load on the nodes, given by:
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where 𝑞j is the demand at node j, h𝑎𝑗 is the pressure head available 
at node j and h𝑟𝑗 is the pressure head required at node j.

Objective 2: Minimizing costs

The cost function is determined by the product of  the 
diameter’s price and the length of  the section:
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where np is the total number of  pipes; 𝐶𝑖 the cost per unit length 
of  pipe i related to diameter 𝐷𝑖, 𝐿𝑖 the length of  the pipe and k 
is the regression coefficient.

The objective functions have restrictions related to the laws 
of  conservation of  mass in nodes and conservation of  energy in 
loops, given by Equations 3 and 4, respectively.

, ,

,   

in n out n

i j n
i NP j NP

Q Q S n NN
∈ ∈

− = ∀ ∈∑ ∑  (3)

with Q being the flow, npin, n the set of  pipes entering node n, 
npout,n the set of  pipes leaving node n, S the demand and NN 
the set of  nodes.

 

0,   
loop p

k
k

H p NL∆ = ∀ ∈∑  (4)

where ΔH is the head loss and NL the loop.

Table 1. Characterization of  algorithms.

Algorithm Type Optimization 
strategy Initial parameters Advantages Disadvantages

NSGA-II  
(Deb et al., 2002)

Multi Non-dominated Sorting 
and Crowding Distance

Initial Population It is a proven algorithm 
that uses Pareto 

dominance

Applicable to problems 
with up to 3 objectives 

due to the non-
dominated solution 
selection mechanism

Mutation Rate
Crossover Rate

NSGA-III  
(Deb & Jain, 2014)

Many Similar to NSGA-II, but 
uses reference points for 

the selection of  non-
dominated solutions

Initial Population Adaptively updates a 
well-distributed set of  
predefined reference 

points, effectively 
solving many-objective 
optimization problems

The quality of  the 
solutions depends on the 

selection of  reference 
points, which is typically 

provided based on 
the knowledge of  the 

specific problem

Mutation Rate
Crossover Rate

Reference points

U-NSGA-III  
(Seada & Deb, 2016)

Single, multi 
and many

Reference function niche 
selection operator that 
adapts to the problem’s 

dimensionality

Initial Population Proposed as a single 
algorithm for any 

number of  objectives

The need for 
adaptive updating and 

maintenance of  reference 
directionscan introduce 

additional computational 
overhead, which might be 
a concern for very large 
or complex problems

Mutation Rate
Crossover Rate

Reference directions

R-NSGA-III  
(Vesikar et al., 2018)

Many Selection of  reference 
points for optimal 

solution search

Initial Population Flexibility in handling 
various types of  

preference information, 
making it adaptable to 

different types of  multi-
objective optimization 

problems.

Highly dependent on 
the quality and accuracy 
of  the points preference 
information provided by 

the user

Mutation Rate
Crossover Rate

Reference points

MOEA/D  
(Zhang & Li, 2007)

Many Decomposition into 
subproblems that are 
solved simultaneously

Mutation Rate Decomposition of  
the multi-objective 

optimization problem 
into a set of  single-
objective problems. 

Introduces neighborhood 
relationships to share 

evolutionary information

Lack of  diversity and 
slow convergence 

speed in the later-stage 
evolution species

Crossover Rate
Reference Directions

Number of  Neighbors
Probability of  

Combining Neighbors

RVEA  
(Cheng et al., 2016)

Many Angular distance 
provides convergence 

and diversity to the 
solutions

Initial Population The reference vectors 
can not only be used to 
decompose the original 

multiobjective optimization 
problem into a number 
of  single objective sub-
problems, but also to 

elucidate user preferences 
to target a preferred 
subset of  the whole 

Pareto front

Difficulty in adapting the 
reference vectors to the 
distribution of  candidate 

solutions according to 
the estimated geometric 

characteristics of  the 
Pareto front

Mutation Rate
Crossover Rate

Reference directions
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The pressure loss is the difference between the loads of  
two nodes in a pipe, calculated using the Hazen-Willians formula:

1
1, 2, ,   k

k k k k k
k k

L
H H H w Q Q k NP

C D
β

β γ
−∆ = − = ∀ ∈ (5)

where w is a numerical constant that depends on the units used, C 
is the material roughness coefficient and β and γ are the regression 
coefficients.

The other restrictions of  the problem are related to the 
minimum pressures in the networks, given by Equation 6, the 
minimum diameter and available commercial diameters, related 
to Equations 7 and 8.

 ,   n n minH H n NN≥ ∀ ∈ (6)

where Hn min is the minimum pressure in each node.

,   k minD D n NN=≥ ∀ ∈ (7)

where Dmin is the minimum diameter.

,   kD D k NP∈ ∀ ∈ (8)

with D being the set of  commercial diameters.
In order to evaluate the performance of  the algorithms 

given the complexity of  the WDN, the simulations were carried 
out on Alperovits and Shamir system (Alperovits & Shamir, 1977).

Case study: Alperovitz and Shamir

The case study proposed by Alperovits and Shamir has 
6 nodes, 8 network sections of  1000 m and 1 reservoir of  fixed 
height of  210m. The minimum pressure at all nodes is 30m, the 
demand and quota information at the nodes can be viewed in 
Figure 1 and the unit costs of  the diameters are presented in Table 2.

The simulation scenario was designed to facilitate a comparison 
of  the six algorithms, with variable parameters including the initial 
population size and the probabilities of  recombination and mutation. 
The number of  generations was set at 1000, and each algorithm utilized 
the same initial random seed in every simulation. Nonetheless, six 
simulations were conducted with random seed variations to assess their 
impact on the results. The number of  partitions and reference points, 
consistent across all algorithms except NSGA-II, remained fixed.

4.2 Comparison metrics

The first comparison metric employed in this study was the 
Efficiency Criterion (E), formulated by Mora-Melia et al. (2015). 

Figure 1. Alperovits and Shamir network.

Table 2. Unit costs per diameter.
Diameter (mm) Cost (unit)

25.4 2.0
50.8 5.0
76.20 8.0
101.6 11.0
152.4 16.0
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This metric assesses an algorithm’s performance by balancing 
the quality of  solutions attained with the computational effort 
expended. The calculation of  E is defined by Equation 9.

q

c

n
E

n
=  (9)

where nc represents the convergence speed of  the algorithm, 
quantified by the total number of  objective function evaluations 
conducted until reaching the final solution and the quality of  the 
solution, nq, correlates with the proportion of  successful high-
quality solutions relative to the total number of  solutions acquired.

Good solutions are those that maintain a predetermined 
threshold value, indicating the number of  results falling below the 
user-specified lower limit in minimization problems. The calculation 
of  nq is determined by Equation 10.

s
q

sim

n
n

n
=  (10)

where ns is the number of  good solutions and nsim is the total 
number of  solutions obtained.

The second metric employed was the cumulative distribution 
function (CDF), which assesses the probability of  a variable being 
less than or equal to a specific value. It was utilized to scrutinize the 
variability of  diameters concerning costs. This method facilitates 
examining the diameters utilized to attain the minimum costs in 
the simulations, while also enabling an analysis of  the variability 
among the resulting diameters.

RESULTS AND DISCUSSIONS

In each simulation, the initial population sizes considered were 
10 and 100, with mutation probabilities of  0.01, 0.05 and 0.1 and 
crossover probabilities of  0.1, 0.5 and 0.9. All six algorithms shared 
the same initial random seed, resulting in six simulations utilizing 
six different seeds and six seeds. All analyzes were categorized 
based on the same population-cross-mutation trio of  results from 
the simulations, resulting in a total of  18 analyzes per algorithm.

Figure 2 depicts the Pareto front of  cost versus MRI for 
the six algorithms. Only the results from the second simulation 
were used, segregated into populations of  10 and 100 in order to 
emphasize variability, convergence, and result quantity for both 
populations. Notably, R-NSGA-III produced fewer results for 
both populations, with 18 results each. Although MOEA/D also 
appears to have fewer solutions, it yielded the same number as the 
other algorithms (around 1000), with its solutions concentrated at 
the extremes of  the graph, either minimizing costs or maximizing 
MRI. Conversely, other algorithms demonstrated similar behavior, 
yielding a more diverse array of  solutions, particularly outside 
the extremities.

The purpose of  the Pareto front is to identify trade-offs 
among different solutions, thereby identifying those offering the 
best cost-benefit ratio for decision-making. This is crucial because 
converging towards lower-cost solutions inherently entails reducing 
MRI, an indicator of  network quality. A lower MRI signifies 
increased vulnerability to demand variations or unforeseen events 
within the supply system, potentially compromising the system’s 
ability to maintain the minimum pressure required in the networks. 
Consequently, algorithms showcasing a greater diversity of  results 

Figure 2. Pareto front.
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are deemed preferable compared to those offering fewer results 
or solely converging on lower-cost solutions or maximal MRI. 
In light of  these criteria, NSGA-II, NSGA-III, U-NSGA-III and 
RVEA have exhibited superior performance over R-NSGA-III 
and MOEA/D.

While emphasizing the Pareto front is crucial for revealing 
trade-offs, the sheer quantity of  solutions – around 1000 for most 
of  the algorithms – poses graphical representation challenges. 
Hence, a strategy was adopted wherein, for every set of  population-
crossover-mutation parameters, only the minimum cost values and 
their corresponding MRI were selected. This approach enables 
us to scrutinize algorithmic behavior in achieving minimal costs 
amidst parameter variations. Given potential duplications of  costs, 
a bubble graph format was adopted to ensure clear visualization, 
accounting for frequency distributions as well.

In Figure 3, the convergence of  NSGA-II, R-NSGA-
III, and U-NSGA-III becomes apparent as costs hover around 
420000 regardless of  the initial parameters employed. Notably, 
these three algorithms yielded only two pairs of  results. In contrast, 
NSGA-III, RVEA, and particularly MOEA/D exhibited a wider 
diversity in minimum costs, although occurrences near 420000 were 
more frequent compared to other values.

This simplified Pareto front serves as a visual sensitivity 
analysis depicting how algorithms respond to variations in initial 
population parameters, crossover, and mutation rates. NSGA-III, 
RVEA, and MOEA/D emerge as the most responsive, showcasing 
a broad spectrum of  outcomes. This underscores the importance 
of  meticulously selecting initial parameters when employing these 
algorithms.

Figure 4 shows the Efficiency (E) obtained for the six 
algorithms considering all simulations, that is, the parameters 
for the number of  successes, simulations and objective function 
evaluations were added for each population-crossover-mutation 
grouping. The highest E were obtained by MOEA/D, RVEA 
and R-NSGA-III algorithms. In the case of  MOEA/D, the E 
peaks are the result of  the high number of  successes achieved, 
that is, costs less than or equal to 430000. For RVEA, the E peak 
is related to the low number of  simulations and consequently of  
evaluations of  objective functions. R-NSGA-III, on the other 
hand, presented the same number of  successes, simulations and 
evaluations of  the objective functions for all clusters, resulting 
in the constant value of  E. The remaining algorithms presented 
very similar behavior, especially for the initial population of  100.

Student’s T test was used to evaluate deviations from minimum 
cost values   obtained through sampling error. The sampling error 
represents the variability of  minimum costs in relation to their 
respective averages, visually depicted in graphical form. In this 
way, the average of  the minimum costs in each simulation for each 
group was computed alongside the sampling error. The requisite 
number of  samples for conducting the test equaled the number 
of  seeds used.

Figures 5 and 6 illustrate the results categorized by populations 
of  10 and 100, respectively. In instances where the hydraulic 
simulation failed to attain the minimum pressure of  30 mH2O, 
resulting in the application of  a cost penalty of  100000, such 
instances were excluded from the standard deviation calculation.

All algorithms exhibit higher error values   for the population 
of  10 in comparison to the population of  100, indicating greater 

Figure 3. Miminum costs of  Pareto Front.
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sensitivity of  this parameter in achieving lower cost values. 
Another factor that corroborates this evidence is that the average 
minimum costs were lower for the population of  100 compared 
to 10. Variations in the mutation and crossover rate parameters 
were not significant in terms of  reducing costs or errors.

Despite MOEA/D and RVEA algorithms displaying the 
highest E values, their errors were greater in comparison to other 
algorithms, signaling increased variability in results across both 
populations. This suggests that while these algorithms frequently 
achieve minimum cost values, they also exhibit a notable degree 
of  error in the process.

Table 3 presents the configurations and results for achieving 
the minimum cost with each algorithm. As all simulations were 
considered, the time results, ns, nsim, nc, nq and E, represent their 
cumulative values across the six simulations. U-NSGA-III was 
the only one that didn’t achieve the minimum cost of  419000, 
reaching 420000 instead. All algorithms used a crossover rate of  
0.1 to reach the minimum value, except NSGA-II, which required 
a crossover rate of  0.9.

In terms of  processing time, NSGA-II, NSGA-III, U-NSGA-
III and RVEA exhibited identical values of  23 minutes, while 
MOEA/D required 44 minutes and R-NSGA- III 154 minutes. 

Figure 4. Efficiency per algorithm.

Figure 5. Errors associated with average minimum costs for initial population of  10.
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Despite the high processing time, R-NSGA-III presented the 
highest success rate (nq) due to the smaller number of  simulations 
carried out and the second highest Efficiency (E), being surpassed 
solely by MOEA/D in this regard and considering this specific 
population-crossover-mutation configuration. Table 4 displays 
the optimal diameters computed for each section of  the system 
alongside the corresponding costs and MRI values for all algorithms.

Since the processing time in Table 3 represents the duration 
of  the six simulations under those configurations, Figure 7 illustrates 
the average time required to execute the 6 complete simulations, 
categorized by population size. Additionally, the sampling error 

of  the average time was calculated using the Student’s T test, 
similar to Figures 5 and 6.

MOEA/D exhibited significantly higher average processing 
time compared to other algorithms for the population of  100, 
while R-NSGA-III did so for the population of  10. Regarding the 
average error depicted by the bars, it was generally higher for the 
population of  100 across all algorithms, except for R-NSGA-III, 
which exhibited a larger error for the population of  10 compared 
to the population of  100.

The CDF was computed using the results obtained from 
the parameters outlined in Table 2 to scrutinize the variability of  

Figure 6. Errors associated with average minimum costs for initial population of  100.

Table 3. Simulation results for the lowest cost.
NSGA-II

Population Crossover Mutation Minimum cost MRI Time (min) ns nsim nc nq E
10 0.9 0.01 419000 15.68 23 2 60 60000 3.3% 5.56E-07

NSGA-III
Population Crossover Mutation Minimum cost MRI Time (min) ns nsim nc nq E

10 0.1 0.01 419000 15.68 23 4 60 59993 6.7% 1.11E-06

U-NSGA-III
Population Crossover Mutation Minimum cost MRI Time (min) ns nsim nc nq E

10 0.1 0.01 420000 17.22 23 2 60 59996 3.3% 5.56E-07

R-NSGA-III
Population Crossover Mutation Minimum cost MRI Time (min) ns nsim nc nq E

10 0.1 0.055 419000 15.68 154 6 12 371996 50.0% 1.34E-06

MOEA/D
Population Crossover Mutation Minimum cost MRI Time (min) ns nsim nc nq E

10 0.1 0.1 419000 15.68 44 9 60 60000 15.0% 2.50E-06

RVEA
Population Crossover Mutation Minimum cost MRI Time (min) ns nsim nc nq E

10 0.1 0.055 419000 15.68 23 2 60 59518 3.3% 5.60E-07
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the listed diameters. Particularly, the minimum cost of  419000 was 
achieved in all algorithms except for U-NSGA-III.

The CDF values   for NSGA-II, NSGA-III and U-NSGA-
III are very close, suggesting that similar diameters were obtained 

Table 4. Optimal diameters.

Pipe

NSGA-II, NSGA-
III, R-NSGA-
III, RVEA and 

MOEA/D

U-NSGA-III

Diameters (mm)
1 457.2 508
2 254 254
3 406.4 406.4
4 101.6 25.4
5 406.4 355.6
6 254 254
7 254 254
8 25.4 25.4

Cost (units) 419000 420000
MRI 15.68 17.22

in the final result. The RVEA’s CDF, despite also being similar 
to the aforementioned algorithms, diverges from the others at 
the beginning of  the graph due to a higher utilization of  the 
25.4mm diameter (approximately 14% of  the total). Aditionally, 
MOEA/D is the only one that significantly uses the diameters 
254 and 304.8mm, evidenced by the pronounced slope of  its 
graph at these points. The R-NSGA-III predominantly favors 
larger diameters, 355.6mm and mainly 558.8mm, at the expense 
of  smaller diameters.

The wider range of  diameters used in sizing WDN not only 
leads to increased logistical and operational costs for sanitation 
companies but also requires additional resources for managing 
and maintaining diverse parts and accessories. This includes the 
need for stocking spare parts tailored to each diameter size and 
allocating storage space accordingly. Moreover, the efficiency 
of  networks, particularly in terms of  minimizing pressure loss, 
is significantly enhanced when diameters are more uniform 
throughout the system.

In this regard, the R-NSGA-III algorithm stands out for its 
tendency towards less variation in diameters. In fact, diameters of  
50.8mm, 76.2mm, and 304.8mm were not utilized in any section 
of  the network by this algorithm. This uniformity suggests a 
more streamlined and cost-effective approach to infrastructure 
management.

Figure 8 provides a visual representation of  the CDF, 
offering insights into the distribution and utilization of  diameters 
across different sections of  the network.

Another significant aspect analyzed in this study was the 
complexity of  algorithms, which relates to the mathematical 
formulation of  each algorithm rather than the specific results 
they produce. Complexity analysis quantifies the computational 
effort required by an algorithm as a function of  the size of  the 
input data. This analysis offers valuable insights into comparing 
and selecting the most suitable algorithms based on factors such 
as input data size, available computational resources, and desired 
performance, for example.

Conventionally, the notation O is employed to denote time 
complexity, representing time as a function of  the size of  the Figure 7. Errors associated with average time processing.

Figure 8. CDF.
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input data. Table 5 outlines the complexity of  the six algorithms, 
where m denotes the number of  objective functions, N is the 
size of  the initial population, and T represents the number of  
solutions. NSGA-II, U-NSGA-III, and RVEA exhibit identical 
complexity, expressed in terms of  m and a quadratic relationship 
with N. Conversely, MOEA/D demonstrates a linear relationship 
between m, N, and T, while NSGA-III and R-NSGA-III share the 
same complexity, featuring a quadratic relationship with N and a 
logarithmic relationship with M-2.

Considering the average time depicted in Figure 5, it becomes 
apparent that algorithms with similar complexity, such as NSGA-II, 
U-NSGA-III, and RVEA, exhibit comparable average times and 
errors. However, NSGA-III and R-NSGA-III showcase markedly 
different times and errors across the two populations. One potential 
explanation for these disparities could be attributed to the reference 
points used in R-NSGA-III, which necessitate preprocessing for the 
starting point. This preprocessing incurs additional computational 
overhead, particularly evident for smaller populations like 10. However, 
for larger populations exceeding 100, preprocessing becomes more 
efficient, rendering R-NSGA-III the fastest algorithm among all.

Another factor contributing to algorithmic delays could 
be the allocation of  reference points in suboptimal regions of  
the solution space, resulting in inefficient processing. Vesikar et al. 
(2018) discuss this issue and suggest relocating points to regions 
where non-dominated solutions are already discovered as an 
enhancement for algorithmic efficiency.

MOEA/D was the only algorithm that exhibited both 
linear complexity and dependence on the variable T, relative to 
the number of  solutions. Although linearity presupposes a faster 
algorithm, its relationship with T positions MOEA/D as the 
poorest performer in terms of  time efficiency. This observation 
raises the hypothesis that there may be a dominance of  T to the 
detriment of  other variables in the algorithm’s performance.

CONCLUSIONS

Among the various optimization techniques applied to 
WDN projects, evolutionary algorithms stand out as versatile 
optimization techniques, each with its unique characteristics 
and methodologies. The proliferation of  these algorithms has 
necessitated comparative studies to discern their respective strengths 
and weaknesses, thereby facilitating informed decision-making 
regarding their application in diverse studies.

In this study, six evolutionary algorithms—NSGA-II, 
NSGA-III, R-NSGA-III, U-NSGA-III, MOEA/D, and RVEA—
were subjected to rigorous comparison using a variety of  metrics. 
These metrics included Efficiency, Cumulative Distribution 
Function (CDF), Pareto front analysis, algorithmic complexity, 
and average errors related to minimum cost and execution time. 
The case study centered on the Alperovitz and Shamir network, 
providing a context for evaluation.

Based on all the metrics used, it can be seen that, with the 
exception of  U-NSGA-III, all algorithms reached the minimum 
cost of  $419,0000, demonstrating their successful convergence to 
the minimum found in other studies that applied the same WDN. 
Furthermore, it was found that only the initial population variable 
brought significant changes to minimize average costs and errors.

The comprehensive investigation of  these metrics 
yielded insightful conclusions regarding the performance of  
the algorithms. It was noted that no single algorithm emerged 
as universally superior across all metrics; rather, each algorithm 
exhibited superiority in some metrics to the detriment of  others. 
This nuanced understanding emphasizes the importance of  
employing diverse analyses to obtain a comprehensive overview 
of  the algorithm performance.

Moreover, the exploration of  algorithmic complexity 
highlighted the underlying mathematical formulations governing 
each algorithm. Interestingly, algorithms with similar complexity 
levels yielded divergent time results due to variations in initial 
parameters and search methodologies for non-dominated solutions 
within the solution space. Additionally, the algorithm with linear 
complexity, conventionally expected to execute faster due to its 
simpler mathematical structure, turned out to be the least efficient 
in terms of  time expenditure.

In the overall assessment, NSGA-II and NSGA-III emerged 
as superior algorithms, demonstrating higher performance in 
various metrics. They exhibited satisfactory Efficiency peaks, 
achieved low minimum costs, and maintained efficient processing 
times, all while minimizing average errors.

On the other hand, U-NSGA-III failed to meet the minimum 
cost threshold, R-NSGA-III presented the longest processing time 
for the population of  10, and MOEA/D and RVEA exhibited 
high average costs and errors.

In conclusion, the comparative analysis conducted in this 
study offers valuable insights into the performance of  evolutionary 
algorithms in the context of  WDN optimization. By systematically 
evaluating various metrics and considering algorithmic complexities, 
decision makers can acquire a nuanced understanding of  each 
algorithm’s strengths and weaknesses. With this knowledge, they 
can make informed decisions when selecting algorithms for specific 
optimization tasks, thereby maximizing the likelihood of  achieving 
desired outcomes within resource constraints. Future research could 
expand this analysis by comparing the results obtained using the 
two objective functions simultaneously with those generated by 
simulations that consider each objective separately. This comparative 
study would allow for an assessment of  the computational effort 
required by each algorithm, providing a more detailed view of  
the efficiency and effectiveness of  multi-objective approaches 
compared to single-objective approaches. Additionally, this analysis 
could identify which algorithms are better suited for scenarios 
with varying levels of  complexity, offering valuable insights for 
selecting methodologies in optimization problems.

Table 5. Complexity of  algorithms.
Algorithm

NSGA-II NSGA-III R-NSGA-III U-NSGA-III MOEA/D RVEA

Complexity O(m·N2) O(m·N2) ou 
O(N2·logN(M-2))

O(m·N2) ou 
O(N2·logN(M-2)) O(m·N2) O(m·N·T) O(m·N2)
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