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ABSTRACT

The cornstalk borer, Elasmopalpus lignosellus (Lepidoptera: Pyralidae), reduces the productive potential of maize 
crops and is a difficult pest to manage. A management program using different methods could improve the control of  
E. lignosellus. Considering the potential of entomopathogenic nematodes (EPN) in reducing insect pest populations in 
soil, the objective of this study was to evaluate the virulence of these EPN and adjust their concentration for controlling 
E. lignosellus larvae under laboratory and greenhouse conditions. In the laboratory, the virulence of five EPN populations 
was tested; then, Heterorhabditis amazonensis MC01 was tested at four concentrations. In the greenhouse, H. amazonensis 
MC01 was tested at four concentrations and was applied to vessels containing maize plants and six larvae. After five days, 
mortality was evaluated, and means were compared using Tukey’s test (p-value < 0.05). Heterorhabditis amazonensis 
MC01 and S. carpocapsae All were equally virulent, reducing the larva population by more than 90%. The concentration 
of H. amazonensis MC01 that caused the highest mortality of larvae in the laboratory was 182 infective juveniles (IJ) 
larva-1. In the greenhouse, the nematode was also considered virulent to E. lignosellus since all concentrations tested 
caused larval mortality greater than 70%.
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The lesser cornstalk borer, Elasmopalpus lignosellus 
(Zeller) (Lepidoptera: Pyralidae), feeds on several plant 
species of high economic value. The larvae penetrate the 
base of the plant in the initial stages of development of 
the culture, just below the ground, creating a gallery in the 
stem that can cause the breakage and death of the plants, 
resulting in stand reduction. Chemical control is the main 
method that has been used with seed treatment, but it is 
not always effective to reduce pest populations (Vieira  
et al., 2020).

The larvae typically occur inside the seedlings or in 
cocoons made of web and soil particles, and they remain 
close to the stem, which makes handling them difficult. In 

the 1980s, new management strategies using natural ene-
mies for the lesser cornstalk borer were developed (Jham  
et al., 2005; 2007). Nevertheless, chemical control is 
still the most used method, even though its incorrect use 
may cause problems such as the development of resistant 
populations, reduction of natural enemies, and outbreaks of 
secondary pests (Neri et al., 2005).

Among the organisms studied for E. lignosellus pop-
ulation control, entomopathogenic nematodes (EPN) have 
potential, as they inhabit the soil and have the ability to 
maintain their viability and remain active, controlling lar-
vae in different instars (Grewal et al., 2001). Moreover, they 
have a symbiotic association with bacteria that are released 
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into the hemolymph of the insect, causing its death (Cagnolo 
et al., 2004; Dolinski, 2006). Georgis (1992) and Jaramillo 
& Saavedra (2007) highlighted the potential of using EPN 
as biological control agents for E. lignosellus, verifying the 
pest control potential in peanut and asparagus crops.

Before being field-tested, the virulence of EPN 
against target insects must be evaluated, as nematode 
populations cause different mortality rates in different 
hosts. In addition, the optimal concentration of EPN that 
cause pest mortality also varies (Kaya & Hara, 1981; Fuxa  
et al., 1988). Therefore, the objective of the present study 
was to select EPN with potential to control E. lignosellus 
larvae and, depending on the laboratory virulence data, 
adjust the concentration of the most virulent nematode to 
be applied under laboratory and greenhouse conditions.

MATERIALS AND METHODS
The experiments were performed at the Federal Uni-

versity of Uberlândia, Umuarama Campus (18°53’40’’S, 
48°15’35’’W). Nematodes were multiplied in Tenebrio 
molitor L. (Coleoptera: Tenebrionidae) larvae raised fol-
lowing Potrich et al. (2007). Dead T. molitor larvae were 
washed with water and placed in a dry chamber (petri dish 
with filter paper) for five days. After drying, they were re-
moved and placed in White traps (1927) to collect infective 
juveniles (IJ), following Molina & López (2001). Infected 
larvae were maintained in a biochemical oxygen demand 
(B.O.D.) incubator at 26 ± 2 °C. IJ were used up to three 
days after emergence and stored at 16 ± 2 °C for up to five 
days.

Fifteen adult E. lignosellus couples were placed in 
cylindrical PVC cages (15 cm × 20 cm) lined with filter 
paper, where the adults were fed with a 10% honey aqueous 
solution. Every two days, the papers containing the pos-
tures were removed and stored in capped plastic Gerbox® 
plates. Daily, as the eggs hatched, the first instar larva were 
transferred to 100-mL plastic pots containing modified 
Chalfant (1975) artificial diet, without tetracycline and 
Vanderzant’s mixture, and added with 0.2 g of benzoic 
acid and 2 mL of corn oil. An approximately 2-cm layer of 
autoclaved vermiculite (120 °C, 1 atm, 20 min) was added 
over the larvae to make the breeding environment similar 
to the natural conditions used for the construction of larval 
shelters. After 15 days, the larvae were removed for use in 
the tests.

Virulence of entomopathogenic nematodes against 
larvae

Initially, the virulence of Heterorhabditis amazonensis 
MC01, H. amazonensis JPM3, H. amazonensis GL, Stein-
ernema carpocapsae All, and Heterorhabditis amazonensis 
Nepet 11 against E. lignosellus larvae was analyzed under 
laboratory conditions. Ten second and third instar larvae 
were arranged in glass Petri dishes (9-cm diameter) lined 
with two sheets of filter paper containing an approximately 
8-cm3 block of artificial diet. For each case, 1 mL of nem-
atode suspension was applied at a concentration of 100 IJ 
pupa-1 per plate. A control treatment received only distilled 
water.

Five replications per treatment were performed in a 
completely randomized design. The plates were kept in a 
B.O.D. incubator at 25 ± 2 °C, 70% relative humidity (RH), 
and 24 h in the dark. Mortality assessments were performed 
after 24, 48 and 72 h.

Data with normal distribution and homoscedasticity 
were submitted to analysis of variance (ANOVA) with 
Tukey’s test comparison between the means obtained for 
each nematode (p < 0.05). Data without normal distribution 
were fitted to the Generalized Linear Model with binomial 
distribution (ANODEV), and Tukey’s test was used to 
compare the means (p < 0.05).

Concentration of Heterorhabditis amazonensis 
MC01 against larvae under laboratory conditions

To adjust the concentration of application of IJ,  
H. amazonensis MC01 was applied to E. lignosellus larvae 
at concentrations of 50, 100, 150, and 200 IJ larva-1 on 
Petri dishes containing 10 third and fourth instar larvae. 
Control plates received only distilled water. The volume 
of suspension/water per plate was 1 mL at the respective 
concentrations with five replications in a completely ran-
domized design, totaling 25 plates.

The experiments were kept in a B.O.D. incubator at  
25 ± 2 °C, 70% RH, and 24 h in the dark. Dead larvae 
were counted after 24, 48, 72 and 96 h. Data were subjected 
to ANOVA and subsequent regression analysis using the 
software Sigma Plot v.12.0, after meeting the assumptions 
of normality of residuals and homoscedasticity.

Concentration of Heterorhabditis amazonensis 
MC01 against larvae under greenhouse conditions

Untreated corn seeds of the BM 3061 hybrid were sown 
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in 2-L plastic pots containing approximately 1.5 kg of 
sieved soil, classified as Dystrophic Dark Red Latosol (Em-
brapa, 2006). Four seeds were sown in each pot, thinning to 
one plant per pot after emergence. The pots were fertilized 
with approximately 1.8 g of the 4-14-8 formulated per pot  
(i.e., 750 kg ha-1).

When the plant reached approximately 20 cm in height, 
six fourth instar larvae were released per pot, and then the 
suspensions containing four concentrations of H. amazon-
ensis MC01 190, 210, 230, and 250 IJ larva-1 were applied 
on the soil surface using an automatic pipette. A treatment 
was maintained without the application of nematodes as a 
control. Each treatment was performed with five replica-
tions, totaling 25 pots distributed in a completely random-
ized design. In order to prevent the larvae from escaping, 
the pots were protected by a metal structure covered with 
an anti-aphid screen.

Assessment was performed after five days, verifying 
the percentage of larva mortality caused by the nematode. 
Means were compared using Tukey’s test (p < 0.05). In all 
tests, the dead larvae were kept in B.O.D. at 25 ± 2 °C in 
a dry chamber for four days for subsequent dissection, and 
then observed under a stereoscopic microscope to confirm 
nematode mortality.

RESULTS AND DISCUSSION

Virulence of entomopathogenic nematode isolates 
to larvae

After 24 h of application of the EPN isolates, none 
of the observed larvae were dead. At 48 and 72 h after 
application, statistical differences were found by ANOVA 
and ANODEV, respectively. After 48 h, all the tested 
nematodes caused mortality of the E. lignosellus larvae, 
differing from the control, in which low mortality from 

natural events was observed. In addition, no difference in 
virulence was observed between the isolates, all of which 
caused more than 60% mortality. After 72 h, the isolates 
that showed the highest virulence, with mortality > 90%, 
were S. carpocapsae All and H. amazonensis MC01, with 
no differences between them (Table 1).

Based on the obtained results, only H. amazonensis 
MC01 was selected for the subsequent tests, as it was 
isolated from the same region of the experiments and was 
thus more adapted to the local conditions than the other 
isolates. This isolate searches for the insect in the soil, with 
horizontal displacement of the soil (Campbell & Gaugler, 
1997). Moreover, it has appendages on the cephalic region 
(Griffin et al., 2005) that contribute to the penetration into 
the insect’s body (Geden et al., 1985; Andaló et al., 2012).

Several studies have verified the action potential 
of steinermatids on lepidopteran larvae (Van Damme  
et al., 2015; Kamali et al., 2017). However, Steyn  
et al. (2019) highlighted the importance of performing 
studies that include Heterorhabditis in the isolation 
selection tests, as they observed Heterorhabditis spp. con-
trolling Holocyst capensis Van Nieukerken & Geertsema 
(Lepidoptera: Heliozelidae). Kepenekci et al. (2013) also 
observed H. bacteriophora causing high mortality (80%) 
in larvae of Phthorimaea operculella (Zeller) (Lepidoptera: 
Gelechiidae).

Concentration of Heterorhabditis amazonensis 
MC01 against larvae under laboratory conditions

Significant differences were found by ANOVA in all 
hours evaluated after application of H. amazonensis. The 
mortality of E. lignosellus after 24 and 48 h of application 
of the nematode was low, but after 72 h, a mortality of 48% 
was observed for 50 and 100 IJ larva-1, 60% for 150 IJ 
larva-1, and 70% for 200 IJ larva-1.

Table 1: Elasmopalpus lignosellus larvae’ mean mortality after 48 and 72 h of application of entomopathogenic nematode isolates

Treatment Mortality 48 h (%)* Mortality 72 h (%)*

Heterorhabditis amazonensis MC01 72.0 ± 3.74 a 92.0 ± 3.83 a
Steinernema carpocapsae All 72.0 ± 3.74 a 90.0 ± 4.24 a
Heterorhabditis amazonensis Nepet 11 76.0 ± 5.09 a 80.0 ± 5.65 b
Heterorhabditis amazonensis GL 68.0 ± 3.74 a 72.0 ± 6.35 b
Heterorhabditis amazonensis JPM3 60.0 ± 3.16 a 68.0 ± 6.59 b
Control 2.0 ± 2.00 b 2.0 ± 1.98 c
CV (%) 14.17 13.96

*Means followed by the same letters do not differ by Tukey’s test at 5% probability. Mean ± Standard Error.
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For 72 and 96 h, the relationship between larvae mortal-
ity and isolate concentrations was adjusted by a quadratic 
regression model with coefficient of determination (R2) of 
91.32% and 90.31%, respectively. From the derivative of 
the parabola equation, maximum mortality was calculated 
at 190 IJ larva-1 for 72 h (66%) and at 182 IJ larva-1 for 96 
h (78.7%) (Figure 1).

The pathogenicity and virulence of H. amazonensis GL 
were assessed for E. lignosellus pupae in the laboratory, 
with CL50 = 6.49 IJ/cm2 after 48 h of nematode contact with 
pupae, and CL90 = 39.7 IJ/ cm2 after 48 h in the labora-
tory (Magnabosco et al., 2020). This shows that both H. 
amazonensis populations are virulent to E. lignosellus with 
potential for pest control.

Few studies have been performed on EPN with 
E. lignosellus. Nevertheless, concentration tests were 
performed for other lepidopteran larvae. Helicoverpa ar-
migera (Hübner) (Lepidoptera: Noctuidae) inoculated with 
100 and 500 IJ of H. bacteriophora presented mortality 
between 12% and 30% after 72 h of exposure, reaching 
up to 50% after 96 h (Kary et al., 2012). However, S. fru-
giperda exposed to different Heterorhabditis isolates at a 
concentration of 100 IJ larvae-1 had mortality rates between 
40% and 85%, indicating the variability between the infec-
tion processes of different isolates at different dosages and 
specific hosts (Andaló et al., 2010). Observing the results 
for pupae of E. lignosellus, H. armigera, and S. frugiperda 
and the variations between the concentrations, we reinforce 
the importance of specific tests between entomopathogen 
and host.

A reduction in maximum mortality values was also ob-
served in other studies and can be explained by a possible 
competition between nematodes interfering with infection 
rates (Selvan et al., 1993; Giometti et al., 2011; Santos 
et al., 2011; Rohde et al., 2012). Thus, we infer that the 
increase in the concentration of nematodes does not always 
cause greater host mortality, as the nematode may tend to 
be more attracted to insects previously infected by the same 
organism. The scarce knowledge on the interaction between 
IJ and host makes it difficult to interpret the dynamics of 
infection caused by EPN (Lewis, 2002).

Concentration of Heterorhabditis amazonensis 
MC01 against larvae under greenhouse conditions

Under the greenhouse conditions, no significant 
difference was observed among the concentrations tested 
(Tukey’s test at 5% probability). This shows that the 
suspension with the lowest concentration (190 IJ larva-1) 

offered the maximum control these pathogens could 
achieve, and that a higher concentration did not signifi-
cantly increase control. Therefore, H. amazonensis MC01 
was considered virulent to larvae of E. lignosellus under 
the conditions tested, and at all concentrations, the average 
larval mortality was greater than 70% (Figure 2).

Similar results were found by Leite et al. (2007) for  
H. indica (IBCB-n05), which applied at 5.7 and 22.6 IJ 
cm-2 showed no statistical difference, reaching the ef-
ficiency of 75% and 85%, respectively, in the control of 
larvae of Bradysia mabiusi (Lane) (Diptera: Sciaridae). 

Figure 1: Mortality of Elasmopalpus lignosellus larvae at different Heterorhabditis amazonensis MC01 concentrations after 72 and 
96 h of exposure.
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Different concentrations of Heterorhabditis sp. RSC01 
also did not significantly affect the mortality of larvae of 
Diabrotica speciosa (Germar) (Coleoptera: Chrysome-
lidae) in corn (Santos et al., 2011). Likewise, different 
concentrations of H. amazonensis RSC1 did not influence 
the efficiency against nymphs of Mahanarva spectabilis  
(Hemiptera: Cercopidae) in a greenhouse, and all con-
centrations tested caused a mortality of 57.14% (Batista  
et al., 2014).

Overall, the results show that the optimal concentration 
under conditions of maximum exposure of the larvae to 
nematodes is similar to that under greenhouse conditions. 
However, this does not exclude the need for field tests, in 
which other variables must be considered.

CONCLUSIONS
From the isolates tested on the E. lignosellus larvae, 

H. amazonensis MC01 and S. carpocapse All reducing the 
larva population by more than 90%.

The concentration of H. amazonensis MC01 that 
caused the highest mortality of larvae in the laboratory was  
182 IJ larva-1. In the greenhouse, the nematode was also 
considered virulent to E. lignosellus since all concentra-
tions tested caused larval mortality greater than 70%. In 
general, we found that the longer the exposure time, the 
greater the mortality of the larvae.
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