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Abstract  

Resumo

This paper presents an automatic procedure using the membrane theory of shells to analyse and define geometries for axisymmetric domes sub-
jected to its own weight, varying its thickness and bend radius, to obtain constant normal stresses along the structure. The procedure offers a great 
advantage over the analytic solution of the problem and usual shell numerical methods when one wants to determine the dome geometry with 
constant stresses, since the presented procedure has the goal stress as input value for obtaining the geometry, as opposed to the usual numerical 
methods, where the reverse occurs. An example clarifies the differences between a spherical dome with constant thickness and a dome subjected 
to constant stress. The convergence of the method for a specific material weight and stress for a dome are also presented.

Keywords: domes, thin shells, membrane theory, meridional stress, tangential stress.

Este artigo apresenta um processo automático para análise e definição de geometria pela teoria de membrana para cúpulas de revolução axissi-
métricas submetidas ao peso próprio, com variação de espessura e raios de curvatura, de modo a obter tensões normais tangenciais e meridio-
nais constantes em qualquer ponto da estrutura. O processo apresenta grande vantagem sobre a solução analítica do problema e a por métodos 
numéricos usuais de casca quando se deseja determinar a geometria da cúpula em função de apenas uma tensão solicitante constante, uma vez 
que o processo tem como dado de entrada a própria tensão inicial para obtenção da geometria, diferente dos métodos numéricos usuais, onde 
ocorre o inverso. Um exemplo explicita as diferenças entre uma cúpula esférica com espessura constante e uma cúpula com tensões constantes 
submetida ao peso próprio. A verificação da convergência do método para uma tensão solicitante e peso específico do material de uma cúpula 
também são apresentados.

Palavras-chave: cúpulas, cascas finas, teoria de membrana, tensões meridionais, tensões tangenciais.



1.	 Introdução

Thin shells are curved laminar structures, whose thickness is small 
when compared to its other dimensions. These elements may be 
subject to membrane and bending stresses, depending on its re-
straints and loadings. Axisymmetric loading structures with proper 
restraint configuration can display only membrane stresses that 
act in parallel to a plane tangent to the mean surface of the shell 
at a given point, which can be considered the stresses equalty 
distributed throughout its thickness.
Shells are a type of structure that has a wide range of applications 
, including, for example, fuselages of airplanes and submarines, 
metal silos, sheds covers, building structures, automotive and 
aerospace components, pressure vessel , liquid tanks, missiles 
and, among others, domes.
Domes are semi-spherical or similar form shells, which structure 
may consist of various materials and their varied uses and archi-
tectural conceptions refer back to prehistory. 
Among the advantages of the use of domes, may be mentioned the 
possible large spans to be covered, low weight, high stiffness and 
the possibility of geometric handling in their design, which in many 
cases make them architecturally beautiful. Constructive difficulties 
and the high costs may be mentioned often as drawbacks [8].

The construction of the first technically advanced domes began in 
Europe with the Roman Architectural Revolution, when such struc-
tural system was often used to shape large interior spaces of tem-
ples and public buildings [12]. The material typically used in these 
domes construction did not have great tensile strength, so, in order 
to reduce its weight, the thickness and aggregate material would 
vary as height increased, and thereby reduce regular stress in the 
direction of the meridians in the completed structure. One example 
is the Pantheon in Rome (Figure 1), originally built in 27 BC. With 
43.4 meters porthole, the Pantheon in Rome remained the world’s 
largest dome for more than a millennium and is currently the larg-
est dome in the world made of non-reinforced concrete.
The geometry of the domes directly influences its structural per-
formance. Therefore, for a given material having certain charac-
teristics, structural efficiency is directly related to the efficiency of 
its shape, including its thickness and radii of curvature. There is a 
trend of research in the pursuit of optimization of the geometry of 
this type of structure, as can be seen in [1], [2], [3], [4] e [7]. One of 
the main factors for this interest are the advances and accessibility 
of computers and the development of numerical models and opti-
mization algorithms for solving such problems [1]. Solutions for nu-
merical methods with optimization algorithms are suitable for more 
general cases of geometries and loads, while there is still a con-
flict between the computational cost, the accuracy of the results  
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Figure 1 – Section of the Rome Pantheon dome [6]
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obtained and the mathematical complexity of the solutions [3]. The 
approach can also present some convergence problems, which 
some analyzes have values ​​of stresses or displacements that are 
not even found in the field of real numbers [3].
This paper proposes an automatic process for the analysis and 
definition of thin shells segments revolution geometry (domes) 
submitted to its own weight by membrane theory with thickness 
and radii of curvature variation in order to obtain meridional and 
tangential stresses constant by a process of simple implementa-
tion and low computational cost. The process has advantage over 
the usual numerical methods bark, such as the finite element 
method, when it is desired to determine the geometry of the dome 
due to a constant stress, since the process has its own initial ten-
sion as input to obtaining geometry, different from the usual numer-
ical methods, where the reverse occurs. Furthermore, the exact 
analytic solution of the problem is extremely difficult, as shown in 
methodology, which makes the presented process quite interesting 
for solving such structures. A dome with constant meridional and 
tangential stresses tends to provide a design with a good use of 
the material across the dome and decrease bending moments and 
shear stresses that may be significant for other types of geometry.
According to the membrane theory, the stiffness to flexure and 
torsion in the shell should not be considered, which causes the 
bending and torsional moments to resulting null. Under these con-
ditions, also only normal and tangential forces will request cancel 
each other out the shear forces and the shell. For this theory to be 
valid, it must meet the following conditions:
n	 The law of variation of the mean surface curvature is continuous; 
n	 The law of variation of the thickness of the shell is continuous;
n	 The distribution of loads applied on the surface is continuous; 
n	 The forces applied to the free edges act in the corresponding 

planes tangent to the mean surface; 
n	 Support reactions are contained in tangent planes to the mean 

surface.
Lamé, French engineer whose solution is sometimes also called 
the Lamé problem, originally settled the general solution of the axi-

symmetric revolution cylinder thick walls problem in 1833. The 
initial solution was based on a cylinder subjected to internal 
pressure, which is made ​​use of linear relationships of Hooke’s 
Law. The formulation presented in this paper considers only 
the equilibrium equations of the domes. Thus, no material 
property is used and its use is not restricted to elastic materi-
als. However, these equations are valid for situations where 
the thickness of the dome does not exceed 10% of the internal 
radius, remaining the error rate small [15]. Using Lamé equa-
tions and the ones presented in this work , it can be seen by 
Figure 2, the variation in tangential stress θσ  of revolution 
walls shells subjected to internal pressure p, when there are 
revolution shells with a thickness equal to 10 % of the inner 
radius and the thickness of the cylinder is equal to 400 % of 
the inner radius.

1.1	 Objective

The objective of this paper is to present a process using the mem-
brane theory for analyzing and defining the geometry of an axisym-
metric dome subjected to its own weight, with varying thickness 
and curvature radii, in order to obtain constant normal and shear 
stresses.

2.	 Method

2.1	 Equilibrium equations

In the case of domes studied in this work, it is presented the equi-
librium equations of the membrane theory for thin shells subjected 
to loads with revolution symmetry. For such structures, due to its 
symmetry, the following characteristics are presented:
 ( )=N Nθ θ θ  ;

0= =N Njθ θj  ;
( )=p pj j j  ;

0=pθ
 ;

1	 http://www.mathworks.com - Student version.
2	 Licensed Software to Santa Catarina Federal University. Mix System is a system developed by Engineer Ricardo Sergio Pinheiro Medeiros and marketed by TQS Informática Ltda.

Figure 2 – Variation of the tangential stresses on the wall of the revolution 
shells, due to internal pressure in function of their thickness [11]
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( )=z zp p j .
where:
Nj  – Normal force per unit of length in the direction of the merid-
ian;
Nθ  – Normal force per unit of length in the direction parallel;

 , N Njθ θj  – shear forces per unit of length;
pj  – Loading tangent to the surface of the shell in the direction of 

the meridian;
pθ  – Loading tangent to the surface of the shell in the direction 

parallel;
zp  – Loading perpendicular to the surface of the shell.

It’s possible to completely define the geometry of a dome by its 
thickness h  and the radii of curvature 1r  and 2r  arbitrarily vari-
able (Figure 3). The radius 2r  has its center of curvature lo-
cated on the axis of the shell and it generates the surface of the 
shell in the perpendicular direction to the tangent to the meridian. 
On the geometry of the shells, one can also define the radius 0r , 
which lies in a plane perpendicular to the axis of the shell and has 
a proportion to 2r  equal to 0 2.sen=r r j . It is assumed that the 
thickness h  is very small compared to 1r  and 2r  and therefore 
no distinction is made between the inner, middle and outer radii of 
the dome.
Due to the symmetry of the dome there is an axisymmetric load 
condition. This leads the structure to have tangential constant 
forces Nθ  on each side of the infinitesimal element of the dome 
surface, which does not occur with the meridional force Nj . The 
shear forces Njθ  and Nθj  are canceled due to the symmetry 
of the problem.
The infinitesimal element of the surface of the dome on Figure 2 is 
subjected to external forces in the direction of the meridian ( pj ) 
and in the normal direction to the surface ( zp  is positive entering 
the dome).

Using the equation:

(1)r0=r2. senφ
 

On the upper side of the element:

(2)Nφr0dφ=Nφr2. senφdφ  

and on the inferior side

(3)( (( (Nφ+
∂Nφ

∂φ
dφ r0+

dr0
dφ

dφ dθ
 

As these forces are not collinear (Figure 4), a component appears 
in the direction z equal to:

(4)Nφr0dθdφ  

Figure 3 – Dome and infinitesimal surface element
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In the parallel direction, the forces on the element right and left are 
also not collinear (Figure 5), therefore a component force appears.

(5)Nθr1dφdθ  

This force is horizontally projected in the mean plan of the dome. 
Projecting this force in the direction tangent to the meridians:

(6)Nθr1dφdθ cosφ  

And in the normal direction to the mean surface:

(7)Nθr1dφdθ senφ  

Taking the sum of the forces in the tangent direction to the me-
ridian in equations (2), (3) and (6) equal to zero, neglecting sec-
ond order terms and dividing the equation by d dj θ , equation 
(8) is shown:

(8)d(Nφr0)

dφ
-Nθr1 cosφ+pφr0r1=0  

Taking the sum of forces in the normal direction to the surface in 

equations (4) and (7) equal to zero and dividing the  equation by 
d dj θ  and 1 2senr r j :

(9)
Nφ

r1
+
Nθ

r2
=-pz  

One can determine the unknown forces on the membrane by 
means of free-body analysis of whole shell, over a parallel circle. 
From equation (9) writes the equation (10):

(10)Nθ=-pzr2-
Nφ

r1
r2  

Figure 4 – Normal component 
of the meridional force  Nj

Figure 5 – Normal component
of the tangential force Nq

Figure 6 – Equilibrium diagram 
of a shell segment
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Moreover, substituting (10) into (8), one has:

(11)
d(Nφr0)

dφ
- (-pzr2- Nφ

r1
r2) r1 cosφ=-pφr0r1  

Substituting (1) into (11) and multiplying by senj :

(12) 

d(Nφr0)

dφ
senφ+Nφr0 cosφ=

-pzr1r2 senφ cosφ -pφ  r1r2sen²φ

where
Therefore:

(13)d

dφ
[(Nφr0) senφ]=-r1r2 senφ (pz cosφ+pφ senφ )

Integrating both sides of equation (13):

(14)Nφr0 senφ -F(φ)-C=0  

where:

( ) ( )1 2sen cos sen= − +∫ zF r r p p djj j j j j  
 

In the case of domes without an opening at the top, the constant C 
is zero. So, multiplying (14) by 2p :

(15)2πr0Nφ senφ -2πF(φ)=0  

The vertical resultant force R  due to loadings zp  and pj  is 
kept in balance by the vertical component of the Nj  force. The 
resultant force P  (Figure 6) for domes without openings on top is 
given by:

(16)P=2π∫ r1r2 senφ (pz cosφ+pφ senφ )dφ
φ

0

By substituting (16) into (15) and isolating Nj :

(17)Nφ=
P

2πr0(φ) senφ
 

One can thus determine the membrane forces in axisymmetric 
shells of revolution. The support conditions of the domes should 
always be tangential to Nj , as shown in Figure 7.
From Figure 7 it can be seen that only a vertical component V  
does not satisfy the equilibrium condition. It’s possible to cancel the 
horizontal component H .  with the addition of a resilient ring for 
example. However, the adoption of such device causes significant 
local flexure stresses, which will not be addressed in this paper.

2.2	 Spherical dome

For the analysis of a spherical dome subjected to own weight 
is considered constant thickness h and the radius of curvature 1 2=r r .  
Consider, therefore, a radius of spherical dome 1 2= =r r a  and 
constant thickness h  subjected to own weight, with j  ranging 
from 0º to 90º. The resultant P  is given by p  (own weight force 
per unit of area) multiplied by A  (infinitesimal section area), where 
A is given by:

0                 2= ⇒ =∫A dA dA r dsp  

0 0

2 sen              2 ² sen= ⇒ =∫ ∫A a a d A a d
j j

p j j p j j
 

The resultant being .=P p A , one can obtain the expression (18):

(18)P=p 2πa² ∫ senφ dφ
φ

0
      ⟾      P=-2πpa²(1- cosφ)

By substituting equations (18) and (1) in (17), meridional force is:

2 ²(1 cos )

2  ²

− −
=

pa
N

a senj
p j

p j

Figura 7 – Diagrama de equilíbrio da 
força de compressão em um contorno
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(1 cos ) (1 cos )

∴ = − = −
+ +

ap ap
N ou

hj jσ
j j

In (9) is given:
= − −zN p a Nθ j

	  
 ( )

cos
1 cos

∴ = − +
+

ap
N p aθ j

j

By solving the equations above, one can obtain the tangential forc-
es of the spherical dome:

	 ( ) ( )
1 1

cos       cos
1 cos 1 cos

   
= − = −      + +   

ap
N ap ou

hθ θj σ j
j j

Assuming a thickness , e 0,0236 / ²=p N cm , it’s possible to draw 
of meridional and tangential forces diagrams in function of j . The 
results are shown in Figure 8.

Figure 8 – Tangential forces N  and meridional forces N  in function of j on the spherical domeq j

Figure 9 – Tangential stresses s  and meridional stresses s , respectively (N/cm²)q j
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It is noticeable that from 0=j  to 51.827= oj , no traction force 
develops at the dome, only compressive forces.
Solving the problem using the finite element method, we obtain 
a maximum compression force equal to 11,983 N/cm² and trac-
tion equal to 26,243 N/cm². The j  angle at which no shear stress 
develops in the direction parallel dome is approximately 52º. The 
stress diagram is shown in Figure 9.

2.3	 Constant stresses dome

On the constant stress dome analysis, it is considered a dome with 
variable thickness subjected to own weight p .
On such domes, should not only their thick- ness vary along the 
height but also their radii of curvature, so that the meridional and 
tangential stresses are equal and constant.
The weight per unit of area in the central plane of these summits 
is given by:

(19)p=γh  

Therefore, zp  and pj  components are given by:

(20)pz=γh cosφ          pφ=γh senφ

In the case of domes with constant stresses, the geometry of the 
meridian is determined in such way that the meridional compres-
sive stresses are constant and equal to σ  in all directions in its 
mean plane, with:

= = −N N hj θ σ
By replacing in (9):

(21)σh. ( 1r1 +
1

r2) =γh cosφ

By replacing (1) and isolating .

(22)r1=
r0

γ
σ
r0 cosφ - senφ

 

From Figure 10 is possible to deduce the following relationship:

(23)ds=r1dφ          r1dφ=
dr0

cosφ

Replacing (23) in (22):

(24)
dr0
dφ

=
r0 cosφ

γ
σ
r0 cosφ - senφ

 

Integrating both sides of equation (24):

0
0

0
0

cos

cos sen
=

−
∫

r
r d

r

j j jγ j j
σ

It’s obtained:

(25)

r0=-r0
σ2

(σ2+γ2.r0
2)

.ln [γ.r0.tan (φ2)
2

-

( )γ.r0+2.tan ]φ

2
.σ +r0

σ2

(σ2+γ2.r0
2)

.

[ ( () )]ln 1+tan
φ

2

2

+2
σ2

(σ2+γ2.r0
2)

.γ.r0
2.

φ

2

On top of the dome, where 0=j , the right side of equation (24) 
becomes undefined. To solve this problem is necessary to use 
equations (21) and (23). As on the top of the dome 1 2=r r , it fol-
lows that :

1 2 0 1

2 2
                  = = = =r r dr r d d

σ σj j
γ γ

Therefore, on the top of the dome:

Figure 10 – Shell segment
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(26)dr0
dφ

=
2σ

γ
 

Then, the shape of the meridian of the dome with constant stress-
es can be defined by equations (24) and (26) . The variation of the 
thickness of the dome can be determined by the equations (8) and 
(20) , which are obtained by dividing the equation for:

(27)-
d

dφ
(hr0)+hr1 cosφ+

γ

σ
hr1r0 senφ=0

For 0=j , we obtain the equation (27) :	

( ) 0
0 1 =n

drd
hr hr h

d dj j

Replacing (22) into (27) it follows that:

(28)d

dφ
(hr0)=hr0

cosφ+
γ
σ r0 senφ

γ
σ
r0 cosφ - senφ

By integrating both sides from 0  a j :

(29)
h.r0=h.r0.ln [ [1+tan ( (φ

2) )
2

] -h.r0.ln γ.r0.tan
φ

2

2

( ) ]-γ.r0+2.tan
φ

2
.σ

It’s possible to then determine the thickness of the dome with constant 
stresses by equations (27) and (28). 
The equations (25) and (29) were obtained by MathCAD computer soft-
ware. However, because of those functions, whose integrals are not 
easy to get an analytical solution, it’s possible to use numerical integra-
tion for its determination, in order to calculate the approximate value of 
definite integrals using, for example, the trapezoidal rule and Simpson’s 
Rule [10]. One can get the radius of curvature 1r  and 2r  by simpler 
iterative process, presented by [5].
Equation (26) determines the radius at the top of the dome, as it follows:

1 2

2
= = =topor r r

σ
γ

Rearranging (21):

(29)
h.r0=h.r0.ln [ [1+tan ( (φ

2) )
2

] -h.r0.ln γ.r0.tan
φ

2

2

( ) ]-γ.r0+2.tan
φ

2
.σ

Knowing the radius of curvature at the top, one can start the de-
termination of the dome geometry with constant stress, as shown 
in Figure 11.
A gradual graphic built can be made using equation (30) starting 
from the top radius topor , then following the points A, B, C , etc. 
Initially ,the arc from the point O to point B is drawn. At point B the 
new weight zp  is calculated by equation (30), and being 2 =r AB
, one can determine a new curvature radius 1r  that results greater 
than the previous radius of curvature 1r . The extension of the new 

1r  within 2r  has a new center C, which have a new curvature, 
larger than the previous one. The iteration of the geometry must be 
made ​​with approximately equal Dj . The lower the Dj, the closer 
will the values ​​obtained in relation to the exact solution be.
It can be seen from equation (30) the shape of the meridian is 
determined solely by the stress that is desired as set constant 
and the specific weight of the material used. Figure 12 shows 

Figure 11 – Graphic determination of the 
geometry of the dome with Constant stress [5]

Figure 12 – Geometry of the 
meridian of the dome
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axis of the surface of a dome subjected to own weight with con-
stant stress 20 / ²= N cmσ  and the specific weight of the material 

0,0236 / ²= N cmγ , with j  up to 70°.
The proposal automation, based on iterative process shown by [5], 
is made by taking up the triangle ACE in Figure 12, shown in Figure 
13. Once topor  is calculated, one chooses a Dj for determining 
radii 2r , 1r , 2,nr , and so forth . The radius 2,nr  is given by:

(31)r2,n= r1-u  

where 
 

( ) [ ]
( )
( )
Δ

Δ 1
.Δ

ì üé ùï ï
= + ¸ +ê úí ý

ê úï ïë ûî þ

tan
u sec s t

tan n

j
j

j

The value of n  refers to the iteration in which it is determined the 
value of 2r .
The geometry of the meridian can be obtained with no dependence 
on the thickness h , using only the equation (30). However, unlike 
other thin shells of revolution, as the cylinder or closed reser-
voirs, the use alone of this equation is not sufficient to establish a 
condition of constant stress across the dome.
To determine the variation of the thickness  ong the dome height, 
an infinitesimal element of the mean shell surface with side ds  
must be considered, as shown in Figure 14.

It is observed from Figure 14 that the presence of a load in the 
direction of the meridian requires a force to equilibrate it, thus it is 
imperative to have have an increase dh  on the lower side of the 
infinitesimal element.
The approximate equilibrium equation of the forces on the merid-
ian of the dome can be obtained in Figure 14 and is given by:

( )2sen 0+ − + =hds hds h dh dsσ γ j σ
Or by dividing the equation by ds :

sen=dh hdsσ γ j
In Figure 14 it is seen that sen =ds dlj , where dl  is the variation 
in vertical height of the dome, starting from its top. Then :

(32)dh

h
=
γ

σ
dl  

Integrating (32):

(33a)
 
ln = +h l

g

s
C

or

(33b) 
0  = =

l l

h e h e
g g
s sC

0  h being the thickness of the dome at the top , where 0=l .  

Figure 13 – Triangle ACE for 
the process automation

Figure 14 – Meridional equilibrium of an 
infinitesimal element of the dome [5]
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Figure 15 shows a dome subjected to its own weight with constant 
stress. From equations (27) and (33), it is observed that the thick-
ness at the top of the dome is not dependent on any external fac-
tor, so 0h  may have any initial value, since it depends only on its 
own weight.
The automation of calculation h  can be performed using Figure 
13, wherein for each value of j , l  can be obtained by:

(34)ln=rtopo+ Σ vn
i
n=1 -r2,n.cos(n.Δφ) 

where n  is the iteration number for the value of 
l  for the cumulative Dj.

3.	 Results

3.1	 Dome with constant stress

To explain the differences between spherical domes with uni-
form thickness and domes with constant tensions subjected to 
own weight, an example for comparison is presented.
The dome with constant stress 220 /= N cmσ  (compression 
in both directions) has a thickness at the top 0 10 =h cm , spe-
cific weight 30,0236 /= N cmγ , which results in a initial radius 
of curvature at the top 1 2 1.695 = = =topor r r cm . The angle j  
ranges from 0° up to 60°, with Dj equal to 0.1°.
The spherical dome has a constant thickness 10 =h cm  and 
its radius of curvature is equal to the top radius of curvature of 
the dome with constant stresses ( 1.695 =r cm ). The specific 
weight is 30,0236 /= N cmγ , which angle j  also varies from 
0° up to 60°.
Figure 16 shows the stresses diagram developed in the spher-
ical dome. Figure 17 and Table 1 show the variation of the 
thickness and radius of curvature 1r  and 2r  along the dome 
height with constant stresses. 
The meridian and the thickness of the two domes (scale 2: 1 
for the radius of curvature ) are shown in Figure 18. 
It is noticed that, in the example, the spherical dome has 
higher compressive stresses along j , and tensile stresses in 
the direction θ . As the /γ σ  ratio is very small, even when 
considering a conservative stress, the dome radii of curvature 
with constant stress always increases as j  increases, which 
means that  domes subjected to their own weight are higher in 
relation to equivalent spherical domes with equal initial radius 
when considering the same . but smaller in height when con-
sidering the same 0r . This is repeated for virtually all materi-
als used in construction. Because there are only compression 
stress, the use of materials not resistant to traction is pos-
sible, and the conditions necessary to support the dome are 
improved. Furthermore, the fact that there is only one solicitant 
stress value in the two axes, leads to an increased structural 
performance of the dome due to the better utilization of the 

Figure 15 – Variation of the thickness
h (h < h ) em uma cúpula topo base 

com tensões constantes

Figure 16 – Tangential stressess  
s  and meridional stresses q

s  on the spherical dome, with constant thickness and radii of curvaturej
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material.
The initial thickness of the dome with ​​constant stress 0h  is 
multiplied by e  as j  increases by a factor of /γ σ . It is no-
ticed that the inverse relation /γ σ  is equal to half of topor . 
Thus, 0h  increases exponentially in function of j  when l  is 
greater than / 2topor , as shown in Table 1 with 50≥ °j .

3.2	 Convergence process and limits of 
geometry

The results obtained by the process are dependent on the in-
put data initial stress σ , specific weight of material γ  and 
integration step Dj. The higher the value Dj, the lower the 
quality of the values ​​obtained. Figure 18 shows the conver-
gence of 1r  as Dj is reduced for the dome of the previous 
example with 60= °j .
It can be seen that with Dj close to 0,1°, the radius of cur-
vature of the results begin to converge . The same is seen in 
Figure 20 for the thickness h , which convergence is also true 
with Dj close to 0,1°. In other simulations, this same value of 
Dj seemed suitable for the convergence of the results.

In order to make the formulations of the membrane for domes 
valid, the conditions must be met:

(35)h≤0,1.r0 

as shown in Figure 2. Figure 21 shows the convergence 
of the maximum angle j  as a function of Dj, to meet the  
relation (35) .
It is observed that around Dj = 1º there is already a conver-
gence to the maximum value of j  to meet the validity of the 
membrane model in the example shown. The maximum value 
of j  is dependent on the initial stress and the specific weight 
of the material, therefore variable.

4.	 Conclusions

This paper presents an automatic process to define the geome-
try of axisymmetric domes subjected to their own weight by the  

Figure 17 – Thickness and radii of curvature of the dome with constant stress

Table 1 – Geometry of dome with constant stress in function of j with Dj = 0,1º

Angle  
j

Height 
l (cm)

Thickness  
h (cm)

Radius of curvature
r1 (cm)

Radius of curvature
r2 (cm)

0º 0 10,0 1695 1695

10º 21 10,3 1728 1704

20º 107 11,6 1866 1745

30º 252 13,5 2123 1815

40º 485 17,7 2601 1925

50º 853 27,4 3566 2092

60º 1492 58,2 6022 2359

69º 2744 254,9 14932 2810
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membrane theory with varying thickness and radii of curvature, in 
order to obtain constant meridional and tangential stresses. 
The results show that domes subjected to own weight generally 
have greater heights than the equivalent spherical ones with 
the same initial radius for the same j , but have lower heights 
for the same 0r  due to the relationship /γ σ  being so small. 
Therefore, even when for a conservative initial stress, the radii 
of curvature of the dome with constant stress always increase 
as j  increases.

Regarding the presented process, it is clear that the accuracy of 
the results is a function of Dj. For different configurations of γ  
and σ , it was found that the convergence of results starts with 
values of Dj ​​below 0,1°. For the validity of the membrane model, 
it is assured that the equation (35) is respected in order to keep 
the error of the variation of normal stress along the thickness 
of the dome small. The convergence in the example shown was 
around j  = 69º, though this value varies with the initial data ​​
used for the dome with constant stress.
The automatic process proposed to define the geometry of axi-

Figure 19 – Convergence of r  1

in function of Dj for j = 60º

Figure 18 – Spherical dome and dome with constant stress

Figure 20 – Convergence of h 
in function of Dj for j = 60º
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Figure 21 – Convergence of the limit value 
of j for the validity of the membrane model

symmetric domes with constant stress subjected to own weight is 
simple to use and has a great advantage over the usual numeric 
methods. The process shown is also quite interesting for solving 
such structures as the analytical solutions to the problem are not 
easy to obtain. The tool is shown to be adequate, therefore, for 
the geometry defining of domes with constant stress for subse-
quent design.
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