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ABSTRACT: Leaf hyperspectral reflectance has been used to estimate nutrient concentrations 
in plants in narrow bands of the electromagnetic spectrum. The aim of this study was to estimate 
leaf nutrient concentrations using leaf hyperspectral reflectance and verify the variable selection 
methods using the partial least squares regression (PLSR). Two studies were carried out using 
stands with Eucalyptus clones. Study I was established in Eucalyptus stands with three clones, 
classifying leaves into five colour patterns using the Munsell chart for plant tissues. Immediately 
after leaf collection, leaf reflectance was read and the chemical analysis was performed. Study 
II was carried out in commercial clonal stands of Eucalyptus performing the same leaf sampling 
and chemical analysis as used in Study I. All leaf reflectance spectra were smoothed and three 
more pre-processing procedures were applied. In addition, three methods of PLSR were test-
ed. The first derivative was more accurate for predicting nitrogen (Rcv

2 = 0.95), phosphorous 
(Rcv

2 = 0.93), and sulphur concentration (Rcv
2 = 0.85). The estimates for concentrations of 

calcium (Rcv
2 = 0.81), magnesium (Rcv

2 = 0.22), and potassium (Rcv
2 = 0.76) were more accurate 

using the logarithm transformation. Only the estimates for iron concentrations were performed 
with higher accuracy (Rcv

2 = 0.35) using the smoothed reflectance. The copper concentrations 
were more accurate (Rcv

2 = 0.78) using the logarithm transformation. Concentrations of boron 
(Rcv

2 = 0.68) and manganese (Rcv
2 = 0.79) were more accurate using the first derivative, while 

zinc (Rcv
2 = 0.31) concentration was most accurate using the second derivative.
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Introduction

Non-destructive methods for measuring nutrient 
concentration, involving different sensors, have been 
used in forest and agricultural nutritional management 
(Lu et al., 2018; Oliveira et al., 2017; Pandey et al., 2017). 
Among these sensors, hyperspectral reflectance stands 
out, as it allows obtaining information on the relation-
ships between plants and electromagnetic energy in nar-
row bands of the electromagnetic spectrum. Didactical-
ly, the electromagnetic spectrum is divided into regions, 
according to wavelengths. The visible (VIS, 400 – 700 
nm), near infrared (NIR, 700 – 1300 nm) and shortwave 
infrared (1300 – 2500 nm) regions of the spectrum are 
the regions that mostly interact with plants in vivo, since 
the leaf pigments in plants, especially chlorophylls, in-
teract with the electromagnetic energy in the VIS region 
and the leaf structure interacts in the NIR region (Gates 
et al., 1965).

Not only do leaf pigments and structures relate to 
electromagnetic energy in the VIS-NIR regions, but leaf 
nutrients also do (Abdel-Rahman et al., 2017; Mahajan 
et al., 2014; Pimstein et al., 2011. Nutrients have sev-
eral functions in plant metabolism in the areas of leaf 
structure and pigment synthesis, plant energy, and me-
tabolism as well as the electron transport chain, among 
others (Marschner, 1995). Moreover, under deficiency 
of some nutrients, leaf chlorophyll concentrations are 
reduced and leaf reflectance is changed (Adams et al., 
2000a, b; Mariotti et al., 1996). For this reason and due 

to other metabolic alterations, it is possible to detect 
when plants experience nutrient deficiencies through 
leaf and tissue chloroses and necrosis (Dell et al., 1996).

Because of the complexity of nutrient functions 
and the number of plant chemical compounds, estimat-
ing leaf nutrients by means of hyperspectral reflectance 
is not a simple procedure with difficulties with autocor-
relation and collinearity (Blackburn, 2007; Wold et al., 
2001). To overcome these problems, some modelling 
techniques have been used to predict leaf nutrient con-
centrations through hyperspectral reflectance, such as 
the partial least squares regression (PLSR) linked to vari-
able selection methods (Mehmood et al., 2012). There-
fore, this study aimed to estimate leaf nutrient concen-
trations using leaf hyperspectral reflectance and verify 
the variable selection methods using the PLSR.

Material and methods

Two studies (Study I and Study II) were carried out 
using Eucalyptus stands in the municipalities of Lassance 
and Três Marias, Minas Gerais, Brazil, about 800 m a.s.l. 
(Figure 1).

Study I was established in Eucalyptus stands which 
were 25 months old, established with 7.0 × 1.3 m tree 
spacing, with three clones (E. urophylla x E. grandis: 
GG680, E. urophylla x E. grandis: GG682 and hybrid of 
E. urophylla ST Blake: I144). In these stands, nine plots 
of 10 ha were allocated, three per clone. Leaves from the 
lower part of tree crowns were visually classified into five 
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colour patterns using the Munsell chart for plant tissues 
(Gretag-Macbeth, New Winsor, NY, USA). The leaf colour 
patterns were defined by the clear expression of the bio-
chemical cycling of nutrients (Saur et al., 2000) (Table 1).

For each colour pattern, 30 leaves were collected 
in each of the nine plots. A leaf was collected from each 
tree in a random zigzag walk. The set of 30 leaves con-
stituted a composite sample, totalling 45 composite sam-
ples (3 clones × 3 plots × 5 leaf colour patterns). This 
sampling was performed to obtain a wide variation in 
leaf nutrient concentrations.

Immediately collection, leaf reflectance (400-900 nm) 
was read in the abaxial part of each leaf, 10 mm from the 
lower border, on the left side of the leaves using a CI-710 
mini-spectrometer (CID Bio- Science - Camas, Washington, 
USA). Leaf reflectance was analysed using SpectraSnap! 
(Software version 1.1.3.150, CID Bio-Science) with 300 
milliseconds of integration time, a boxcar with 10 points 
and two scans for averaging. From the set of 30 smoothed 
spectra in each sample, the average value for leaf reflec-
tance was obtained for each of the 45 composite samples.

Subsequently, the 30 leaves of each composite 
sample were placed in paper bags and oven-dried with 
forced air circulation at 65 ºC. After drying, the 45-com-
posite samples were digested in nitro-perchloric solution 
and concentrations of calcium (Ca), magnesium (Mg), 
sulphur (S), zinc (Zn), iron (Fe) and manganese (Mn) 
were determined by spectrophotometry. The phospho-
rus (P) concentration was determined by colorimetry, 
the potassium (K) concentration by flame photometry 
and the total nitrogen (N) concentration by the Kjeldahl 
method following sulphuric digestion.

Study II was carried out in commercial stands of 
the hybrid of Eucalyptus urophylla ST Blake (I144 clone), 
which were 9, 12, 15, and 25 months old. Sixteen plots 
of 10 ha were allocated, four plots per age (Figure 1). 
Leaves from 25 trees in these plots were sampled. They 
were taken from tall trees in the upper canopy of the 
stands (80 % percentile). For each tree, four completely 
expanded leaves, without physical damages, were col-

lected at the four cardinal points near in the middle of 
the Eucalyptus crowns. The 100-leaf set comprised a 
composite sample to determine nutrients and measure 
leaf reflectance. The procedures for leaf collecting and 
chemical analysis were the same as in Study I.

The results obtained in Studies I and II were 
grouped into a single database with 45-leaf nutrient con-
centrations and reflectance samples from Study I and 
16-leaf nutrient concentrations and reflectance samples 
from Study II. All leaf reflectance was smoothed by the 
Savitzky-Golay algorithm using polynomial 2 (SR, Sav-
itzky and Golay, 1964). In addition, three more pre-pro-
cessing procedures were used comparatively: leaf reflec-
tance logarithmic transformation (LT, Eq. 1), first (FD) 
and second derivative (SD).

ln logρλ
ρλj

j
( ) = 









1 	  (1)

where: rlj - leaf reflectance in the j wavelength.
The pre-processed reflectance values for each 

composite sample (n = 61) were set in PLSR as a set 
of predictors variables and a single wavelength repre-
sented a variable (λ = 2884). The leaf nutrient concen-
trations, obtained by the chemical analysis, were set as 
dependent variables (n = 61) in PLSR. For each nutrient, 
a PLSR was adjusted through the SIMPLS algorithm on 
all predictors and dependent variables after pre-process-
ing (Eq. 2 and 3).

y T ei k
r

k ik i= + ∑ +=β β0 1    (i = 1, ..., n)	  (2)

T cik j
m

kj ij= ∑ =1 ρ    (k = 1, ..., r)	   (3)

where: yi - nutrient concentration in the i sample; Tik 
- latent variable k in the i sample; rij - leaf reflectance 
of sample i in wavelength j; m - total number of wave-
lengths, 2884; n - total number of samples; ei - error; bk 

- regression coefficients of the k latent variable; r - num-
ber of latent variables; ckj - coefficients of the k latent 
variable in wavelength j.

Table 1 – Leaf colour patterns sampled in Eucalyptus stands.
Colour name 
diagrams

Matte colour 
chips Hue Value Chroma Munsell colour 

code

Brilliant yellow 
green 7.5 GY 8 8 7.5 GY 8/8

Light yellow 
green 7.5 GY 8 4 7.5 GY 8/4

Brown 7.5 YR 4 2 7.5 YR 4/2

Yellow 2.5 Y 7 6 2.5 Y 7/6

Strong yellow 2.5 Y 8 10 2.5 Y 8/10
Figure 1 – Plots of Study I and Study II.
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For each nutrient, three methods of PLSR were 
tested for each reflectance pre-processing procedure. 
The method called PLS1 was a fit for the model using 
the hyperspectral reflectance in all wavelengths. More-
over, the methods wrapper and filter of variable selec-
tion were used to select the wavelengths (inputs) for 
the PLSR models. The iterative predictor weighting PLS 
(IPW) was performed using 100 iterations and selecting 
the wavelengths by means of the regression coefficients. 
In each iteration, the predictor importance was comput-
ed after PLS modelling and this importance was used to 
re-scale the reflectance in each single wavelength and 
eliminate the least important wavelengths with values 
below 0.1 before subsequent model re-fitting (Forina et 
al., 1999).

Another variable selection method used was the 
variable importance in PLSR projection (VIP) (Wold et 
al., 1993). This method accumulated the reflectance im-
portance in each wavelength j that was reflected by the 
weight (w) from each component and selected the wave-
length with VIP > 1 (Eq. 4).

VIP p SS W W SSj a
A

a aj a a
A

a= ∑ ( )




∑ ( )= =1

2
1/ 	  (4)

where: SSa - sum of squares explained by the ath compo-
nent; W Waj a/( )2 - importance of the jth wavelength.

The number of latent variables (LV) was based on 
the minimum predicted residual error sum of squares 
(PRESS) to avoid over fitting of the model. During the 
process of training and modelling of validation, several 
models were created to predict concentration of each nu-
trient. The model that presented less root mean squares 
error (RMSEtrain and RMSEcv, Eq. 5), as well as the highest 
coefficient of determination in the training (Rtrain

2) and 
validation (Rcv

2), was selected. The leave-one-out cross-
validation (LOOCV) was used, as it provides lower bias 
and fewer errors when it is used with a limited number 
of samples (Cawley and Talbot, 2003).

RMSE
Yi yi
n

i
n

=
∑ −=1

2( ) 	  (5)

where: Yi is the nutrient concentration of sample i esti-
mated by the equation; yi is the nutrient observed in the 
laboratory of sample i; n is the total number of samples. 
RMSE: g kg–1 for N, P, K, Ca, Mg and S; mg kg–1 for B, 
Zn, Mn, Fe and Cu.

All statistical procedures were carried out using 
the software R Core Team (2017) version 3.4.0, platform 
support R Studio version 1.0.143. A method process sim-
plification can be visualised in the workflow in Figure 2.

Results

The SR presented higher standard deviation in the 
VIS region, especially at wavelengths between 550 and 
700 nm (Figure 3A). Similarly, the LT increased the stan-
dard deviation mainly at the wavelength near the blue 
region (400 – 500 nm) (Figure. 3B). In the FD pre-pro-

cessing, the point of maximum inflection of the curve 
in the red edge (IPP, ~700 nm) was the region with the 
highest standard deviations (Figure 3C). As observed in 
FD, the wavelengths close to 700 and 730 nm represent-
ed the region with the highest standard deviation in SD 
(Figure 3D).

Table 2 shows the descriptive statistics for nutrient 
concentrations of Eucalyptus leaves. Large standard de-
viations are observed in practically all nutrient concen-
trations, as well as the large range between the nutrient 
concentration minimum and maximum. On average, nu-
trient concentrations were classified as optimal for the 
crop, except for N, P and Fe, which were below optimal.

None of the models used to predict macronutri-
ents showed better accuracy when using the SR and SD 
pre-procedures (Table 3). The FD was more accurate to 
predict N and P concentrations using six LV and PLS1. 
The same pre-processing was used to predict S concen-
tration using 16 LV and select the wavelengths with the 
VIP method. The estimates of Ca, Mg, and K concentra-
tions were more accurate using the LT. The Ca concen-
tration estimate was more accurate using the 12 LV and 
the IPW methods. On the other hand, estimates of Mg 
and K concentration were more accurate using 11 LV 
while selecting wavelengths using the VIP method.

Among the models developed for micronutrient 
concentrations, only the estimates for Fe concentrations 
were performed with high accuracy using the SR pre-
process and the VIP method (Table 4). Estimates of Cu 
concentrations were more accurate using the LT pre-pro-
cess, with PLS1 and 12 LV. Estimates of B and Mn con-
centrations were more accurate using the FD with seven 
LV and selecting the wavelengths using the VIP method. 
Estimates of Zn concentration were more accurate using 
the SD with just two LV and the same variable selection 
method, similar to estimates for B and Mn concentrations.

Figure 2 – Workflow of partial least square regression nutrient 
estimates.
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Estimates of N concentration were more accurate 
than all estimates for nutrient concentrations (Table 3), 
resulting in an accurate model prediction (Figure 4). 
Moreover, concentrations of P, Ca, S, Mn, and Cu were 
estimated with high accuracy (Table 3) and resulted in an 
excellent model prediction (Figure 4). Although accuracy 
for K and B estimates were not as high as for the nutrient 
concentrations described previously, estimates for K and 
B were still fairly accurate (Table 3) with a few errors (Fig-
ure 4). Estimates for Mg, Zn, and Fe concentrations were 
the least accurate and included a large number of errors 
than for nutrients mentioned previously.

Regarding PLSR coefficients, the absolute values 
indicate the contribution of each wavelength in the pre-
dictive models. In other words, the higher the absolute 
coefficient value, the greater the influence of wavelength 
on the model. In the N concentration model, the coef-
ficients for wavelengths at 740 and 780 nm presented 
more absolute values (Figure 5). Moreover, the pattern 
of coefficient values observed in the N modelling is 
similar to that found for the P concentration modelling. 

However, the high absolute coefficient value was around 
680 nm for the P concentration modelling.

For the K concentration modelling, the VIP method 
selected wavelengths in the regions for blue, green, red, 
and a small part of NIR. In this model, the coefficient as-
signed to 400 nm had a greater absolute value (Figure 5). 
Since the Ca concentration modelling used the IPW vari-
able selection method, wavelengths in all hyperspectral 
reflectance regions were used in the modelling. Neverthe-
less, higher absolute coefficient values were assigned to 
wavelengths in the red edge and NIR regions.

The Mg concentration was estimated using wave-
lengths in the blue, red, red edge and NIR regions, with 
higher absolute values in the blue region and around 
820 nm (Figure 5). The S concentration was predicted 
using almost all regions included in this study, with a 
gap between 706 and 870 nm and higher absolute coef-
ficient values at 705 and 880 nm. Similarly, the B con-
centration was estimated using all regions of the elec-
tromagnetic spectrum with a higher absolute coefficient 
value around 790 nm.

Table 2 – Descriptive statistics of leaf nutrient concentrations in Eucalyptus.

Statistics
N P K Ca Mg S B Zn Mn Fe Cu

-------------------------------------------------------------------- g kg–1 -------------------------------------------------------------------- ---------------------------------------------------------- mg kg–1 -----------------------------------------------------------
x 10.20 0.62 6.73 10.11 1.92 1.43 94.89 22.44 1689.89 66.59 9.26

s.d. 5.94 0.36 2.66 4.14 0.39 0.26 40.56 5.67 905.52 31.33 1.35
Min 2.36 0.18 1.95 3.45 1.03 0.93 25.30 7.83 288.97 24.28 7.60
Max 18.95 1.24 12.46 19.71 3.00 2.02 171.40 35.83 4066.00 182.52 13.10

Figure 3 – Average and standard deviation of pre-processing leaf reflectance.
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In the Zn concentration estimates, the higher ab-
solute values were assigned to wavelengths for the blue 
and NIR regions, while the wavelengths for the blue, 
red, red edge and NIR regions were used to predict Mn 
concentration with higher absolute coefficient values at 
680 nm and around the NIR region. The wavelengths 
in the blue region also had higher absolute coefficient 
values in the estimates for Fe and Cu concentrations. 
More specifically, in Cu concentration estimates, 520 nm 
was the wavelength with the highest absolute coefficient 
value.

Discussion

The pre-processing caused changes in different re-
gions of the spectrum (Figure 3), which is important for 
modelling leaf nutrient concentration with large stan-
dard deviations (Table 2). A higher standard deviation 
for leaf reflectance indicates that these regions may be 
more favourable for extracting differences in indepen-
dent samples and undertaking robust modelling. In the 

SR and LT pre-processes, the highest standard deviations 
at 550 and 700 nm and below 550 nm are comparable 
to those in several plant species (Asner et al., 2011; 
Dechant et al., 2017). Likewise, regions of leaf reflec-
tance related to physiological traits, like the wavelengths 
at around 700 nm (Horler et al., 1983), presented higher 
standard deviations in FD and SD (Figures 3 C, D).

In this study, the number of LV used to estimate 
nutrient concentrations ranged between 2 and 16 (Table 
3, 4). Pandey et al. (2017) found similar results when 
predicting nutrient concentrations using hyperspectral 
images in maize and soybean. In the PLSR modelling 
for hyperspectral data and biochemical traits in plants, 
it is usual to use more than 10 LV (Nguyen et al., 2006; 
Ramoelo et al., 2013). However, high LV values may un-
dergo overfitting, which could compromise the model 
predictive power (Wold et al., 2001). On the other hand, 
in some studies, biochemical traits were predicted with 
less than 10 LV, for example in Cirtrus sinensis (L.) Os-
beck cv Tarocco, Picea rubens Sarg., Abies balsamea (L.) 
Mill. and Beta vulgaris L. (Swiss chard) (Abdel-Rahman 

Table 3 – Partial least squares (PLS) statistics for macronutrients.

PLS
N P K Ca Mg S

PLS1a IPW VIP PLS1a IPW VIP PLS1 IPW VIPa PLS1 IPWa VIP PLS1 IPW VIPa PLS1 IPW VIPa

Smoothed reflectance
N° LV 9 9 8 5 5 7 12 12 11 12 12 15 3 2 3 5 13 25
N° λ All 155 1369 All 103 1178 All 366 1100 All 43 788 All 43 794 All 307 1524
RMSEtrain 1.05 1.05 1.08 0.09 0.09 0.08 0.93 1.60 1.09 1.24 1.36 1.29 0.38 0.38 0.38 0.11 0.06 0.03
RMSEcv 1.34 1.35 1.33 0.10 0.10 0.10 1.46 1.74 1.45 2.02 1.94 2.05 0.42 0.40 0.41 0.12 0.11 0.13
R²train 0.97 0.97 0.97 0.94 0.94 0.95 0.88 0.63 0.83 0.91 0.89 0.90 0.05 0.03 0.04 0.84 0.94 0.98
R²cv 0.95 0.95 0.95 0.92 0.93 0.93 0.70 0.56 0.70 0.76 0.78 0.75 0.03 0.01 0.01 0.78 0.81 0.76

Logarithmic transformation
N° LV 7 7 8 5 5 8 11 13 11 12 12 13 11 11 11 9 12 2
N° λ All 57 1390 All 56 1346 All 181 1063 All 756 1096 All 113 863 All 123 1596
RMSEtrain 1.10 1.10 1.00 0.09 0.09 0.07 0.90 0.81 0.94 1.10 1.09 1.24 0.25 0.26 0.25 0.09 0.06 0.11
RMSEcv 1.30 1.30 1.27 0.10 0.10 0.10 1.38 1.48 1.30 1.81 1.80 1.91 0.39 0.40 0.34 0.12 0.10 0.12
R²train 0.97 0.97 0.97 0.94 0.94 0.96 0.88 0.91 0.87 0.93 0.93 0.91 0.57 0.54 0.58 0.89 0.95 0.81
R²cv 0.95 0.95 0.95 0.93 0.93 0.93 0.73 0.68 0.76 0.81 0.81 0.78 0.01 0.01 0.22 0.80 0.84 0.78

First derivative
N° LV 6 6 4 6 6 4 4 9 5 7 6 8 3 5 4 8 5 16
N° λ All 93 1196 All 51 1270 All 50 1439 All 88 1377 All 61 869 All 67 1218
RMSEtrain 0.90 0.98 1.07 0.06 0.07 0.08 1.35 1.06 1.24 1.24 1.42 1.32 0.35 0.28 0.32 0.06 0.10 0.04
RMSEcv 1.26 1.34 1.25 0.09 0.10 0.09 1.67 1.52 1.63 1.85 1.94 1.90 0.42 0.41 0.40 0.10 0.11 0.10
R²train 0.98 0.97 0.97 0.97 0.96 0.96 0.74 0.84 0.78 0.91 0.88 0.90 0.18 0.48 0.31 0.95 0.87 0.97
R²cv 0.95 0.95 0.96 0.93 0.93 0.93 0.60 0.67 0.62 0.80 0.78 0.79 0.03 0.02 0.01 0.85 0.81 0.85

Second derivative
N° LV 4 4 4 4 4 3 3 2 7 3 3 4 3 3 3 10 7 9
N° λ All 83 1200 All 54 1182 All 24 1192 All 66 1334 All 111 993 All 38 1101
RMSEtrain 1.00 1.07 1.09 0.07 0.08 0.09 1.16 1.37 0.96 1.38 1.50 1.60 0.30 0.30 0.30 0.05 0.08 0.06
RMSEcv 1.37 1.33 1.34 0.10 0.10 0.10 1.53 1.56 1.48 1.78 1.91 1.98 0.44 0.41 0.40 0.11 0.11 0.11
R²train 0.97 0.97 0.97 0.96 0.95 0.94 0.81 0.73 0.87 0.89 0.87 0.95 0.39 0.40 0.41 0.96 0.90 0.95
R²cv 0.95 0.95 0.95 0.92 0.92 0.93 0.66 0.65 0.69 0.81 0.78 0.77 0.08 0.02 0.01 0.81 0.82 0.81
aIn bold = Reflectance pre-processing and variable selection method chosen for nutrient estimates. N = Nitrogen; P = Phosphorous; K = Potassium; Ca = Calcium; Mg 
= Magnesium; S = Sulphur; PLS1 = Hyperspectral reflectance in all wavelengths; IPW = Iterative predictor weighting partial least square; VIP = Variable importance 
in partial least squares regression projection; N° LV = Number of latent variables; N° λ = Number of wavelengths = RMSEtrain = Root mean square error of training; 
RMSEcv = Root mean square error of cross validation = R²train = Coefficient of determination of training; R²cv = Coefficient of determination of cross validation.
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et al., 2014; 2017; Menesatti et al., 2010). Therefore, the 
LOOCV was performed to evaluate the model predictive 
capacity (Tables 3, 4).

In general, the variable selection methods in-
creased the PLSR models (Tables 3, 4). In estimates for 
K, Mg, S, B, Zn, Mn, and Fe concentrations, greater ac-
curacy was obtained with the VIP method. The IPW 
method was only used with the highest accuracy for 
estimates of Ca concentration. In general, variable selec-
tion methods increase accuracy of hyperspectral model-
ling and the use of whole wavelengths has a negative in-
fluence on the predictive PLSR capacity (Abdel-Rahman 
et al., 2017; Filzmoser et al., 2012). However, estimates 
of N, P, and Cu concentrations were more accurate us-
ing the wavelengths for the entire reflectance spectrum 
(400 – 900 nm).

It is known that the relationship between N, P, and 
Cu concentrations and the reflectance in the studied re-
gion of reflectance spectrum is very strong (Pimstein et 
al., 2011; Mahajan et al., 2014; Oliveira et al., 2017). For 
this reason, even using the whole reflectance spectrum, 
the model accuracy for these nutrients was high (Figure 

4). Nevertheless, the variable selection methods increase 
accuracy for estimates of N and P concentrations in oil-
seed rape (Brassica napus L.) (Zhang et al., 2013).

Estimates of N concentration had the greatest ac-
curacy, followed by estimates of P concentration (Figure 
4). In general, the concentrations of these nutrients are 
the most accurate in spectral data estimates (Asner et 
al., 2011; Pandey et al., 2017; Ramoelo et al., 2013). Both 
nutrients are highly related to photosynthetic traits in 
plants (Dechant et al., 2017). However, the same result 
may not be observed in all plant species (Abdel-Rahman 
et al., 2017; Menesatti et al., 2010). In addition, Asner et 
al. (2011), using spectroscopy to determine nutrients in 
humid tropical forest canopies, were only successful in 
estimating N and P concentrations with less accuracy.

The higher absolute coefficient values related to 
wavelengths in the red and red edge regions explained the 
strong relationship between these wavelengths and N and 
P concentrations (Figure 5). The red and red edge regions 
are widely used for estimates of leaf nutrient for several 
forest and agricultural crops (Mutanga et al., 2005; Olivei-
ra et al., 2017; Schlemmer et al., 2013; Yu et al., 2014).

Table 4 – Partial least squares (PLS) statistics for micronutrients.

PLS
B Zn Mn Fe Cu

PLS1 IPW VIPa PLS1 IPW VIPa PLS1 IPW VIPa PLS1 IPW VIPa PLS1a IPW VIP
Smoothed reflectance

N° LV 10 11 9 3 11 3 14 13 21 12 3 11 14 11 5
N° λ All 62 1571 All 94 524 All 58 821 All 140 672 All 80 821
RMSEtrain 18.97 19.87 21.96 4.93 3.42 4.56 225.3 246.7 184.1 16.64 27.10 17.84 0.38 0.51 0.66
RMSEcv 27.75 26.23 27.88 5.30 5.33 4.87 451.7 455.0 448.2 28.56 29.72 25.00 0.75 0.75 0.76
R²train 0.78 0.76 0.70 0.23 0.63 0.34 0.94 0.92 0.96 0.71 0.24 0.67 0.92 0.86 0.75
R²cv 0.52 0.57 0.52 0.11 0.10 0.25 0.75 0.74 0.75 0.16 0.09 0.35 0.68 0.68 0.68

Logarithmic transformation
N° LV 9 9 9 5 5 6 12 12 12 11 10 9 12 12 11
N° λ All 59 1621 All 415 525 All 256 1219 All 511 554 All 68 1219
RMSEtrain 20.55 20.61 21.24 4.57 4.56 4.41 250.9 261.5 315.4 17.29 20.06 19.25 0.39 0.40 0.47
RMSEcv 27.22 27.56 28.17 5.24 5.24 5.04 432.9 448.8 493.7 27.25 29.12 25.22 0.63 0.65 0.65
R²train 0.74 0.74 0.72 0.34 0.23 0.39 0.92 0.92 0.88 0.69 0.58 0.62 0.92 0.91 0.88
R²cv 0.54 0.53 0.51 0.13 0.13 0.20 0.77 0.75 0.70 0.23 0.12 0.34 0.78 0.77 0.76

First derivative
N° LV 6 6 7 5 5 5 9 9 7 2 4 4 6 6 10
N° λ All 83 1277 All 88 730 All 411 1112 All 44 1377 All 237 1252
RMSEtrain 17.67 18.10 16.74 3.71 3.77 3.84 237.1 240.7 277.5 27.37 25.51 26.05 0.52 0.53 0.43
RMSEcv 24.41 24.70 22.66 5.02 5.02 4.77 421.4 428.7 407.5 30.92 31.69 31.43 0.73 0.74 0.70
R²train 0.81 0.80 0.83 0.56 0.55 0.53 0.93 0.93 0.90 0.22 0.32 0.30 0.85 0.85 0.90
R²cv 0.63 0.62 0.68 0.20 0.20 0.28 0.78 0.77 0.79 0.01 0.01 0.01 0.70 0.69 0.72

Second derivative
N° LV 4 4 3 3 4 2 7 7 7 6 20 5 8 7 6
N° λ All 61 1309 All 141 628 All 57 734 All 30 683 All 18 1245
RMSEtrain 17.64 17.73 22.08 3.86 3.68 4.04 240.2 341.7 335.4 17.09 18.45 18.44 0.36 0.64 0.46
RMSEcv 23.77 23.66 25.35 5.00 5.06 4.67 419.8 523.0 524.1 29.83 30.62 25.77 0.70 0.83 0.61
R²train 0.81 0.81 0.70 0.53 0.57 0.48 0.93 0.86 0.86 0.70 0.65 0.65 0.93 0.77 0.88
R²cv 0.65 0.65 0.60 0.21 0.19 0.31 0.78 0.66 0.66 0.07 0.03 0.31 0.73 0.61 0.78
aIn bold = Reflectance pre-processing and variable selection method chosen for nutrient estimates. B = Boron; Zn = Zinc; Mn = Manganese; Fe = Iron; Cu = Copper; 
PLS1 = Hyperspectral reflectance in all wavelengths; IPW = Iterative predictor weighting partial least square; VIP = Variable importance in partial least squares 
regression projection; N° LV = Number of latent variables; N° λ = Number of wavelengths = RMSEtrain = Root mean square error of training; RMSEcv = Root mean 
square error of cross validation = R²train: Coefficient of determination of training; R²cv = Coefficient of determination of cross validation.



7

Oliveira & Santana Estimating leaf nutrient concentration

Sci. Agric. v.77, n.6, e20180409, 2020

Regarding estimates of K concentration, several 
wavelengths in the VIS and NIR regions were selected 
(Figure 5). These regions are related to changes in K con-
centration in leaves (Guo et al., 2017; Zhai et al., 2013). In 
the VIS region, the blue, green, red and red edge regions 
were selected to estimate K concentration using the VIP 
method (Figure 5). These same regions were used to clas-
sify canola (Brassica napus L.), plants with K deficiency 
using a hyperspectral camera (Severtson et al., 2016).

The red edge and NIR presented higher absolute 
coefficient values for estimates of Ca concentration (Fig-
ure 5). This is probably due to the relationship between 
the structural components and the energy in these re-
gions. One of the functions of Ca in higher plants is cell 
wall synthesis and cell membrane integrity; thus, Ca has 
a structural function (Marschner, 1995). Moreover, leaf 
reflectance in NIR regions demonstrates a strong rela-
tionship with the structural components of plants (Gates 
et al., 1965).

Higher absolute coefficient values in the blue re-
gion and near 820 nm were obtained for estimates of Mg 
concentration (Figure 5). Mg is the central atom in the 
chlorophyll molecule ring and indirectly, Mg concentra-
tion influences leaf reflectance in the VIS region chang-

Figure 4 – Relationship between leaf nutrient concentrations measured and predicted.

ing chlorophyll concentration in leaves (Marschner, 
1995). Leaf chlorophyll has absorption peaks in the elec-
tromagnetic spectrum in the blue and red regions (Lich-
tenthaler, 1987). Most likely, higher absolute coefficient 
values are in wavelengths in the blue region.

Concentration of S was estimated using almost all 
regions in the electromagnetic spectrum with higher ab-
solute coefficient values closer to 700 and 880 nm (Fig-
ure 5). Wavelengths in these regions have been used in 
the management of S in wheat (Triticum aestivum L.) 
and rice (Oryza sativa L.) (Mahajan et al., 2014; 2017). 
Using the VIP method, wavelengths in all regions of the 
spectrum were selected for estimates of B concentration 
with higher absolute coefficient values at approximately 
790 nm (Figure 5). Similar to Ca, B plays a structural role 
in plants (Marschner, 1995) and has a strong relationship 
with the NIR region, as explained previously. In general, 
there have been problems with hyperspectral sensors to 
estimate B concentrations, namely in soybean (Glicine 
max L., variedade Thorne) and maize (Zea mays, B73 in-
bred) crops (Pandey et al., 2017). In this study, although 
accuracy of B concentration estimates was not the high-
est, leaf concentration was estimated with R2

cv = 0.68 
and RMSEcv = 22.66 mg kg–1 (Table 4 and Figure 4).
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Estimates of Zn concentration had the lowest ac-
curacy with higher absolute coefficient values related to 
wavelengths in the blue and NIR region (Table 4 and 
Figure 5). In the plant, Zn is as metal ion; thus, higher 
precision in its estimate using leaf hyperspectral reflec-
tance was expected (Pandey et al., 2017). However, esti-
mates of Zn concentration using leaf reflectance are not 
frequently reported and the weak relationship may be a 
reason for this. For instance, Zn deficiency was not de-
tected by reflectance in soybean plants under Zn omis-
sion in the growth solution (Adams et al., 2000a, b).

Higher absolute coefficient values were attribut-
ed to wavelengths in the blue, red, red edge and NIR 
regions to estimate Mn concentration (Figure 5), while 
higher absolute coefficient values were related to wave-
lengths in the blue region for estimates of Fe concentra-
tion. Estimates of Cu concentration had higher absolute 
coefficient values in wavelengths at around 520 nm (Fig-
ure 5). Zhang et al. (2017) also selected a wavelength in 
the green region to estimate Cu concentration in veg-
etation stress. Nevertheless, as described for Zn, the re-
lationship between leaf reflectance and micronutrients 
is little explained in the literature (Adams et al., 2000a; 
Pandey et al., 2017; Zhang et al., 2017).

Only in estimates of B and K concentration, wave-
lengths around 425 – 435 nm and 460 – 468 nm were 
not used, respectively (Figure 5). Since 91 % of macro- 
and micronutrients models used leaf reflectance in these 
wavelengths, it can be an indicative of the importance 
of these wavelengths in leaf nutrient modelling of con-
centrations. On the other hand, only estimates of N, P, 
and Cu concentrations used leaf reflectance in the wave-
lengths 517 – 532 nm, 763 – 778 nm, 790 – 798 nm, 805 
– 819 nm, 832 – 841 nm, and 866 – 890 nm. As previ-
ously discussed, these wavelengths are avoided to esti-
mate most nutrient concentrations in Eucalyptus clones.

In this study, we used more than 2,000 predictors 
in 61 samples of leaf reflectance and nutrient concentra-
tions. Although there are more predictors than depen-
dent variables, PLSR is a robust method than can over-
come this problem and deal with small sets of samples 
and large numbers of estimated parameters associated 
to models for hyperspectral data (Abdel-Rahman et al., 
2017; Ramoelo et al., 2013). Moreover, more advanced 
analytical and sensing methods were previously used 
to estimate macro and micronutrient concentrations in 
several plant species (Pullanagari et al., 2016; Abdel-
Rahman et al., 2017; Pandey et al., 2017; Wang et al., 

Figure 5 – Coefficient weights for wavelengths for selected partial least squares regression (PLSR) models.
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2017). However, the use of PLSR in leaf hyperspectral 
reflectance presented a rapid and accurate method to 
estimate leaf macro- and micronutrient concentrations 
in Eucalyptus clones.

Conclusion

Leaf hyperspectral reflectance was capable to es-
timate leaf nutrient concentration in Eucalyptus clones 
using partial least squares regression and variable selec-
tion methods. In general, the variable selection methods 
increased accuracy of nutrient concentration estimates. 
Although the number of studies on relationships be-
tween nutrient concentrations and leaf reflectance is in-
creasing, the biochemical meaning behind their models 
is still poorly described.

The NIR region evaluated in this work was up to 
900 nm, the complete NIR and SWIR regions (until 2500 
nm) may have wavelengths that could be useful to esti-
mate accurately leaf nutrient concentrations in Eucalyp-
tus clones. The authors recommend that the results be 
up-scaled to another time and space points to evaluate 
the operational use of this approach.
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