Acessibilidade / Reportar erro

Myrtaceae Juss. in restinga of Bahia: diversity, taxonomy, and distribution

ABSTRACT

Myrtaceae has ca. 6,000 species, distributed into 140 genera with Pantropical distribution. The family is one of the five most representative flowering plants in species richness in Brazilian restinga and is also of great importance for the maintenance of the ecological cycles of this vegetation. However, few studies focus on Myrtaceae in restinga, mainly in the State of Bahia, which has the country's largest coastal extension. This study aims to present the first taxonomic study of Myrtaceae from the restinga of the State of Bahia, Brazil. A total of 10 field trips were performed from September 2016 to April 2019, and the most relevant herbaria of Brazil were consulted. A total of eight genera and 85 species of Myrtaceae were identified in the Bahian restinga. Myrcia was the most representative genus with 42 species, followed by Eugenia (23 spp.), Psidium (seven spp.), Campomanesia (five spp.), Myrciaria (four spp.), Neomitranthes (two spp.), and Blepharocalyx and Calycolpus (a single species each). Two of them represented new species to science, and four presented the first records to the studied area. The distribution patterns among the Brazilian biomes and the restinga phytophysiognomies are discussed, also a checklist, identification keys, and photographic plates are provided.

Keywords:
Eugenia; floristic; Mata Atlântica; Myrcia; Myrteae

Introduction

Myrtaceae is the eighth most diverse family of angiosperms worldwide, with 6,000 species distributed into 140 genera (Lucas et al. 2012Lucas E, Nunes T, Lughadha EN. 2012. Lista preliminar da família Myrtaceae na Região Nordeste do Brasil. Série Repatriamento de Dados do Herbário de Kew para a Flora do Nordeste. Kew, Royal Botanic Gardens Kew.; Govaerts et al. 2019Govaerts R, Sobral N, Ashton P et al. 2019. World Checklist of Myrtaceae. Kew, Royal Botanic Gardens, Kew Publishing .) and two diversity centers, Australia and the Neotropics (Wilson et al. 2005Wilson PG, O'brien MM, Heslewood MM, Quinn CJ. 2005. Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution. 251: 3−19. doi: 10.1007/s00606-004-0162-y
https://doi.org/10.1007/s00606-004-0162-...
). The tribe Myrteae comprises nine subtribes, 50 genera, and ca. 2,500 species (Vasconcelos et al. 2017bVasconcelos TNC, Proença CEB, Ahmad B. 2017b. Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae. Molecular Phylogenetics and Evolution 109: 113-137. doi: 10.1016/j.ympev.2017.01.002
https://doi.org/10.1016/j.ympev.2017.01....
; Lucas et al. 2019Lucas EJ, Holst B, Sobral M et al. 2019. A new subtribal classification of tribe Myrteae (Myrtaceae). Systematic Botany 44: 560-569.) and represents all the species diversity within this family in Brazil (Wilson et al. 2005Wilson PG, O'brien MM, Heslewood MM, Quinn CJ. 2005. Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution. 251: 3−19. doi: 10.1007/s00606-004-0162-y
https://doi.org/10.1007/s00606-004-0162-...
; Lucas et al. 2007Lucas EJ, Harris SA, Mazine FF et al. 2007. Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon 56: 1105-1128.). This tribe is known for its taxonomic complexity due to the megadiverse genera Myrcia and Eugenia (Landrum & Kawasaki 1997Landrum LR, Kawasaki ML. 1997. The genera of Myrtaceae in Brazil: an illustrated synoptic treatment and identification keys. Brittonia 49: 508−536. doi: 10.2307/2807742
https://doi.org/10.2307/2807742...
), to its recent diversification age of ca. 32.0 Ma, and mainly to the uniform floral morphology shared by its species (Biffin et al. 2010Biffin E, Lucas EJ, Craven LA, Costa IR, Harrington MG, Crisp MD. 2010. Evolution of exceptional species richness among lineages of fleshy−fruited Myrtaceae. Annals of Botany 106: 79-93. doi: 10.1093/aob/mcq088.
https://doi.org/10.1093/aob/mcq088...
; Vasconcelos et al. 2017aVasconcelos TNC, Lucas EJ, Faria JEQ, Prenner G. 2017a. Floral heterochrony promotes flexibility of reproductive strategies in the morphologically homogeneous genus Eugenia (Myrtaceae). Annals of Botany 121: 161-174. doi: 10.1093/aob/mcx142
https://doi.org/10.1093/aob/mcx142...
; 2018Vasconcelos TN, Chartier M, Prenner G et al. 2018. Floral uniformity through evolutionary time in a species−rich tree lineage. The New Phytologist 221: 1597-1608.).

Myrteae is represented by 23 genera and 1,025 species in Brazil and are characterized by opposed leaves with translucid punctuations, white flowers (rarely pink, reddish to purple), petals free, 4-5 (rarely absent), stamens numerous (rarely fewer), ovary inferior, fruit berry with 1 to several seeds, with persistent or deciduous calyx; when the calyx is deciduous, it leaves a scar on the fruit (Landrum & Kawasaki 1997Landrum LR, Kawasaki ML. 1997. The genera of Myrtaceae in Brazil: an illustrated synoptic treatment and identification keys. Brittonia 49: 508−536. doi: 10.2307/2807742
https://doi.org/10.2307/2807742...
; Wilson et al. 2005Wilson PG, O'brien MM, Heslewood MM, Quinn CJ. 2005. Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution. 251: 3−19. doi: 10.1007/s00606-004-0162-y
https://doi.org/10.1007/s00606-004-0162-...
; Vasconcelos et al. 2017aVasconcelos TNC, Lucas EJ, Faria JEQ, Prenner G. 2017a. Floral heterochrony promotes flexibility of reproductive strategies in the morphologically homogeneous genus Eugenia (Myrtaceae). Annals of Botany 121: 161-174. doi: 10.1093/aob/mcx142
https://doi.org/10.1093/aob/mcx142...
; Proença et al. 2020Proença CEB, Amorim BS, Antonicelli MC et al. 2020. Myrtaceae. In: Flora e Funga do Brasil. Rio de Janeiro, Jardim Botânico do Rio de Janeiro. https://floradobrasil.jbrj.gov.br/FB171. 26 Jul. 2022.
https://floradobrasil.jbrj.gov.br/FB171...
).

Floristic and phytophysiognomic studies in Brazil show that Myrtaceae is one of the five most representative families of flowering plants in abundance and species richness in Brazilian restinga (Araujo & Henriques 1984Araujo DSD, Henriques RPB. 1984. Análise florística das restingas do Estado do Rio de Janeiro. In: Lacerda LD, Araújo DSD, Cerqueira R, Turcq B. (eds.). Restingas, Origem, Estrutura e Processos. Niterói: Centro Editorial da Universidade Federal Fluminense. p. 327-342.; Araujo 1992Araujo DSD. 1992 Vegetation types of sandy coastal plains of tropical Brazil: a first approximation. In: Seeliger U. (ed.). Coastal Plant Communities of Latin America. San Diego, Academic Press. p. 337−347.; Pereira et al. 2001Pereira MCA, Araujo DSD, Pereira OJ. 2001. Estrutura de uma comunidade arbustiva da restinga de Barra de Maricá-RJ. Revista Brasileira de Botânica 24: 273-281. doi: 10.1590/S0100-84042001000300005
https://doi.org/10.1590/S0100-8404200100...
; Pereira 2003Pereira OJ. 2003. Restinga: origem, estrutura e diversidade. In: Jardim MAG, Bastos MNC, Santos JUM (eds.) Desafios da Botânica Brasileira no Novo Milênio: inventário, sistematização e conservação da biodiversidade vegetal. Belém, Sociedade Botânica do Brasil. p. 177-179.; Sacramento et al. 2007Sacramento AC, Zickel CS, Almeida Jr EB. 2007. Aspectos florísticos da vegetação de restinga no litoral de Pernambuco. Revista Árvore 31: 1121-1130. doi: 10.1590/S0100-67622007000600017
https://doi.org/10.1590/S0100-6762200700...
; Araujo et al. 2009Araujo DSD, Sá CFC, Fontella-Pereira J et al. 2009. Área de Proteção Ambiental de Massambaba, Rio de Janeiro: caracterização fitofisionômica e florística. Rodriguésia 60: 67-96. doi: 10.1590/2175-7860200960104.
https://doi.org/10.1590/2175-78602009601...
; Vicente et al. 2014Vicente A, Almeida Jr EB, Santos-Filho FS, Zickel CS. 2014. Composição estrutural da vegetação lenhosa da restinga de Cabedelo, Paraíba. Revista de Geografia UFPE 13: 89-99.; Henrique & Araujo 2017Henrique MD, Araujo DSD. 2017. Estrutura do estrato lenhoso de uma comunidade arbustiva fechada sobre cordão arenoso na restinga da Marambaia - RJ. Ciência Florestal 27: 29−1142.). This family is also of great importance for the maintenance of the ecological cycles of this vegetation, being an important food source for local fauna due to producing fruits throughout the year, especially on months with low availability of fleshy fruits produced by other plant families (Staggemeier et al. 2017Staggemeier VG, Cazetta E, Morellato LPC. 2017. Hyperdominance in fruit production in the Brazilian Atlantic rain forest: The functional role of plants in sustaining frugivores. Biotropica 49: 71-82. doi: 10.1111/btp.12358
https://doi.org/10.1111/btp.12358...
).

Restinga comprises a mosaic of different phytophysiognomies with distinct floristic elements occurring over sandy deposits along the coast, mainly formed by marine regressions and transgressions during the quaternary period (Araujo & Henriques 1984Araujo DSD, Henriques RPB. 1984. Análise florística das restingas do Estado do Rio de Janeiro. In: Lacerda LD, Araújo DSD, Cerqueira R, Turcq B. (eds.). Restingas, Origem, Estrutura e Processos. Niterói: Centro Editorial da Universidade Federal Fluminense. p. 327-342.; Araujo 1992Araujo DSD. 1992 Vegetation types of sandy coastal plains of tropical Brazil: a first approximation. In: Seeliger U. (ed.). Coastal Plant Communities of Latin America. San Diego, Academic Press. p. 337−347.). These sandy deposits are affected by the wind and sea-level oscillations, which is reflected in the phytophysiognomy diversity in restinga, including animal and plant richness (Araujo & Pereira 2009Araujo DSD, Pereira MCA. 2009. Sandy coastal vegetation. In: Encyclopedia of Life Support Systems (EOLSS). Tropical Biology and Conservation Management. Oxford, UNESCO, Eolss Publishers Co. p. 173−189.). Along the Brazilian coast, restinga discontinuously occurs over the coastal plains from ca. 4° N to 33° S, totalling 7,400 km in extension (IBGE 2004IBGE - Instituto Brasileiro de Geografia e Estatística. 2004. Flora das Restingas do Litoral Norte da Bahia: Costa dos Coqueiros e Salvador. Projeto Flora/ Fauna - UE/BA - Microbiological Diagnosis: text and color atlas. Salvador, Editora Médica e Científica, Herbário Radambrasil.).

Even though Myrtaceae shows great diversity in Brazilian restinga, most of its current studies are restricted to checklists through generalist inventories (Araujo & Henriques 1984Araujo DSD, Henriques RPB. 1984. Análise florística das restingas do Estado do Rio de Janeiro. In: Lacerda LD, Araújo DSD, Cerqueira R, Turcq B. (eds.). Restingas, Origem, Estrutura e Processos. Niterói: Centro Editorial da Universidade Federal Fluminense. p. 327-342.; Araujo 1992Araujo DSD. 1992 Vegetation types of sandy coastal plains of tropical Brazil: a first approximation. In: Seeliger U. (ed.). Coastal Plant Communities of Latin America. San Diego, Academic Press. p. 337−347.; Pereira et al. 2001Pereira MCA, Araujo DSD, Pereira OJ. 2001. Estrutura de uma comunidade arbustiva da restinga de Barra de Maricá-RJ. Revista Brasileira de Botânica 24: 273-281. doi: 10.1590/S0100-84042001000300005
https://doi.org/10.1590/S0100-8404200100...
; Sacramento et al. 2007Sacramento AC, Zickel CS, Almeida Jr EB. 2007. Aspectos florísticos da vegetação de restinga no litoral de Pernambuco. Revista Árvore 31: 1121-1130. doi: 10.1590/S0100-67622007000600017
https://doi.org/10.1590/S0100-6762200700...
; Araujo et al. 2009Araujo DSD, Sá CFC, Fontella-Pereira J et al. 2009. Área de Proteção Ambiental de Massambaba, Rio de Janeiro: caracterização fitofisionômica e florística. Rodriguésia 60: 67-96. doi: 10.1590/2175-7860200960104.
https://doi.org/10.1590/2175-78602009601...
; Braz et al. 2013Braz DM, Jacques EL, Somner GV, et al. 2013. Restinga de Praia das Neves, ES, Brasil: caracterização fitofisionômica, florística e conservação. Biota Neotropica 13: 315-331. doi: 10.1590/S1676-06032013000300032.
https://doi.org/10.1590/S1676-0603201300...
; Henrique & Araujo 2017Henrique MD, Araujo DSD. 2017. Estrutura do estrato lenhoso de uma comunidade arbustiva fechada sobre cordão arenoso na restinga da Marambaia - RJ. Ciência Florestal 27: 29−1142.; Guterres et al. 2020Guterres AVF, Amorim IFF, Silva AFC, de Almeida Jr EB. 2020. Flora do estrato herbáceo da restinga da Praia do Caúra, São José de Ribamar, Maranhão. Boletim do Laboratório de Hidrobiologia 29: 57-72. doi: 10.18764/1981-6421e2019.8
https://doi.org/10.18764/1981-6421e2019....
), with a few studies exclusively focused on Myrtaceae (Rosário et al. 2005Rosário ASD, Secco RDS, Amaral DDD, Santos JUMD, Bastos MDNDC. 2005. Flórula fanerogâmica das restingas do estado do Pará. Ilhas de Algodoal e Maiandeua-2. Myrtaceae AL de Jussieu. Boletim do Museu Paraense Emílio Goeldi, Série Ciências Naturais 1: 31−42.; Souza et al. 2007Souza MDC, Morim MP, Conde MDMS, Menezes LFTD. 2007. Subtribo Myrciinae O. Berg (Myrtaceae) na Restinga da Marambaia, RJ, Brasil. Acta Botanica Brasilica 21: 49-63. doi: 10.1590/S0102-33062007000100006
https://doi.org/10.1590/S0102-3306200700...
; Souza & Morim 2008Souza MDC, Morim MP. 2008. Subtribos Eugeniinae O. Berg e Myrtinae O. Berg (Myrtaceae) na Restinga da Marambaia, RJ, Brasil. Acta Botanica Brasilica 22: 652-683. doi: 10.1590/S0102-33062008000300006
https://doi.org/10.1590/S0102-3306200800...
; Lourenço & Barbosa 2012Lourenço ARDL, Barbosa MRDV. 2012. Myrtaceae em restingas no limite norte de distribuição da Mata Atlântica, Brasil. Rodriguésia 63: 373-393. doi: 10.1590/S2175-78602012000200011
https://doi.org/10.1590/S2175-7860201200...
; Giaretta & Peixoto 2015Giaretta A, Peixoto AL. 2015. Myrtaceae da restinga no norte do Espírito Santo, Brasil. Boletim do Museu de Biologia Mello Leitão 37: 45-126.; Lima et al. 2015Lima DF, Caddah MK, Goldenberg R. 2015. A família Myrtaceae na Ilha do Mel, Paranaguá, Estado do Paraná, Brasil. Hoehnea 42: 497−519. doi: 10.1590/2236-8906-68/2014
https://doi.org/10.1590/2236-8906-68/201...
; Amorim & Almeida Jr. 2021Amorim GS, Almeida Jr. EB. 2021. A família Myrtaceae nas restingas da Ilha do Maranhão, Brasil. Iheringia, Série Botânica 76: e2021008. doi: 10.21826/2446-82312021v76e2021008
https://doi.org/10.21826/2446-82312021v7...
). However, none of these studies mentioned above are focused on restinga of Bahia, the Brazilian State with the largest coastal extension. Although the Bahia state represents the largest coastal area in Brazil, Myrtaceae studies has been treated only by general checklists (Britto et al. 1993Britto IC, Queiroz LD, Guedes MLS, Oliveira ND, Silva LD. 1993. Flora fanerogâmica das dunas e lagoas do Abaeté, Salvador, Bahia. Sitientibus 11: 31−46.; IBGE 2004IBGE - Instituto Brasileiro de Geografia e Estatística. 2004. Flora das Restingas do Litoral Norte da Bahia: Costa dos Coqueiros e Salvador. Projeto Flora/ Fauna - UE/BA - Microbiological Diagnosis: text and color atlas. Salvador, Editora Médica e Científica, Herbário Radambrasil.; Menezes et al. 2009Menezes CM, Almeida Aguiar LGP, Espinheira MJCL, Silva VIS. 2009. Florística e fitossociologia do componente arbóreo do município de Conde, Bahia, Brasil. Revista Biociências 15: 44-55.; Gomes & Guedes 2014Gomes FS, Guedes MLS. 2014. Flora vascular e formas de vida das formações de restinga do litoral norte da Bahia, Brasil. Acta Biológica Catarinense 1: 22−43. doi: 10.21726/abc.v1i1.82
https://doi.org/10.21726/abc.v1i1.82...
; Queiroz et al. 2017Queiroz EP, Bautista HP, Matos MRB. 2017. Flora Fanerogâmica das Restingas. In: Nunes JMC, Matos MRB (eds.). Litoral norte da Bahia: caracterização ambiental, biodiversidade e conservação. Salvador, Editora da UFBA. p. 129-155.; Costa et al. 2018Costa GM, Souza Pereira J, Martins MLL, Aona LYS. 2018. Florística em fitofisionomias de restinga na Bahia, nordeste do Brasil. Journal of Neotropical Biology 15: 78-95.; Silva 2018Silva FO (ed.). 2018. A biodiversidade das dunas do Abaeté: patrimônio ambiental urbano. Editora UFS.).

Thus, this study presents the first taxonomic study of Myrtaceae from the restinga of the State of Bahia. A checklist, identification keys, photographic plates, taxonomic, biologic, and distribution comments of the species are presented.

Material and methods

Restinga and its phytophysiognomies in the State of Bahia

Restinga phytophysiognomies are discontinuously found along the coast of the State of Bahia throughout an extension of 1,120 km. Together, these phytophysiognomies form ecosystems associated with the Atlantic Forest biome bordered by mangroves, rivers, and forest patches along the Bahian coast (Martins 2012Martins MLL. 2012. Fitofisionomia das formações vegetais da restinga da Área de Proteção Ambiental (APA) de Guaibim, Valença, Bahia, Brasil. Revista Brasileira de Biociências 10: 66.; Gomes & Guedes 2014Gomes FS, Guedes MLS. 2014. Flora vascular e formas de vida das formações de restinga do litoral norte da Bahia, Brasil. Acta Biológica Catarinense 1: 22−43. doi: 10.21726/abc.v1i1.82
https://doi.org/10.21726/abc.v1i1.82...
; Matos et al. 2017Matos MRB, Queiroz EP, Bautista HP. 2017. Fitogeografia. In: Nunes JMC, Matos MRB (eds.) Litoral Norte da Bahia: caracterização ambiental, biodiversidade e conservação. Salvador, EDUFBA. p. 61-89.). In some municipalities, such as Caravelas, Alcobaça, and Nova Viçosa, the restinga vegetation inhabits up to 20 km of inland coastal plains; in contrast to Itacaré and Ilhéus in which vegetation occupies narrow sand patches (Martinet al. 1980Martin L, Bittencourt ACSP, Vilas Boas GS, Flexor JM. 1980. Texto explicativo para o mapa geológico do quaternário costeiro do estado da Bahia - Escala 1:250.000. Salvador, Coordenação de Produção Mineral, Secretaria de Minas e Energia da Bahia.).

Restinga classification

To classify the restinga phytophysiognomies, we followed the definitions of Araujo & Pereira (2009)Araujo DSD, Sá CFC, Fontella-Pereira J et al. 2009. Área de Proteção Ambiental de Massambaba, Rio de Janeiro: caracterização fitofisionômica e florística. Rodriguésia 60: 67-96. doi: 10.1590/2175-7860200960104.
https://doi.org/10.1590/2175-78602009601...
, IBGE (2012)IBGE - Instituto Brasileiro de Geografia e Estatística. 2012. Manual técnico da vegetação brasileira. Rio de Janeiro, IBGE., and Thomas (2003)Thomas WW. 2003. Natural vegetation types in southern Bahia. In: Prado PI, Landau EC, Moura RT, Pinto LPS, Fonseca GAB, Alger K (eds.) Corredor de Biodiversidade da Mata Atlântica do Sul da Bahia. Ilhéus, Instituto de Estudos Sócio-Ambientais do Sul da Bahia e Conservation International do Brasil. [CD-Rom]., and the nomenclature proposed by Dias & Soares (2008)Dias HM, Soares MLG. 2008. As Fitofisionomias das Restingas do Município de Caravelas (Bahia−Brasil) e os bens e serviços associados. Boletim Técnico-Científico do CEPENE 16: 59-74., as follows: 1) Non-Flooded restinga Forests (Dry Forests) (DF) (Fig. 1 A): occurring where the groundwater does not superficially surface, the soil is constantly humid during the dry season, and the upper layer comprises 15 to 20 m tall trees; 2) Flooded restinga Forests (FRF): occurring where the groundwater superficially surfaces most of the year, usually during the rainy season, and the upper layer comprises 15 to 20 m tall trees; 3) Shrub Thickets (ST) (Figure 1 B-C): occurring in mosaics of dense thickets, usually comprising different plant species of 4 to 6 m tall shrubs, interposed with open areas of white sand or herbaceous layer; 4) Non-Flooded Dense Shrubs (DS) (Fig. 1 D): showing relatively small shrubs (3 to 5 m tall), within a closed and dense physiognomy, mainly populated by species of Myrtaceae, without any interposed open area or with little herbaceous layer; 5) Flooded Dense Shrub/Herbs (FS) (Fig. 1 E-F): typically occurring in open areas alongside water streams in the coastal plain, surrounding lagoons and lakes where Cyperaceae and Poaceae are dominant; 6) Halophyte/Psammophilous Reptant (HPR): herbaceous and subshrub formations, rhizomatous and reptant, mostly occurring alongside the coastal line influenced by higher tides.

Figure 1
Phytophysiognomies of restinga vegetation of the State of Bahia. A. Non-Flooded Restinga Forests (Dry Forests) in Maraú. B−C. Shrub Thickets; B: Municipality of Conde; C: Municipality of Mata de São João. D. Non-Flooded Dense Shrubs in Mata de São João. E-F. Flooded Dense Shrub/Herbs; E: Lagoa Jauara in Mata de São João; F: Municipality of Camaçari (A-F: J.D.O. Melo).

Phytophysiognomies identification occurred during field trips and by verifying the locality information on the labels from all analyzed specimens. Since most collectors used different classifications to name restinga phytophysiognomies over time, it was imperative to standardize all names that were grouped into the six phytophysiognomies: 1) DF, including the terms “forest of restinga” and “arboreal restinga”; 2) FRF, including “tall restinga with marshes” and “flooded restinga” (not observed during fieldwork, but recorded from the vast literature (Matos 2014Matos EN. 2014. Padrões de composição e dominância de florestas de restinga sob diferentes sedimentos e regimes climáticos. PhD Thesis, Universidade Estadual de Feira de Santana, Brazil.; Thomas 2003Thomas WW. 2003. Natural vegetation types in southern Bahia. In: Prado PI, Landau EC, Moura RT, Pinto LPS, Fonseca GAB, Alger K (eds.) Corredor de Biodiversidade da Mata Atlântica do Sul da Bahia. Ilhéus, Instituto de Estudos Sócio-Ambientais do Sul da Bahia e Conservation International do Brasil. [CD-Rom].; Dias & Soares 2008Dias HM, Soares MLG. 2008. As Fitofisionomias das Restingas do Município de Caravelas (Bahia−Brasil) e os bens e serviços associados. Boletim Técnico-Científico do CEPENE 16: 59-74.) and herborized specimens; 3) ST, including “open restinga”, “restinga patches”, “thickets and shrubs over dunes”, “shrubby dunes”, “herbaceous shrubby restinga”, and “low restinga”; 4) DS, including “shrubby-arboreal restinga” and “dense shrubby restinga”; and 5) FS, including “shrubby restinga with marshes”, “thickets and flooded herbaceous restinga”, and “flooded thicket restinga”. 6) HPR, which had no evidence of Myrtaceae neither described in the literature nor on herborized or during field trips. Finally, for specimens with only the word “restinga” recorded as the phytophysiognomy of occurrence, we classified them as non-identifiable phytophysiognomy (NI). Additionally, we named “anthropized restinga” (AR) when the labels of the specimens indicated the terms “altered”, “anthropized”, “degraded”, and “disturbed” restinga (see species distribution presented in Table 1).

Table 1
List of Myrtaceae from the restingas of the State of Bahia; ■ Endemic to Bahia; ● Endemic to Atlantic Forest domain; ▲ Endemic to restinga vegetation; Phytophysiognomies: DF: Non-Flooded Restinga Forests or Dry Forests, DS: Non-Flooded Dense Shrubs, FRF: Flooded Restinga Forests, FS: Flooded Dense Shrub/Herbs, ST: Shrub Thickets, NI: Not identified phytophysiognomy, AR: anthropized restinga.

Taxonomy

A total of 10 field trips, lasting from three to seven days each, were performed in seven municipalities of the State of Bahia (Conde, Ilhéus, Itacaré, Ituberá, Maraú, Mata de São João, and Una) from September 2016 to April 2019 (Fig. 2). Specimen collections were made following usual methods (Peixoto & Maia 2013Peixoto AL, Maia LC. (eds.). 2013. Manual de procedimentos para herbários. Recife: Editora da UFPE.) during walks in all different restinga phytophysiognomies. All specimens were processed, dried, and included in the Alexandre Leal Costa Herbarium (ALCB), with duplicates sent to the Universidade Estadual de Feira de Santana Herbarium (HUEFS). For taxa identification, we consulted specialized literature, besides analyzing type specimens, e-types, and their protologues.

Figure 2
A. Brazilian map. B. Coast of Bahia state; the highlighted municipalities are those sampled by collections.

The most relevant herbaria of Brazil for restinga vegetation and Myrtaceae were consulted for the elaboration of the checklist (ALCB, CEPEC, HRB, HUEFS, HURB, MBM, RB, and SPF, acronyms following Thiers 2020Thiers B. 2020. Index Herbariorum: A global directory of public herbaria and associated staff. New York, New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/. 18 Feb. 2020.
http://sweetgum.nybg.org/ih/...
). The description of vegetative characters and indument types followed Radford et al. (1974)Radford AE, Dickison WC, Massey JR, Bell CR. 1974. Vascular Plant systematics. New York, Harper & Row Publishers. and Beentje (2016)Beentje H. 2016. The Kew Plant Glossary: An Illustrated Dictionary of Plant Identification Terms. 2nd. edn. Kew, Royal Botanic Gardens, Kew Publishing., while inflorescence architecture followed Briggs & Johnson (1979)Briggs BG, Johnson LAS. 1979. Evolution in the Myrtaceae Evidence from inflorescence structure. Proceedings of the Linnean Society of New South Wales 102: 157-256.. Specific morphological terminology for Myrtaceae followed Landrum & Kawasaki (1997)Landrum LR, Kawasaki ML. 1997. The genera of Myrtaceae in Brazil: an illustrated synoptic treatment and identification keys. Brittonia 49: 508−536. doi: 10.2307/2807742
https://doi.org/10.2307/2807742...
and Lucas et al. (2019)Lucas EJ, Holst B, Sobral M et al. 2019. A new subtribal classification of tribe Myrteae (Myrtaceae). Systematic Botany 44: 560-569.. The morphological features of racemes in Eugenia species were described according to Mazine (2006)Mazine FF. 2006. Estudos taxonômicos em Eugenia L., com ênfase em Eugenia sect. Racemosae O.Berg. PhD Thesis, Universidade de São Paulo, Brazil. and Mazine et al. (2014)Mazine FF, Souza VC, Sobral M, Forest F, Lucas E. 2014. A preliminary phylogenetic analysis of Eugenia Myrtaceae: Myrteae), with a focus on Neotropical species. Kew Bulletin 69: 9497-9511. doi: 10.1007/S12225-014-9497-X.
https://doi.org/10.1007/S12225-014-9497-...
. Measurements were taken from dried specimens and are presented as length x width. Species distribution was obtained from specimen labels, protologues, and online databases such as Flora e Funga do Brasil 2020, GBif (https://www.gbif.org/) and SpeciesLink (https://specieslink.net). The distribution map was generated on QGIS (QGIS Development Team 2022QGIS Development Team. 2022. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. 26 Apr. 2022.
http://qgis.osgeo.org...
).

Results and discussion

Diversity of Myrtaceae in restinga of the State of Bahia

A total of eight genera and 85 species of Myrtaceae were identified in the restinga of Bahia, with ten of them endemic to this State, 45 species endemics to the Atlantic Forest biome, and six species endemics to restinga vegetation (Table 1). Myrcia was the most representative genus with 42 species, followed by Eugenia (23 spp.), Psidium (seven spp.), Campomanesia (five spp.), Myrciaria (four spp.), Neomitranthes (two spp.), and Blepharocalyx and Calycolpus (a single species each). Two species (Eugenia sp. and Myrcia sp.) are new for science and are being prepared for publication (Faria et al. unpubl. res.; Melo et al. unpubl. res.).

This study presents the first records of four species in Bahian restinga: Eugenia melanogyna, previously recorded for Southeast and Southern Brazil; Myrcia bicolor, before cited to rainforests of the State of Bahia and Southeast Brazil (Santos et al. 2018Santos MF, Lucas E, Sano PT. 2018. A taxonomic monograph of Myrcia sect. Sympodiomyrcia (Myrteae, Myrtaceae). Phytotaxa 380: 1−114. doi: 10.11646/phytotaxa.380.1.1
https://doi.org/10.11646/phytotaxa.380.1...
); and Campomanesia aromatica and Myrciaria pilosa, mentioned to the Caatinga biome and semideciduous dry forests, respectively (Oliveira et al. 2012Oliveira MIU, Funch LS, Landrum LR. 2012. Flora of Bahia: Campomanesia (Myrtaceae). Sitientibus, Série Ciências Biológicas 12: 91-107. doi: 10.13102/scb115
https://doi.org/10.13102/scb115...
; Proença et al. 2020Proença CEB, Amorim BS, Antonicelli MC et al. 2020. Myrtaceae. In: Flora e Funga do Brasil. Rio de Janeiro, Jardim Botânico do Rio de Janeiro. https://floradobrasil.jbrj.gov.br/FB171. 26 Jul. 2022.
https://floradobrasil.jbrj.gov.br/FB171...
).

Distribution patterns

Four distribution patterns were identified within the Myrtaceae from restinga of Bahia state (Fig. 3): 49 species (58%) are endemic of the Atlantic Forest biome (AF); 17 species (19%) occur widely distributed in Brazil (WID); 16 species (19%) occur in the Atlantic Forest biome and Central Brazil, besides the Caatinga and Cerrado biomes (ACC); and three species (4%) occur disjunct between the Atlantic and Amazon Forests (AAM).

Figure 3
Distribution pattern of Myrtaceae species found in restinga in the state of Bahia: WID - widely distributed in Brazil; AF - endemic of the Atlantic Forest biome; AAM - disjunction between the Atlantic and Amazon Forests; ACC - Atlantic Forest, Caatinga and Cerrado biomes.

Previous floristic studies evidenced that restinga phytophysiognomies are colonized by plants from their surrounding biomes, such as the Atlantic Forest, Caatinga, Cerrado, and even the Amazon Forest. It reflects the species occurring among these Biomes and the low endemism rate found in restinga (Scarano 2002Scarano, FR. 2002. Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rainforest. Annals of Botany 90: 517-524.; Castro et al. 2012Castro ASF, Moro MF, Menezes MOT. 2012. O Complexo Vegetacional da Zona Litorânea no Ceará: Pecém, São Gonçalo do Amarante. Acta Botanica Brasilica 26: 108-124.; Fernandes & Queiroz 2015Fernandes MF, Queiroz LPD. 2015. Floristic surveys of Restinga Forests in southern Bahia, Brazil, reveal the effects of geography on community composition. Rodriguésia 66: 51-73. doi: 10.1590/2175-7860201566104
https://doi.org/10.1590/2175-78602015661...
), corroborating our results (only six species). Of all species here classified as ACC, five of them only occur in the Atlantic Forest and Caatinga (Campomanesia ilhoensis, Eugenia schottiana, Myrcia arenaria, M. bergiana, and Myrciaria pilosa), two only occur in the Atlantic Forest and Cerrado (M. ilheosensis and M. racemosa), and nine occur in the Atlantic Forest, Caatinga and Cerrado (C. dichotoma, M. densa, M. multipunctata, M. loranthifolia, M. neoregeliana, M. polyantha, Psidium brownianum, P. cattleyanum, and P. oligospermum). This pattern is probably related to the geographical proximity of the Bahian restinga to the Caatinga biome instead of the Cerrado Biome (Fig. 2).

Most species of Myrtaceae found in restinga of Bahia are endemic to the Atlantic Forest, similar to previous studies (Assiset al. 2004Assis AM, Thomaz LD, Pereira OJ. 2004. Florística de um trecho de floresta de restinga no município de Guarapari, Espírito Santo, Brasil. Acta Botanica Brasilica 18: 191-201. doi: 10.1590/S0102-33062004000100016
https://doi.org/10.1590/S0102-3306200400...
). This pattern is expected since most of the Brazilian restinga is associated with and heavily influenced by this biome (Cerqueira 2000Cerqueira R. 2000. Biogeografia das restingas. In: Esteves FA, Lacerda LD. (eds.) Ecologia de restingas e lagoas costeiras. Macaé, NUPEM/UFRJ. p. 65-76.).

The Atlantic Forest biome comprises more than half of the species of Myrtaceae from Brazil (692 spp. or 58%, Proença et al. 2020Proença CEB, Amorim BS, Antonicelli MC et al. 2020. Myrtaceae. In: Flora e Funga do Brasil. Rio de Janeiro, Jardim Botânico do Rio de Janeiro. https://floradobrasil.jbrj.gov.br/FB171. 26 Jul. 2022.
https://floradobrasil.jbrj.gov.br/FB171...
), and recent Myrteae biogeographical reviews showed that the Atlantic Forest is the most likely ancestral area of the biggest genera, Myrcia and Eugenia, reflecting the great diversity of Myrtaceae in the Atlantic Forest (Santos et al. 2017Santos MF, Lucas E, Sano PT, Buerki S, Staggemeier VG, Forest F. 2017. Biogeographical patterns of Myrcia s.l. (Myrtaceae) and their correlation with geological and climatic history in the Neotropics. Molecular Phylogenetics and Evolution 108: 34-48. doi: 10.1016/j.ympev.2017.01.012
https://doi.org/10.1016/j.ympev.2017.01....
; Mazine et al. 2018Mazine FF, Faria JEQ, Giaretta A, Vasconcelos TNC, Forest F, Lucas E. 2018. Phylogeny and biogeography of the hyper-diverse genus Eugenia (Myrtaceae: Myrteae), with emphasis on E. sect. Umbellatae, the most unmanageable clade. Taxon 67: 752-769. doi: 10.12705/674.5
https://doi.org/10.12705/674.5...
; Amorim et al. 2019Amorim BS, Vasconcelos TN, Souza G, Alves M, Antonelli A, Lucas E. 2019. Advanced understanding of phylogenetic relationships, morphological evolution and biogeographic history of the mega-diverse plant genus Myrcia and its relatives (Myrtaceae: Myrteae). Molecular Phylogenetics and Evolution 138: 65-88. doi: 10.1016/j.ympev.2019.05.014
https://doi.org/10.1016/j.ympev.2019.05....
). According to these recent studies, the main Myrteae lineages originated in the Atlantic Forest and later colonized the Amazon basin, Caatinga, Cerrado, Caribbean, and the Andes, which could explain species occurring among these biomes. For instance, Blepharocalyx eggersii, Eugenia excelsa and Myrciaria glomerata are disjunct distributed between the Atlantic and Amazon Forests.

A total of 26 species of Myrtaceae from the restinga of Bahia also occur in the Espinhaço mountain range in several habitats (Campo Rupestre, Forests, Caatinga s.l., and Cerrado s.l.). This disjunction pattern has been recently recorded in the literature for other angiosperms groups (Alves et al. 2007Alves RJV, Cardin L, Kropf MS. 2007. Angiosperm disjunction “Campos rupestres - Restingas”: a re-evaluation. Acta Botanica Brasilica 21: 75-685. doi: 10.1590/S0102-33062007000300014
https://doi.org/10.1590/S0102-3306200700...
; Lucresia et al. unpubl. res.).

Eugenia punicifolia, Myrcia guianensis, M. splendens, M. tomentosa, Myrciaria floribunda, and Psidium guajava are widely distributed (WID) and occur in all Brazilian biomes, from humid to dry vegetation, bearing remarkable morphological plasticity in leaf size, texture, and indument.

Diversity of Myrtaceae among different restinga phytophysiognomies

Analyzing species distribution of Myrtaceae among restinga phytophysiognomies in the State of Bahia we could see that 68 species (45% of the total) are found in DF, with 31 species exclusive of this phytophysiognomy (Fig. 4). This result shows the importance of Myrtaceae for forested physiognomies within restinga dry forests (Assumpção & Nascimento 2000Assumpção J, Nascimento MT. 2000. Estrutura e composição florística de quatro formações vegetais de restinga no complexo lagunar Grussaí/Iquipari, São João da Barra, RJ, Brasil. Acta Botanica Brasilica 14: 301-315. doi: 10.1590/S0102-33062000000300007.
https://doi.org/10.1590/S0102-3306200000...
; Matos 2014Matos EN. 2014. Padrões de composição e dominância de florestas de restinga sob diferentes sedimentos e regimes climáticos. PhD Thesis, Universidade Estadual de Feira de Santana, Brazil.).

Figure 4
Number of Myrtaceae species at each restinga phytophysiognomy in the state of Bahia (green - total of species; orange - exclusive species): AR: anthropized restinga; DF: Non-Flooded Restinga Forests or Dry Forests; DS: Non-Flooded Dense Shrubs; FRF: Flooded Restinga Forests; FS: Flooded Dense Shrub/Herbs; ST: Shrub Thickets; NI: Not identified phytophysiognomy.

The DS phytophysiognomy registered 26 species (17%), with two (Eugenia ligustrina and Myrcia luschnathiana) restricted to it. ST phytophysiognomy recorded 25 species (17%), with Myrcia densa, M. neoregeliana, and Psidium amplexicaule occurring exclusively in Lagoas e Dunas do Abaeté Environmental Protection Area, which has one of the richest phanerogamic flora of dunes in Brazil (Britto et al. 1993Britto IC, Queiroz LD, Guedes MLS, Oliveira ND, Silva LD. 1993. Flora fanerogâmica das dunas e lagoas do Abaeté, Salvador, Bahia. Sitientibus 11: 31−46.).

Only six species were recorded in flooded restinga; four in the FRF phytophysiognomy, being Myrcia grazielae and Myrciaria glomerata restrict to it, and three species in the FS phytophysiognomy (Eugenia astringens, Myrcia neuwiedeana and M. splendens), with no exclusive species recorded. The low number of species occurring in flooded phytophysiognomies was also reported by Matos (2014)Matos EN. 2014. Padrões de composição e dominância de florestas de restinga sob diferentes sedimentos e regimes climáticos. PhD Thesis, Universidade Estadual de Feira de Santana, Brazil., that showed soil flooding is a limiting factor for establishing species of Myrtaceae.

We have also noticed that some species of Myrtaceae occur in different portions of the Bahian restinga: 11 species (13%) are found in Northern restinga (above the municipality of Salvador), and 37 species (43%) only occur in southern restinga (below the municipality of Salvador) in the State of Bahia. Martin et al. (1980)Martin L, Bittencourt ACSP, Vilas Boas GS, Flexor JM. 1980. Texto explicativo para o mapa geológico do quaternário costeiro do estado da Bahia - Escala 1:250.000. Salvador, Coordenação de Produção Mineral, Secretaria de Minas e Energia da Bahia. and Matos (2014)Matos EN. 2014. Padrões de composição e dominância de florestas de restinga sob diferentes sedimentos e regimes climáticos. PhD Thesis, Universidade Estadual de Feira de Santana, Brazil. pointed out that the floristic heterogeneity of northern and southern restinga in the State of Bahia might reflect climatic differences and the influence of different vegetation types. The northern Bahian coast is surrounded mainly by the Caatinga biome that presents a semiarid climate (Matos 2014Matos EN. 2014. Padrões de composição e dominância de florestas de restinga sob diferentes sedimentos e regimes climáticos. PhD Thesis, Universidade Estadual de Feira de Santana, Brazil.; Matos et al. 2017Matos MRB, Queiroz EP, Bautista HP. 2017. Fitogeografia. In: Nunes JMC, Matos MRB (eds.) Litoral Norte da Bahia: caracterização ambiental, biodiversidade e conservação. Salvador, EDUFBA. p. 61-89.), while the remaining coastal areas are not markedly dry (Martin et al. 1980Martin L, Bittencourt ACSP, Vilas Boas GS, Flexor JM. 1980. Texto explicativo para o mapa geológico do quaternário costeiro do estado da Bahia - Escala 1:250.000. Salvador, Coordenação de Produção Mineral, Secretaria de Minas e Energia da Bahia.; Cerqueira 2000Cerqueira R. 2000. Biogeografia das restingas. In: Esteves FA, Lacerda LD. (eds.) Ecologia de restingas e lagoas costeiras. Macaé, NUPEM/UFRJ. p. 65-76.) and is surrounded by the Atlantic Forest biome with great diversity and endemisms (Mori et al. 1981Mori SA, Boom BM, Prance GT. 1981. Distribution patterns and conservation of the Eastern Brazilian coastal forest tree species. Brittonia 33: 233-245. doi: 10.2307/2806330.
https://doi.org/10.2307/2806330...
; 1983Mori SA, Boom BM, Carvalho AM, Santos TS. 1983. Southern bahian moist forest. The Botanical Review 49: 155-232. doi: 10.1007/BF02861011
https://doi.org/10.1007/BF02861011...
; Thomas et al. 1998Thomas WW, Carvalho AMVD, Amorim AMA, Garrison J, Arbela´Ez AL. 1998. Plant endemism in two forests in southern Bahia, Brazil. Biodiversity and Conservation 7: 311-322. doi: 10.1023/A:1008825627656
https://doi.org/10.1023/A:1008825627656...
; Amorim et al. 2005Amorim AM, Fiaschi P, Jardim JG, Thomas WW, Clifton BC, Carvalho AMV. 2005. The vascular plants of a forest fragment in southern Bahia, Brazil. Sida 21: 1726-1752.; Matos 2014Matos EN. 2014. Padrões de composição e dominância de florestas de restinga sob diferentes sedimentos e regimes climáticos. PhD Thesis, Universidade Estadual de Feira de Santana, Brazil.).

Key of Myrtaceae genera from restinga of Bahia ( Fig. 5 )

1. Inflorescence panicle or thyrsoid ………………………… 2

1. Inflorescence in glomerule, fascicle, raceme, corymb, dichasium or solitary flowers ………………………… 3

2. Stamens curved in the bud, ovary with 2 ovules per locule, embryo with two free, foliaceous cotyledons ………………………… Myrcia

2. Stamens straight in the bud, ovary with 3-5 ovules per locule, embryo with cotyledons and hypocotyl-radicle axis fused and homogenous ………………………… Eugenia guanabarina

3. Flowers with 2 calyx lobes, free, opening regularly, circular staminal ring ………………………… Blepharocalyx eggersii

3. Flowers with 4-5 calyx lobes, free or fused, tearing or opening via calyptra when fused, angular staminal ring ………………………… 4

4. Hypanthium prolonged above the ovary summit, a thin staminal ring (<30% of the floral disc) ………………………… 5

4. Hypanthium flat, thick staminal ring (>30% of the floral disc) ………………………… 7

5. Solitary flowers, calyx lobes persistent after anthesis, embryo with two foliaceous cotyledons ………………………… Myrcia marianae

5. Inflorescence in raceme or glomerule, calyx lobes deciduous after anthesis, embryo with cotyledons and hypocotyl-radicle axis homogenous ………………………… 6

6. Calyx lobes fused in the bud, with an apiculum opening via calyptra ………………………… Neomitranthes

6. Four calyx lobes free in the bud, opening regularly ………………………… Myrciaria

7. Floral bud with 4 free and regular calyx lobes, stigma terete, embryo with cotyledons and hypocotyl-radicle axis fused and homogenous ………………………… Eugenia

7. Floral bud usually with 5 free calyx lobes, or fused opening irregularly in anthesis, stigma capitate, embryo C-shaped or spiraled ………………………… 8

8. Calyx lobes and bracteoles foliaceous ………………………… Calycolpus legrandii

8. Calyx lobes and bracteoles not foliaceous ………………………… 9

9. Placenta intrusive in the locule, locule walls not glandular, locules distributed throughout the fruit, not oriented in a ring; bony seed coat ………………………… Psidium

9. Placenta not intrusive in the locule, locule walls glandular, functioning as a false seed coat (Fig. 5 F), locules arranged in a ring in the fruit; membranaceous seed coats ………………………… Campomanesia

Key to the species of Campomanesia from restinga of Bahia ( Fig. 5 )

1. Inflorescence in dichasium ………………………… 2

1. Solitary flowers ………………………… 3

2. Peduncle 1.0-1.7 cm long; calyx lobes free in the bud; fruits surface muricate ………………………… C. ilhoensis

2. Peduncle 2.2-6.4 cm long; calyx lobes fused in the bud; fruits surface smooth ………………………… C. dichotoma

3. Leaf blade 3.5-5.3 cm long, glabrous on both faces; pedicel 14.6-22.3 mm long ………………………… C. aromatica

3. Leaf blade 6-10 cm long, pubescent on abaxial face; pedicel 1-3 mm long ………………………… 4

4. Branches, leaves, and flowers with ochreous indumentum; domatia in the axils of the leaf veins on the abaxial surface; calyx lobes free in the bud ………………………… C. guaviroba

4. Branches, leaves, and flowers with white indumentum; domatia absent; calyx lobes fused in the bud ………………………… C. guazumifolia

Key to the species of Eugenia from restinga of Bahia ( Fig. 6 )

1. Inflorescence thyrsoid; calyx lobes fused in the bud ………………………… E. guanabarina

1. Inflorescence in raceme, dichasium, glomerule or fascicle; calyx lobes free in the bud ………………………… 2

2. Bracteoles and calyx lobes foliaceous and showy (13.2-16.5 mm long) ………………………… E. itacarensis

2. Bracteoles and calyx lobes not foliaceous and not showy (1-5 mm long) ………………………… 3

3. Inflorescence in raceme or dichasium ………………………… 4

3. Inflorescence in fascicle or glomerule ………………………… 13

4. Inflorescence in dichasium; locule walls densely pilose in the ovary ………………………… Eugenia sp.

4. Inflorescence in raceme; locule walls glabrous in the ovary ………………………… 5

5. Inflorescence in raceme (with a terminate vegetative bud); bracteoles persistent after anthesis ………………………… 6

5. Inflorescence in raceme auxothelic (vegetative branch keep growing at the apex, beyond the flowering region); bracteoles deciduous after anthesis ………………………… 10

6. Raceme corymbiform ………………………… 7

6. Raceme not corymbiform ………………………… 8

7. Inflorescence with ferrugineous indumentum ………………………… E. pruniformis

7. Inflorescence with ochreous indumentum ………………………… E. candolleana

8. Hypanthium and fruits costate ………………………… E. costatifructa

8. Hypanthium and fruits smooth ………………………… 9

9. Leaf blade elliptic, apex acute; hypanthium glabrous ………………………… E. florida

9. Leaf blade obovate, apex obtuse; hypanthium densely pubescent ………………………… E. schottiana

10. Hypanthium and fruits costate ………………………… E. uniflora

10. Hypanthium and fruits smooth ………………………… 11

11. Leaf blade obovate; cataphylls obovate, conspicuous (4.8-12 mm long) ………………………… 12

11. Leaf blade elliptic; cataphylls ovate, inconspicuous (ca. 1 mm long) ………………………… E. dichroma

12. Leaf blade 2.8-4.8 × 1.1-2.3 cm, short petioles (2-4 mm long); cataphylls 4-8 mm long ………………………… E. ligustrina

12. Leaf blade 7.8-8.6 × 2.8-3.8 cm, long petioles (7-15 mm long); cataphylls 10-12 mm long ………………………… E. brasiliensis

13. Bracteoles persistent at fruit; style twice the length of the stamens ………………………… 14

13. Bracteoles deciduous; style approximately the same length as the stamens ………………………… 22

14. Leaf blade 7-26.5 cm long ………………………… 15

14. Leaf blade 1.8-6 cm long ………………………… 20

15. Flowers sessile (pedicel 0.1-1 mm long) ………………………… E. ayacuchae

15. Flowers pedicellate (pedicel 2-14 mm long) ………………………… 16

16. Leaf blade with rounded apex ………………………… E. unana

16. Leaf blade with acute or acuminate apex ………………………… 17

17. Bracteoles conspicuous (2-3.5 mm long), with a fused base, partially surrounding the ovary ………………………… E. itapemirimensis

17. Bracteoles inconspicuous (0.3-2 mm long), free and not surrounding the ovary ………………………… 18

18. Inflorescence main axis with lignified bracts (Fig. 6 E), persistent and congest along the axis ………………………… E. lacistema

18. Inflorescence axis with bracts not lignified, deciduous, and lax along the axis. ………………………… 19

19. Flowers, pedicels, and fruits with indumentum velutinous ………………………… E. bahiensis

19. Flowers, pedicels, and fruits glabrous ………………………… E. melanogyna

20. Leaf blade with apex acute or acuminate; calyx lobes 1-3 mm long; red ripe fruit ………………………… 21

20. Leaf blade with apex rounded; calyx lobes 0.4-1 mm long; dark purple to black ripe fruit ………………………… E. astringens

21. Plants with hirsute indumentum; leaves sessile or subsessile (petiole 0.3-1.6 mm long), blade ovate, base cordate ………………………… E. hirta

21. Plants glabrous; leaves petiolate (petiole 2-5 mm long), blade elliptic or lanceolate, base attenuate ………………………… E. punicifolia

22. Petioles 2-4 mm long, leaf blade with apex cuspidate; inflorescence axis 2-3 mm long ………………………… E. excelsa

22. Petioles 6-10 mm long, leaf blade with apex acute; inflorescence axis 1-2 mm long ………………………… E. platyphylla

Key to the species of Myrcia from restinga of Bahia ( Figs. 7 and 8 )

1. Branches with sympodial growth ………………………… 2

1. Branches with monopodial growth ………………………… 4

2. Leaf blade with apex caudate; calyx lobes free in the floral bud ………………………… M. bicolor

2. Leaf blade with apex acute or acuminate; calyx lobes completely fused in the floral but, tearing as a calyptra at anthesis ………………………… 3

3. leaf blade elliptic, matte adaxially (herborized); floral bud obovoid, calyptra convex ………………………… M. loranthifolia

3. Leaf blade ovate, glossy adaxially (herborized); floral bud fusiform, calyptra conical ………………………… M. restingae

4. Floral disc densely covered by trichomes; hypanthium flat ………………………… 5

4. Floral disc glabrous or few trichomes on style base; hypanthium extended above the ovary ………………………… 15

5. Staminal ring thin (<30% of floral disc); anthers with pollen sac positioned unevenly, and irregular dehiscence ………………………… 6

5. Staminal ring thick (>60% of floral disc); anthers with pollen sacs positioned at the same level, and regular dehiscence (longitudinal) ………………………… 9

6. Leaf blade bullate adaxially, abaxial side puberulous or tomentose ………………………… M. grazielae

6. Leaf blade smooth adaxially; abaxial side strigose, mainly in young leaves ………………………… 7

7. Sessile or subsessile leaf (petiole 0-2 mm long.) ………………………… M. rosangelae

7. Petiolate leaf (petiole 3-6 mm long.) ………………………… 8

8. Leaf blade 2-9 × 1.2-5 cm long; leaf blade with apex rounded or retuse; calyx lobes acute; fruit globose ………………………… M. ilheosensis

8. Leaf blade 11.7-21.5 × 4.4-8.2 cm long; leaf blade with apex acute or acuminate; calyx lobes rounded; fruit conical ………………………… M. vittoriana

9. Plants with ferruginous indumentum ………………………… 10

9. Plants with white, cream, or amber indumentum ………………………… 12

10. Leaf blade 16-18 cm long; 20-24 pairs of secondary veins; fruit ellipsoid ………………………… M. perforata

10. leaf blade 8-15 cm long; 8-20 pairs of secondary veins; fruit globose ………………………… 11

11. Leaf blade smooth, 15-20 pairs of secondary veins, inconspicuous in both sides, abaxial side totally covered by trichomes (mature leaf); calyx lobes deltate, ca. 1 mm long ………………………… M. bergiana

11. Leaf blade bullate, 8-12 pairs of secondary veins, conspicuous protruding abaxially and sulcate adaxially, abaxial side with trichomes just along the main vein (mature leaf); calyx lobes rounded, ca. 2 mm long ………………………… M. isaiana

12. Leaf blade with apex rounded or retuse, glabrous or sparsely pubescent; hypanthium glabrescent on external side ………………………… M. thyrsoidea

12. Leaf blade with apex acute or acuminate, tomentose or densely pubescent; hypanthium with persistent indument on external side ………………………… 13

13. Leaf blade with main vein flat adaxially, secondary veins protruding abaxially; floral bud 3 × 2-3 mm; hypanthium with ocherous indumentum ………………………… M. splendens

13. Leaf blade with main vein sulcate adaxially, secondary veins inconspicuous and flat abaxially; floral buds ca. 2 × 2 mm; hypanthium with white indumentum ………………………… 14

14. Leaf blade with base cordate, margin revolute; fruit globose ………………………… M. salzmannii

14. Leaf blade with base attenuate, margin entire; fruit ellipsoid ………………………… M. sylvatica

15. Inflorescence reduced to one flower ………………………… M. marianae

15. Inflorescence in corymb, thyrse or panicle ………………………… 16

16. Flowers in thyrse, up to 3 lateral branches, 1-3 terminal flowers ………………………… M. felisbertii

16. Flowers in panicle, 4 or more lateral branches, more than 4 flowers irregularly arranged ………………………… 17

17. Ovary trilocular ………………………… M. guianensis

17. Ovary bilocular ………………………… 18

18. Calyx lobe completely fused, tearing irregularly during anthesis ………………………… 19

18. Calyx lobe free or partially fused (with apical pore), tearing regularly during anthesis ………………………… 23

19. Leaf blade oblong, 14-30 cm long ………………………… 20

19. Leaf blade ovate or elliptic, 5-12.5 cm long ………………………… 21

20. Leaves distichous; inflorescence axis tomentose with congested flowers; flowers with 2 pair of bracts ………………………… M. obversa

20. Leaves decussate; inflorescence axis glabrous with lax flowers; flowers with 1 pair of bracts ………………………… M. neoverticillaris

21. Young leaves densely pubescent; secondary veins inconspicuous in both sides, 2 marginal veins; inflorescence axis glabrous ………………………… M. neoregeliana

21. Young leaves glabrous; secondary veins conspicuous in both sides, 1 marginal vein; inflorescence axis pubescent ………………………… 22

22. Leaf blade ovate or widely elliptic, 5.8-7.5 × 4.3-5.3 cm; floral bud with sericeous indumentum on the basal portion of ovary; petals absent ………………………… M. arenaria

22. Leaf blade elliptic, 6.2-9 × 2.8-4 cm; floral bud glabrous; 1-3 petals ………………………… M. excoriata

23. Floral bud with fused calyx lobes, tearing through an apical pore ………………………… 24

23. Floral bud with free calyx lobes ………………………… 25

24. Leaf blade with apex acute; inflorescence with white indumentum; bracteoles covering the floral bud; five regular calyx lobes (size and shape) ………………………… M. neuwiedeana

24. Leaf blade with apex cuspidate; inflorescence with ferrugineous indumentum; bracteoles not covering the floral bud; 3-4 irregular calyx lobes ………………………… M. vellozoi

25. Floral bud with 4 free calyx lobes; hypanthium (also visible in fruit) tearing regularly ………………………… 26

25. Floral bud with 5 free calyx lobes; hypanthium not tearing ………………………… 27

26. Petiole 6-7 mm long, leaf blade with apex acuminate; hypanthium pubescent ………………………… M. multipunctata

26. Petiole 10-18 mm long, leaf blade with apex caudate; hypanthium velutinous ………………………… M. polygama

27. Leaves whorled (3-4 per node) ………………………… M. tetraphylla

27. Leaves opposite and distichous ………………………… 28

28. Hypanthium and fruit glabrous ………………………… 29

28. Hypanthium and fruit pubescent, puberule, sericeous or tomentose ………………………… 37

29. Leaf blade 21-26 cm long.; inflorescence with foliaceous bracts (1-2.6 cm long) ………………………… M. insularis

29. Leaf blade 2-15 cm long.; inflorescence with non-foliaceous bracts (0.4-1 cm long) ………………………… 30

30. Plants completely glabrous ………………………… 31

30. Plants puberule or tomentose ………………………… 32

31. Leaf blade obovate or oblanceolate, 1.8-4 × 1-2.2 cm, apex rounded; fruit purple ………………………… M. ramuliflora

31. Leaf blade ovate or elliptic, 4.3-7 × 2.7-4 cm, apex acuminate or caudate; fruit vinaceous ………………………… Myrcia sp.

32. Leaf blade orbicular or widely elliptic, 4.5-7 × 3.5-6 cm, strongly discolor when herborized, apex rounded, margin revolute ………………………… M. hypophaea

32. Leaf blade ovate or narrow elliptic, 2.6-14.6 × 1.4-5.2 cm, lightly discolor when herborized, apex acute, margin flat ………………………… 33

33. Petiole 4.5-10 mm long, 25-33 pairs of secondary veins; inflorescence axis tomentose, flower bud 3-3.5 mm long ………………………… M. guedesiae

33. Petiole 1-3 mm long, up to 17 pairs of secondary veins; inflorescence axis puberule, flower bud 1.5-2.5 mm long ………………………… 34

34. Leaf blade ovate; lateral branches of inflorescences congested ………………………… M. racemosa

34. Leaf blade elliptic; lateral branches of inflorescence lax ………………………… 35

35.Synflorescences of congested and bracteate panicles (Fig. 7G); bracts persistent ………………………… M. polyantha

35. Inflorescences axillary and ebracteate; bracts deciduous ………………………… 36

36. Leaf blade coriaceous, apex acute, secondary veins inconspicuous abaxially; calyx covering completely or almost completely the petaliferous globe in the floral bud, calyx lobes with apex acute ………………………… M. decorticans

36. Leaf blade chartaceous, apex acuminate, secondary veins conspicuous abaxially; calyx not covering the petaliferous globe in the floral bud, calyx lobes with apex rounded ………………………… M. multiflora

37. Plants with ferruginous indumentum; inflorescence in a corymbiform panicle ………………………… M. densa

37. Plants with white, cream or gray indumentum; inflorescence in a triangular panicle ………………………… 38

38. Leaf blade obovate, apex rounded ………………………… 39

38. Leaf blade elliptic or oblong, apex acute, acuminate, or caudate ………………………… 41

39. Plants tomentose; leaf blade chartaceous, secondary vein conspicuous, protruding abaxially; hypanthium constricted above the ovary ………………………… M. tomentosa

39. Plants puberulent to pubescent; leaf blade coriaceous, secondary vein inconspicuous in both sides; hypanthium not constricted above the ovary ………………………… 40

40. Leaves opposite and decussate, appressed; leaves, young branches, inflorescences, calyx, hypanthium, and fruits densely pubescent; calyx lobes triangular, apex acute ………………………… M. spathulifolia

40. Leaves opposite and distichous, ascending; leaves glabrous, inflorescences puberulous, hypanthium sericeous, calyx and fruits with sparse trichomes; calyx lobes ovate, apex rounded ………………………… M. littoralis

41. Leaf blade 18-26.5 cm long., base rounded, cordate or subcordate; inflorescence auxotelic, with cataphylls on the basal portion (1.3-1.8 cm long) ………………………… M. raminfinita

41. Leaf blade 1.7-10 cm long, base attenuate or obtuse; inflorescence not auxotelic, cataphylls absent ………………………… 42

42. Leaf blade smooth, apex caudate; calyx lobes erect on the fruit ………………………… M. racemosa

42. Leaf blade bullate, apex acute or shortly acuminate; calyx lobes adpressed on the fruit ………………………… M. hirtiflora

Key to the species of Myrciaria from restinga of Bahia

1. Leaves with petioles 2-3 mm long, leaf blade 3.1-3.7 × 0.8-1.2 cm, margin revolute, base cordate; calyx lobes fused in the bud ………………………… M. strigipes

1. Leaves with petioles 4-9 mm long, leaf blade 4.4-8.8 × 1.8-3.6 cm, margin flat, base cuneate or attenuate; calyx lobes free in the bud ………………………… 2

2. Leaf blade with acuminate apex; sessile flowers; bracteoles elliptic, 2-3 × 1.8-2 mm ………………………… M. glomerata

2. Leaf blade with cuspidate apex; flowers with pedicels (1-2 mm long); bracteoles ovate, 0.5-1.1 × 1-1.3 mm ………………………… 3

3. Leaf blade, bract, and bracteole glabrous ………………………… M. floribunda

3. Abaxial surface of leaf blade, bract, and bracteole puberulous ………………………… M. pilosa

Key to the species of Neomitranthes from restinga of Bahia

1. Leaf blade with apex rounded or acute, margin revolute; inflorescence in short raceme, axis 1-4 mm long, flowers pedicellate (pedicel 1-2 mm long) ………………………… N. obtusa

1. Leaf blade with apex acuminate, margin flat; inflorescence in glomerules, axis 0.1-0.9 mm long, flowers sessile ………………………… N. obscura

Key to the species of Psidium from restinga of Bahia ( Figs. 9 and 10 )

1. Leaves sessile or subsessile (petiole 0.1-3 mm long) ………………………… 2

1. Leaves petiolate (petiole 3-10 mm long) ………………………… 3

2. Leaf blade orbicular, apex rounded; bud opening by apical pore, calyx lobes tearing the staminal ring ………………………… P. amplexicaule

2. Leaf blade ovate, apex acute or acuminate; bud completely closed, with apiculum, calyx lobes not tearing the staminal ring ………………………… P. brownianum

3. Leaf blade obovate or oblanceolate; bud opening by apical pore, tearing the staminal ring during anthesis ………………………… P. cattleyanum

3. Leaf blade ovate, elliptic or obovate; bud completely closed or opening by apical pore, not tearing the staminal ring during anthesis ………………………… 4

4. Leaf blade with apex cuspidate (11-15 mm long); calyx lobes completely fused in the bud, opening irregularly or by calyptra ………………………… P. oligospermum

4. Leaf blade with apex acute or acuminate (2-7 mm long); calyx lobes partially fused in the bud, with an apical pore, tearing irregularly, never by calyptra ………………………… 5

5. Inflorescence in raceme; ovary with 3 locules, 28-33 ovules per locule; fruit subglobose, 15-20 seeds ………………………… P. bahianum

5. Inflorescence in dichasium or solitary flowers; ovary with 3-6 locules, 50-180 ovules per locule; fruit pyriform or globose, ca. 250 seeds ………………………… 6

6. Branches, leaves, inflorescence and flowers with reddish, white, or yellowish pubescent indumentum; leaf blade with 8-10 pairs of secondary veins ………………………… P. guineense

6. Branches, leaves, inflorescence and flowers glabrous or glabrescent, in this case with white indumentum; leaf blade with 10-20 pairs of secondary veins ………………………… P. guajava

Figure 5
A−B. Blepharocalyx eggersii; A: fruits with two calyx lobes; B: compound dichasium. C−D. Calycolpus legrandii; C: ripe fruits with bracteoles and calyx lobes foliaceous and persistent; D: immature fruits with bracteoles and calyx lobes foliaceous and persistent. E−F. Campomanesia dichotoma; E: dichasium with immature fruits; F: cross section of the fruit showing the glandular walls of the locules (detailed) (A-F: J.D.O. Melo).

Figure 6
A−B. Eugenia astringens; A: Flowers bud and flowers; B: immature (green to yellow) and ripe fruits (dark purple to blackish). C. E. candolleana: inflorescence in raceme. D. E. hirta: ripe fruit. E. E. lacistema: infrutescence axis with lignified bracts (detailed) and young green fruits. F. E. ligustrina: raceme auxothelic. G. E. punicifolia: ripe fruit (A, B, D, E, G. J.D.O. Melo; C, F. A. Stadnik).

Figure 7
A−B. Myrcia bergiana; A: leaves and inflorescence; B: ripe fruits. C. M. decorticans: inflorescence with immature (green and red) and ripe fruits (dark purple to blackish). D-E. M. guianensis; D: inflorescence; E: ripe fruits. F. M. hirtiflora; infrutescence with immature fruits. G. M. polyantha: branch with young red leaves and infrutescence with ripe fruit (bracteate branch detailed) (A-G: J.D.O. Melo).

Figure 8
A. Myrcia ramuliflora: inflorescence with open flowers and buds. B-C. M. salzmannii; B: branch with leaves and inflorescences with old flowers and buds; C: inflorescence with immature fruits. D. M. spathulifolia: immature fruits. E-F. M. vittoriana; E: inflorescence with flower buds; F: immature fruits. (A-F: J.D.O. Melo).

Figure 9
A−B. Psidium brownianum; A: flower buds and flower (bud completely closed, with apiculum); B: immature fruit. C−D. P. cattleyanum; C: immature fruits with staminal ring torn by the calyx lobes at anthesis; D: immature fruits. E−F. P. guajava; E: flower which the petals already fallen; F: immature fruits (A. J.D.O. Melo; B, E. A. Stadnik; C, D. T. Vasconcelos; F. L. Lucresia).

Figure 10
A−B. Psidium guineense; A: immature fruit; B: young and old flowers (the petals and the stamens already fallen). C−E. P. oligospermum; C: inflorescence with young and old flowers, and bud; D: immature fruits; E: branches with leaves and fruits (A, B, D, E. J.D.O. Melo; C. T. Vieira).

Acknowledgements

This study was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. We thank to herbaria curators, to Lukas Daneu, Paulo Lara, LEFHBio and Parque Klaus Peter management for providing support during field works, and to Luisa Lucresia for preparing the map. JM is grateful to Fundação de Amparo à Pesquisa do Estado da Bahia - Brasil (FAPESB)-2592/2018. AS thanks FABESB-2279/2016 and NR thanks CNPq for the scholarship 307272/2019-2.

References

  • Alves RJV, Cardin L, Kropf MS. 2007. Angiosperm disjunction “Campos rupestres - Restingas”: a re-evaluation. Acta Botanica Brasilica 21: 75-685. doi: 10.1590/S0102-33062007000300014
    » https://doi.org/10.1590/S0102-33062007000300014
  • Amorim AM, Fiaschi P, Jardim JG, Thomas WW, Clifton BC, Carvalho AMV. 2005. The vascular plants of a forest fragment in southern Bahia, Brazil. Sida 21: 1726-1752.
  • Amorim BS, Vasconcelos TN, Souza G, Alves M, Antonelli A, Lucas E. 2019. Advanced understanding of phylogenetic relationships, morphological evolution and biogeographic history of the mega-diverse plant genus Myrcia and its relatives (Myrtaceae: Myrteae). Molecular Phylogenetics and Evolution 138: 65-88. doi: 10.1016/j.ympev.2019.05.014
    » https://doi.org/10.1016/j.ympev.2019.05.014
  • Amorim GS, Almeida Jr. EB. 2021. A família Myrtaceae nas restingas da Ilha do Maranhão, Brasil. Iheringia, Série Botânica 76: e2021008. doi: 10.21826/2446-82312021v76e2021008
    » https://doi.org/10.21826/2446-82312021v76e2021008
  • Araujo DSD. 1992 Vegetation types of sandy coastal plains of tropical Brazil: a first approximation. In: Seeliger U. (ed.). Coastal Plant Communities of Latin America. San Diego, Academic Press. p. 337−347.
  • Araujo DSD, Henriques RPB. 1984. Análise florística das restingas do Estado do Rio de Janeiro. In: Lacerda LD, Araújo DSD, Cerqueira R, Turcq B. (eds.). Restingas, Origem, Estrutura e Processos. Niterói: Centro Editorial da Universidade Federal Fluminense. p. 327-342.
  • Araujo DSD, Pereira MCA. 2009. Sandy coastal vegetation. In: Encyclopedia of Life Support Systems (EOLSS). Tropical Biology and Conservation Management. Oxford, UNESCO, Eolss Publishers Co. p. 173−189.
  • Araujo DSD, Sá CFC, Fontella-Pereira J et al 2009. Área de Proteção Ambiental de Massambaba, Rio de Janeiro: caracterização fitofisionômica e florística. Rodriguésia 60: 67-96. doi: 10.1590/2175-7860200960104.
    » https://doi.org/10.1590/2175-7860200960104
  • Assis AM, Thomaz LD, Pereira OJ. 2004. Florística de um trecho de floresta de restinga no município de Guarapari, Espírito Santo, Brasil. Acta Botanica Brasilica 18: 191-201. doi: 10.1590/S0102-33062004000100016
    » https://doi.org/10.1590/S0102-33062004000100016
  • Assumpção J, Nascimento MT. 2000. Estrutura e composição florística de quatro formações vegetais de restinga no complexo lagunar Grussaí/Iquipari, São João da Barra, RJ, Brasil. Acta Botanica Brasilica 14: 301-315. doi: 10.1590/S0102-33062000000300007.
    » https://doi.org/10.1590/S0102-33062000000300007
  • Beentje H. 2016. The Kew Plant Glossary: An Illustrated Dictionary of Plant Identification Terms. 2nd. edn. Kew, Royal Botanic Gardens, Kew Publishing.
  • Biffin E, Lucas EJ, Craven LA, Costa IR, Harrington MG, Crisp MD. 2010. Evolution of exceptional species richness among lineages of fleshy−fruited Myrtaceae. Annals of Botany 106: 79-93. doi: 10.1093/aob/mcq088.
    » https://doi.org/10.1093/aob/mcq088
  • Braz DM, Jacques EL, Somner GV, et al 2013. Restinga de Praia das Neves, ES, Brasil: caracterização fitofisionômica, florística e conservação. Biota Neotropica 13: 315-331. doi: 10.1590/S1676-06032013000300032.
    » https://doi.org/10.1590/S1676-06032013000300032
  • Briggs BG, Johnson LAS. 1979. Evolution in the Myrtaceae Evidence from inflorescence structure. Proceedings of the Linnean Society of New South Wales 102: 157-256.
  • Britto IC, Queiroz LD, Guedes MLS, Oliveira ND, Silva LD. 1993. Flora fanerogâmica das dunas e lagoas do Abaeté, Salvador, Bahia. Sitientibus 11: 31−46.
  • Castro ASF, Moro MF, Menezes MOT. 2012. O Complexo Vegetacional da Zona Litorânea no Ceará: Pecém, São Gonçalo do Amarante. Acta Botanica Brasilica 26: 108-124.
  • Cerqueira R. 2000. Biogeografia das restingas. In: Esteves FA, Lacerda LD. (eds.) Ecologia de restingas e lagoas costeiras. Macaé, NUPEM/UFRJ. p. 65-76.
  • Costa GM, Souza Pereira J, Martins MLL, Aona LYS. 2018. Florística em fitofisionomias de restinga na Bahia, nordeste do Brasil. Journal of Neotropical Biology 15: 78-95.
  • Dias HM, Soares MLG. 2008. As Fitofisionomias das Restingas do Município de Caravelas (Bahia−Brasil) e os bens e serviços associados. Boletim Técnico-Científico do CEPENE 16: 59-74.
  • Fernandes MF, Queiroz LPD. 2015. Floristic surveys of Restinga Forests in southern Bahia, Brazil, reveal the effects of geography on community composition. Rodriguésia 66: 51-73. doi: 10.1590/2175-7860201566104
    » https://doi.org/10.1590/2175-7860201566104
  • Giaretta A, Peixoto AL. 2015. Myrtaceae da restinga no norte do Espírito Santo, Brasil. Boletim do Museu de Biologia Mello Leitão 37: 45-126.
  • Gomes FS, Guedes MLS. 2014. Flora vascular e formas de vida das formações de restinga do litoral norte da Bahia, Brasil. Acta Biológica Catarinense 1: 22−43. doi: 10.21726/abc.v1i1.82
    » https://doi.org/10.21726/abc.v1i1.82
  • Govaerts R, Sobral N, Ashton P et al 2019. World Checklist of Myrtaceae. Kew, Royal Botanic Gardens, Kew Publishing .
  • Guterres AVF, Amorim IFF, Silva AFC, de Almeida Jr EB. 2020. Flora do estrato herbáceo da restinga da Praia do Caúra, São José de Ribamar, Maranhão. Boletim do Laboratório de Hidrobiologia 29: 57-72. doi: 10.18764/1981-6421e2019.8
    » https://doi.org/10.18764/1981-6421e2019.8
  • Henrique MD, Araujo DSD. 2017. Estrutura do estrato lenhoso de uma comunidade arbustiva fechada sobre cordão arenoso na restinga da Marambaia - RJ. Ciência Florestal 27: 29−1142.
  • IBGE - Instituto Brasileiro de Geografia e Estatística. 2004. Flora das Restingas do Litoral Norte da Bahia: Costa dos Coqueiros e Salvador. Projeto Flora/ Fauna - UE/BA - Microbiological Diagnosis: text and color atlas. Salvador, Editora Médica e Científica, Herbário Radambrasil.
  • IBGE - Instituto Brasileiro de Geografia e Estatística. 2012. Manual técnico da vegetação brasileira. Rio de Janeiro, IBGE.
  • Landrum LR, Kawasaki ML. 1997. The genera of Myrtaceae in Brazil: an illustrated synoptic treatment and identification keys. Brittonia 49: 508−536. doi: 10.2307/2807742
    » https://doi.org/10.2307/2807742
  • Lima DF, Caddah MK, Goldenberg R. 2015. A família Myrtaceae na Ilha do Mel, Paranaguá, Estado do Paraná, Brasil. Hoehnea 42: 497−519. doi: 10.1590/2236-8906-68/2014
    » https://doi.org/10.1590/2236-8906-68/2014
  • Lourenço ARDL, Barbosa MRDV. 2012. Myrtaceae em restingas no limite norte de distribuição da Mata Atlântica, Brasil. Rodriguésia 63: 373-393. doi: 10.1590/S2175-78602012000200011
    » https://doi.org/10.1590/S2175-78602012000200011
  • Lucas EJ, Harris SA, Mazine FF et al 2007. Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon 56: 1105-1128.
  • Lucas E, Nunes T, Lughadha EN. 2012. Lista preliminar da família Myrtaceae na Região Nordeste do Brasil. Série Repatriamento de Dados do Herbário de Kew para a Flora do Nordeste. Kew, Royal Botanic Gardens Kew.
  • Lucas EJ, Holst B, Sobral M et al 2019. A new subtribal classification of tribe Myrteae (Myrtaceae). Systematic Botany 44: 560-569.
  • Martin L, Bittencourt ACSP, Vilas Boas GS, Flexor JM. 1980. Texto explicativo para o mapa geológico do quaternário costeiro do estado da Bahia - Escala 1:250.000. Salvador, Coordenação de Produção Mineral, Secretaria de Minas e Energia da Bahia.
  • Martins MLL. 2012. Fitofisionomia das formações vegetais da restinga da Área de Proteção Ambiental (APA) de Guaibim, Valença, Bahia, Brasil. Revista Brasileira de Biociências 10: 66.
  • Matos EN. 2014. Padrões de composição e dominância de florestas de restinga sob diferentes sedimentos e regimes climáticos. PhD Thesis, Universidade Estadual de Feira de Santana, Brazil.
  • Matos MRB, Queiroz EP, Bautista HP. 2017. Fitogeografia. In: Nunes JMC, Matos MRB (eds.) Litoral Norte da Bahia: caracterização ambiental, biodiversidade e conservação. Salvador, EDUFBA. p. 61-89.
  • Mazine FF. 2006. Estudos taxonômicos em Eugenia L., com ênfase em Eugenia sect. Racemosae O.Berg. PhD Thesis, Universidade de São Paulo, Brazil.
  • Mazine FF, Souza VC, Sobral M, Forest F, Lucas E. 2014. A preliminary phylogenetic analysis of Eugenia Myrtaceae: Myrteae), with a focus on Neotropical species. Kew Bulletin 69: 9497-9511. doi: 10.1007/S12225-014-9497-X.
    » https://doi.org/10.1007/S12225-014-9497-X
  • Mazine FF, Faria JEQ, Giaretta A, Vasconcelos TNC, Forest F, Lucas E. 2018. Phylogeny and biogeography of the hyper-diverse genus Eugenia (Myrtaceae: Myrteae), with emphasis on E. sect. Umbellatae, the most unmanageable clade. Taxon 67: 752-769. doi: 10.12705/674.5
    » https://doi.org/10.12705/674.5
  • Menezes CM, Almeida Aguiar LGP, Espinheira MJCL, Silva VIS. 2009. Florística e fitossociologia do componente arbóreo do município de Conde, Bahia, Brasil. Revista Biociências 15: 44-55.
  • Mori SA, Boom BM, Carvalho AM, Santos TS. 1983. Southern bahian moist forest. The Botanical Review 49: 155-232. doi: 10.1007/BF02861011
    » https://doi.org/10.1007/BF02861011
  • Mori SA, Boom BM, Prance GT. 1981. Distribution patterns and conservation of the Eastern Brazilian coastal forest tree species. Brittonia 33: 233-245. doi: 10.2307/2806330.
    » https://doi.org/10.2307/2806330
  • Oliveira MIU, Funch LS, Landrum LR. 2012. Flora of Bahia: Campomanesia (Myrtaceae). Sitientibus, Série Ciências Biológicas 12: 91-107. doi: 10.13102/scb115
    » https://doi.org/10.13102/scb115
  • Peixoto AL, Maia LC. (eds.). 2013. Manual de procedimentos para herbários. Recife: Editora da UFPE.
  • Pereira MCA, Araujo DSD, Pereira OJ. 2001. Estrutura de uma comunidade arbustiva da restinga de Barra de Maricá-RJ. Revista Brasileira de Botânica 24: 273-281. doi: 10.1590/S0100-84042001000300005
    » https://doi.org/10.1590/S0100-84042001000300005
  • Pereira OJ. 2003. Restinga: origem, estrutura e diversidade. In: Jardim MAG, Bastos MNC, Santos JUM (eds.) Desafios da Botânica Brasileira no Novo Milênio: inventário, sistematização e conservação da biodiversidade vegetal. Belém, Sociedade Botânica do Brasil. p. 177-179.
  • Proença CEB, Amorim BS, Antonicelli MC et al 2020. Myrtaceae. In: Flora e Funga do Brasil. Rio de Janeiro, Jardim Botânico do Rio de Janeiro. https://floradobrasil.jbrj.gov.br/FB171 26 Jul. 2022.
    » https://floradobrasil.jbrj.gov.br/FB171
  • QGIS Development Team. 2022. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org 26 Apr. 2022.
    » http://qgis.osgeo.org
  • Queiroz EP, Bautista HP, Matos MRB. 2017. Flora Fanerogâmica das Restingas. In: Nunes JMC, Matos MRB (eds.). Litoral norte da Bahia: caracterização ambiental, biodiversidade e conservação. Salvador, Editora da UFBA. p. 129-155.
  • Radford AE, Dickison WC, Massey JR, Bell CR. 1974. Vascular Plant systematics. New York, Harper & Row Publishers.
  • Rosário ASD, Secco RDS, Amaral DDD, Santos JUMD, Bastos MDNDC. 2005. Flórula fanerogâmica das restingas do estado do Pará. Ilhas de Algodoal e Maiandeua-2. Myrtaceae AL de Jussieu. Boletim do Museu Paraense Emílio Goeldi, Série Ciências Naturais 1: 31−42.
  • Sacramento AC, Zickel CS, Almeida Jr EB. 2007. Aspectos florísticos da vegetação de restinga no litoral de Pernambuco. Revista Árvore 31: 1121-1130. doi: 10.1590/S0100-67622007000600017
    » https://doi.org/10.1590/S0100-67622007000600017
  • Santos MF, Lucas E, Sano PT, Buerki S, Staggemeier VG, Forest F. 2017. Biogeographical patterns of Myrcia s.l. (Myrtaceae) and their correlation with geological and climatic history in the Neotropics. Molecular Phylogenetics and Evolution 108: 34-48. doi: 10.1016/j.ympev.2017.01.012
    » https://doi.org/10.1016/j.ympev.2017.01.012
  • Santos MF, Lucas E, Sano PT. 2018. A taxonomic monograph of Myrcia sect. Sympodiomyrcia (Myrteae, Myrtaceae). Phytotaxa 380: 1−114. doi: 10.11646/phytotaxa.380.1.1
    » https://doi.org/10.11646/phytotaxa.380.1.1
  • Scarano, FR. 2002. Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rainforest. Annals of Botany 90: 517-524.
  • Silva FO (ed.). 2018. A biodiversidade das dunas do Abaeté: patrimônio ambiental urbano. Editora UFS.
  • Souza MDC, Morim MP, Conde MDMS, Menezes LFTD. 2007. Subtribo Myrciinae O. Berg (Myrtaceae) na Restinga da Marambaia, RJ, Brasil. Acta Botanica Brasilica 21: 49-63. doi: 10.1590/S0102-33062007000100006
    » https://doi.org/10.1590/S0102-33062007000100006
  • Souza MDC, Morim MP. 2008. Subtribos Eugeniinae O. Berg e Myrtinae O. Berg (Myrtaceae) na Restinga da Marambaia, RJ, Brasil. Acta Botanica Brasilica 22: 652-683. doi: 10.1590/S0102-33062008000300006
    » https://doi.org/10.1590/S0102-33062008000300006
  • Staggemeier VG, Cazetta E, Morellato LPC. 2017. Hyperdominance in fruit production in the Brazilian Atlantic rain forest: The functional role of plants in sustaining frugivores. Biotropica 49: 71-82. doi: 10.1111/btp.12358
    » https://doi.org/10.1111/btp.12358
  • Thomas WW. 2003. Natural vegetation types in southern Bahia. In: Prado PI, Landau EC, Moura RT, Pinto LPS, Fonseca GAB, Alger K (eds.) Corredor de Biodiversidade da Mata Atlântica do Sul da Bahia. Ilhéus, Instituto de Estudos Sócio-Ambientais do Sul da Bahia e Conservation International do Brasil. [CD-Rom].
  • Thiers B. 2020. Index Herbariorum: A global directory of public herbaria and associated staff. New York, New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/ 18 Feb. 2020.
    » http://sweetgum.nybg.org/ih/
  • Thomas WW, Carvalho AMVD, Amorim AMA, Garrison J, Arbela´Ez AL. 1998. Plant endemism in two forests in southern Bahia, Brazil. Biodiversity and Conservation 7: 311-322. doi: 10.1023/A:1008825627656
    » https://doi.org/10.1023/A:1008825627656
  • Vasconcelos TNC, Lucas EJ, Faria JEQ, Prenner G. 2017a. Floral heterochrony promotes flexibility of reproductive strategies in the morphologically homogeneous genus Eugenia (Myrtaceae). Annals of Botany 121: 161-174. doi: 10.1093/aob/mcx142
    » https://doi.org/10.1093/aob/mcx142
  • Vasconcelos TNC, Proença CEB, Ahmad B. 2017b. Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae. Molecular Phylogenetics and Evolution 109: 113-137. doi: 10.1016/j.ympev.2017.01.002
    » https://doi.org/10.1016/j.ympev.2017.01.002
  • Vasconcelos TN, Chartier M, Prenner G et al 2018. Floral uniformity through evolutionary time in a species−rich tree lineage. The New Phytologist 221: 1597-1608.
  • Vicente A, Almeida Jr EB, Santos-Filho FS, Zickel CS. 2014. Composição estrutural da vegetação lenhosa da restinga de Cabedelo, Paraíba. Revista de Geografia UFPE 13: 89-99.
  • Wilson PG, O'brien MM, Heslewood MM, Quinn CJ. 2005. Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution. 251: 3−19. doi: 10.1007/s00606-004-0162-y
    » https://doi.org/10.1007/s00606-004-0162-y

Publication Dates

  • Publication in this collection
    12 May 2023
  • Date of issue
    2023

History

  • Received
    03 Aug 2022
  • Accepted
    30 Mar 2023
Sociedade Botânica do Brasil SCLN 307 - Bloco B - Sala 218 - Ed. Constrol Center Asa Norte CEP: 70746-520 Brasília/DF. - Alta Floresta - MT - Brazil
E-mail: acta@botanica.org.br