Acessibilidade / Reportar erro

Is Incentive Spirometry Superior to Standard Care in Postoperative Cardiac Surgery on Clinical Outcomes and Length of Hospital and Intensive Care Unit Stay? A Systematic Review with Meta-Analysis

ABSTRACT

Introduction:

Cardiac surgery is a frequent surgical procedure and may present a high risk of complications. Among the prophylactic strategies studied to decrease the rates of negative outcomes, respiratory care seems to reduce pulmonary complications. Incentive spirometry (IS) is a low-cost, respiratory exercise technique, used for the prevention and treatment of postoperative pulmonary complications (PPC). The aim of this review was to evaluate whether IS is superior to respiratory care, mobilization exercises, and noninvasive ventilation on PPC, and clinical outcomes.

Methods:

Systematic review. Medical Literature Analysis and Retrieval System Online (or MEDLINE®), Embase®, Cochrane Central Register of Controlled Trials (or CENTRAL), Physiotherapy Evidence Database (or PEDro), Cumulative Index of Nursing and Allied Health (or CINAHL®), Latin American and Caribbean Health Sciences Literature (or LILACS), Scientific Electronic Library Online (or SciELO), Allied, Scopus®, and OpenGrey databases, clinical trial registration sites, conferences, congresses, and symposiums were searched.

Results:

Twenty-one randomized trials and one quasi-randomized trial (1,677 participants) were included. For partial pressure of oxygen (PaO2), IS was inferior to respiratory care (mean difference [MD] -4.48; 95% confidence interval [CI] -8.32 to -0.63). Flow-oriented IS was inferior to respiratory care on PaO2 (MD -4.53; 95% CI -8.88 to -0.18). However, compared to respiratory care, flow-oriented IS was superior on recovery vital capacity.

Conclusions:

This meta-analysis revealed that IS was not superior to standard respiratory care for PPCs and clinical outcomes, therefore its use should not be widely recommended until further studies with high quality be performed to ensure this clinical guidance.

Keywords:
Cardiac Surgical Procedures; Postoperative Care; Noninvasive Ventilation; Systematic Review

INTRODUCTION

Abbreviations, Acronyms & Symbols CABG = Coronary artery bypass grafting MD = Mean differences CENTRAL = Cochrane Central Register of Controlled Trials MIP = Maximal inspiratory pressure CG = Control group NIV = Noninvasive ventilation CI = Confidence interval NR = Not registered CINAHL® = Cumulative Index of Nursing and Allied Health PaO2 = Partial pressure of oxygen CPAP = Continuous positive airway pressure PEDro = Physiotherapy Evidence Database ECC = Extracorporeal circulation PEF = Peak of expiratory flow FEF = Forced expiratory flow PO = Postoperative FEV1 = Forced expiratory volume in one second PPC = Postoperative pulmonary complications FVC = Forced vital capacity RCT = Randomized controlled trial GRADE = Classification of Recommendations, Assessment, Development and Evaluation RR SciELO = Risk ratios = Scientific Electronic Library Online ICU = Intensive care unit SD = Standard deviation IPPB = Intermittent positive pressure breathing SMD = Standardized mean differences IS = Incentive spirometry SO2 = Oxygen saturation ISG = Incentive spirometry group VC = Vital capacity LILACS = Latin American and Caribbean Health Sciences Literature VR = Valve replacement LOS = Length of stay

Cardiac surgery is a frequent surgical procedure. Each year, Australian hospitals perform > 12,000 cardiac surgeries, and a single Brazilian hospital has already performed > 2,900 of these procedures[11 Health AIo. Elective surgery waiting times 2017-18. Canberra: AIHW; 2019.,22 Mejia OAV, Lisboa LAF, Caneo LF, Arita ET, Brandão CMA, Dias RR, et al. Analysis of >100,000 cardiovascular surgeries performed at the heart institute and a new era of outcomes. Arq Bras Cardiol. 2020;114(4):603-12. doi:10.36660/abc.20190736.
https://doi.org/10.36660/abc.20190736....
]. In the United States of America, the cost of cardiac surgery is approximately 1% to 2% of the health budget[33 Lee JJ, Park NH, Lee KS, Chee HK, Sim SB, Kim MJ, et al. Projections of demand for cardiovascular surgery and supply of surgeons. Korean J Thorac Cardiovasc Surg. 2016;49(Suppl 1):S37-S43. doi:10.5090/kjtcs.2016.49.S1.S37.
https://doi.org/10.5090/kjtcs.2016.49.S1...
]. The majority of patients undergo coronary artery bypass grafting (CABG), and 74.6% of surgeries are scheduled[44 Gomes WJ, Moreira RS, Zilli AC, Bettiati LC Jr, Figueira FAMDS, D' Azevedo SSP, et al. The Brazilian registry of adult patient undergoing cardiovascular surgery, the BYPASS project: results of the first 1,722 patients. Braz J Cardiovasc Surg. 2017;32(2):71-6. Erratum in: Braz J Cardiovasc Surg. 2017;32(5):442. doi:10.21470/1678-9741-2017-0053.
https://doi.org/10.21470/1678-9741-2017-...
]. Complex cardiac surgery and prolonged hospital length of stay (LOS) may present a high risk of complications and mortality; postoperative mortality has been documented at 4% (valve operations) within the first seven days and 6.4% (overall mortality) within the first postoperative month[44 Gomes WJ, Moreira RS, Zilli AC, Bettiati LC Jr, Figueira FAMDS, D' Azevedo SSP, et al. The Brazilian registry of adult patient undergoing cardiovascular surgery, the BYPASS project: results of the first 1,722 patients. Braz J Cardiovasc Surg. 2017;32(2):71-6. Erratum in: Braz J Cardiovasc Surg. 2017;32(5):442. doi:10.21470/1678-9741-2017-0053.
https://doi.org/10.21470/1678-9741-2017-...
].

Approximately 10.2% to 27.3% of CABG patients present at least one complication, 70.6% after valve surgery, and 84.2% after combined surgery (CABG + valve surgery)[55 Chen X, Hou L, Zhang Y, Liu X, Shao B, Yuan B, et al. The effects of five days of intensive preoperative inspiratory muscle training on postoperative complications and outcome in patients having cardiac surgery: a randomized controlled trial. Clin Rehabil. 2019;33(5):913-22. doi:10.1177/0269215519828212.
https://doi.org/10.1177/0269215519828212...
,66 Patra C, Chamaiah Gatti P, Panigrahi A. Morbidity After cardiac surgery under cardiopulmonary bypass and associated factors: a retrospective observational study. Indian Heart J. 2019;71(4):350-5. doi:10.1016/j.ihj.2019.07.004.
https://doi.org/10.1016/j.ihj.2019.07.00...
]. Regarding the complications, 2.2% are major adverse cardiovascular events[77 Akintoye E, Sellke F, Marchioli R, Tavazzi L, Mozaffarian D. Factors associated with postoperative atrial fibrillation and other adverse events after cardiac surgery. J Thorac Cardiovasc Surg. 2018;155(1):242-51.e10. doi:10.1016/j.jtcvs.2017.07.063.
https://doi.org/10.1016/j.jtcvs.2017.07....
], 7.5% are reintubated during the intensive care unit (ICU) stay, which increases the rate of complications[88 Taboada M, Rey R, Martínez S, Soto-Jove R, Mirón P, Selas S, et al. Reintubation in the ICU following cardiac surgery: is it more difficult than first-time intubation in the operating room?: a prospective observational study. Eur J Anaesthesiol. 2020;37(1):25-30. doi:10.1097/EJA.0000000000001019.
https://doi.org/10.1097/EJA.000000000000...
], 23.2% remain hospitalized in an ICU for more than two days after surgery, and 59.7% remain hospitalized for more than seven days[66 Patra C, Chamaiah Gatti P, Panigrahi A. Morbidity After cardiac surgery under cardiopulmonary bypass and associated factors: a retrospective observational study. Indian Heart J. 2019;71(4):350-5. doi:10.1016/j.ihj.2019.07.004.
https://doi.org/10.1016/j.ihj.2019.07.00...
]. It seems that when the complication rate increases, hospital LOS and mortality also increase (12% in the ICU and 15.1% in the 30-day period), mainly in older adults[55 Chen X, Hou L, Zhang Y, Liu X, Shao B, Yuan B, et al. The effects of five days of intensive preoperative inspiratory muscle training on postoperative complications and outcome in patients having cardiac surgery: a randomized controlled trial. Clin Rehabil. 2019;33(5):913-22. doi:10.1177/0269215519828212.
https://doi.org/10.1177/0269215519828212...
,99 Curiel-Balsera E, Mora-Ordoñez JM, Castillo-Lorente E, Benitez-Parejo J, Herruzo-Avilés A, Ravina-Sanz JJ, et al. Mortality and complications in elderly patients undergoing cardiac surgery. J Crit Care. 2013;28(4):397-404. doi:10.1016/j.jcrc.2012.12.011.
https://doi.org/10.1016/j.jcrc.2012.12.0...
].

Among the prophylactic strategies to decrease these rates of negative outcomes, respiratory care seems to reduce pulmonary complications and minimize postoperative pulmonary dysfunction[1010 Ball L, Costantino F, Pelosi P. Postoperative complications of patients undergoing cardiac surgery. Curr Opin Crit Care. 2016;22(4):386-92. doi:10.1097/MCC.0000000000000319.
https://doi.org/10.1097/MCC.000000000000...
]. As one of the respiratory care techniques, incentive spirometry (IS) is a low-cost, widespread, respiratory exercise technique, used for the prevention and treatment of postoperative pulmonary complications (PPC) in patients undergoing cardiac surgery[1111 Overend TJ, Anderson CM, Lucy SD, Bhatia C, Jonsson BI, Timmermans C. The effect of incentive spirometry on postoperative pulmonary complications: a systematic review. Chest. 2001;120(3):971-8. doi:10.1378/chest.120.3.971.
https://doi.org/10.1378/chest.120.3.971....
]. IS is a device that provides visual feedback when the patient inhales at a predetermined flow or volume. The patient is required to place the lips firmly around the mouthpiece and to inhale slowly to raise the ball (flow-oriented) or piston/plate (volume-oriented) in the chamber toward the defined target[1212 Restrepo RD, Wettstein R, Wittnebel L, Tracy M. Incentive spirometry: 2011. Respir Care. 2011;56(10):1600-4. doi:10.4187/respcare.01471.
https://doi.org/10.4187/respcare.01471....
].

It has been suggested that patients undergoing cardiac surgery who are more adherent to IS therapy may benefit from a reduced LOS and a reduction in the mortality rate[1313 Eltorai AEM, Baird GL, Eltorai AS, Healey TT, Agarwal S, Ventetuolo CE, et al. Effect of an incentive spirometer patient reminder after coronary artery bypass grafting: a randomized clinical trial. JAMA Surg. 2019;154(7):579-88. doi:10.1001/jamasurg.2019.0520.
https://doi.org/10.1001/jamasurg.2019.05...
]. On the other hand, scientific evidence has suggested that IS does not improve clinical outcomes in different surgical patients[1414 Sullivan KA, Churchill IF, Hylton DA, Hanna WC. Use of incentive spirometry in adults following cardiac, thoracic, and upper abdominal surgery to prevent post-operative pulmonary complications: a systematic review and meta-analysis. Respiration. 2021;100(11):1114-27. doi:10.1159/000517012.
https://doi.org/10.1159/000517012....
]. In order to strengthen the scientific findings, our systematic review, performed with strict methodological criteria, is intended to clarify these specific gaps, exclusively in patients undergoing cardiac surgery and assist clinicians in decision making. Our aim was to assess whether IS is superior to respiratory care, mobilization exercises, and noninvasive ventilation (NIV) on PPC, adverse events, mortality, hospital and/or ICU LOS, lung function, oxygenation, and maximal inspiratory pressure (MIP) in patients undergoing cardiac surgery.

METHODS

Design

We conducted a systematic review following the reporting recommendations proposed by the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (or PRISMA)[1515 Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097.
https://doi.org/10.1371/journal.pmed.100...
]. The protocol was registered in the International Prospective Register of Systematic Reviews (or PROSPERO) (#CRD42020161009), is available online at https://www.crd.york.ac.uk/prospero/export_record_pdf.php), and was previously published[1616 Santos EC, Pinto ACPN, Macedo JRFF, Lunardi AC. Effect of incentive spirometry after cardiac surgery: protocol for a systematic review. Fisioter Bras. 2020;21(1):117-25. doi:10.33233/fb.v21i1.3625.
https://doi.org/10.33233/fb.v21i1.3625....
].

Eligibility Criteria

Types of Studies, Participants, and Interventions

We searched for randomized and quasi-randomized controlled trials published in any year, in any language. The studies included in this review were required to have enrolled patients aged 18 years or older, who were breathing spontaneously, undergoing cardiac surgeries, and which evaluated the effects of postoperative flow or volume-oriented IS on our pre-defined clinical outcomes. The treatment comparison was made with standard care, such as respiratory care (maximal inspiratory breathing exercises, coughing and deep breathing, supported/assisted coughing, huffing technique, diaphragmatic breathing, fractional inspiration, active cycle of breathing, and autogenic drainage), NIV, and other therapies (mobilization exercise, blow bottles, and verbal encouragement). The mobilization exercises considered in this review were early mobilization programs, active/passive exercises of upper/lower limbs, and physical therapy.

The controlled trials had to have evaluated at least one of the following outcomes:

Primary Outcomes

  • PPC: For this systematic review, atelectasis and pneumonia were considered.

  • Adverse events: Any reaction, harm, or complication associated with IS reported in the included studies.

  • Mortality: All reported deaths were accepted, regardless of cause.

Secondary Outcomes

  • LOS: The number of days spent in hospital after cardiac surgical procedure.

  • Length of ICU stay: The number of days spent in the ICU after cardiac surgical procedure.

  • Lung function: Variables evaluated were peak of expiratory flow (PEF), forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and vital capacity (VC).

  • Oxygenation: Arterial partial pressure of oxygen (PaO2) and peripheral and central arterial oxygen saturation (SO2) were accepted.

  • MIP (cmH2O): MIP measured with digital or analog manovacuometer or manometer was accepted.

Database and Search Strategy

The search strategy was sensitive (Supplement 1 Supplement 1 Search strategy 14.08.2020 Medical Literature Analysis and Retrieval System Online (or MEDLINE®) via PubMed® - 175 results #1 ("Cardiac Surgical Procedures"[Mesh]) OR "Heart Surg*" OR "Cardiac Surg*" OR "Cardiovascular Surg*" OR ("Coronary Artery Bypass"[Mesh]) OR (Coronary Artery Bypass Grafting) OR CABG OR (Heart Bypass) OR (Coronary Bypass) OR (Aortocoronary Bypass) OR ("Myocardial Revascularization"[Mesh]) OR (Transmyocardial Revascularization) OR (Heart Myectomy) OR (Heart Myotomy) OR ("Cardiopulmonary Bypass"[Mesh]) OR (Heart-Lung Bypass) OR (Cardiology Robotic Surgery) OR ("Angioplasty"[Mesh]) OR ("Balloon Valvuloplasty"[Mesh]) OR (Valve Repair) OR (Valvular Surgery) OR (Valve Surgery) OR ("Cardiac Valve Annuloplasty"[Mesh]) OR Annuloplasty OR (Cardiac Valve Annulus Repair) OR (Heart Valve Annulus Repair) OR (Cardiac Valve Annular Reduction) OR (Cardiac Valve Annulus Shortening) OR (Cardiac Valve Annulus Reduction) OR (Valve Replacement) OR ("Transcatheter Aortic Valve Replacement"[Mesh]) OR TAVR OR ("Heart Valve Prosthesis Implantation"[Mesh]) OR (Insertion of Pacemaker) OR (Insertion of implantable cardioverter defibrillator) OR (Maze Surgery) OR (Aortic Aneurysm Repair) OR (Aortic Surgery) OR ("Heart Transplantation"[Mesh]) OR "Heart Transplant*" OR (Heart Grafting) OR "Cardiac Transplant*" OR (Insertion of Ventricular Assist Device) OR (VAD Surgery) OR (Insertion of Total Artificial Heart) OR ("Thoracic Surgery"[Mesh]) OR ("Thoracic Surgical Procedures"[Mesh]) OR "Thoracic Surg*" OR (Arrhythmia Surgery) OR (Left Ventricular Remodeling) OR (Surgical Ventricular Restoration) OR (Atrial Fibrillation Ablation) OR (Atrial Fibrillation Surgery) OR (Hypertrophic Cardiomyopathy Surgery) OR (Thoracoscopic Surgical Procedures) OR (Thoracoscopic Surgeries) OR ("Thoracotomy"[Mesh]) OR Thoracotomies OR Thoracostomy OR ("Thoracic Surgery, Video-Assisted"[Mesh]) OR (Video-Assisted Thoracic Surgery) OR VATS #2 ("Breathing Exercises"[Mesh]) OR "Incentive Spiromet*" OR (Flow-Incentive Spirometer) OR Triflo OR Triflow OR Voldyne OR respiron #3 ((((clinical[Title/Abstract] AND trial[Title/Abstract]) OR clinical trials as topic[MeSH Terms] OR clinical trial[Publication Type] OR random*[Title/Abstract] OR random allocation[MeSH Terms] OR therapeutic use[MeSH Subheading]))) #4 #1 AND #2 AND #3 Embase® via Elsevier - 304 results #1 'heart surgery'/exp OR 'heart surg*' OR 'cardiac surg*' OR 'cardiosurgery' OR 'heart operation' OR 'myocardial resection' OR 'surgery, heart' OR 'open heart surgery'/exp OR 'intracardiac surgery' OR 'minimally invasive cardiac surgery'/exp OR 'coronary artery bypass graft'/exp OR 'coronary artery bypass' OR 'aorta coronary artery bypass' OR 'aorta coronary bypass' OR 'aorta coronary vein bypass' OR 'aorta coronary vein shunt' OR 'aortic coronary artery bypass' OR 'aortic coronary bypass' OR 'aorticocoronary anastomosis' OR 'aorto coronary artery bypass' OR 'aorto coronary bypass' OR 'aorto coronary vein bypass' OR 'aortocoronary anastomosis' OR 'aortocoronary artery bypass' OR 'aortocoronary artery bypass' OR 'aortocoronary bypass' OR 'aortocoronary shunt' OR 'aortocoronary vein bypass' OR 'aortocoronary venous bypass' OR 'coronary artery graft' OR 'coronary bypass' OR 'coronary vein bypass' OR 'coronary venous bypass' OR 'heart muscle revascularization'/exp OR 'heart muscle revascularization' OR 'heart muscle revascularisation' OR 'anastomosis, internal mammary artery' OR 'artery implantation, mammary' OR 'implantation, internal mammary artery' OR 'internal mammary arterial anastomosis' OR 'internal mammary arterial implantation' OR 'internal mammary artery anastomosis' OR 'internal mammary artery graft' OR 'internal mammary artery implant' OR 'internal mammary artery implantation' OR 'internal mammary artery reimplantation' OR 'internal mammary-coronary artery anastomosis' OR 'mammary arterial implantation' OR 'mammary artery implantation' OR 'cardiac muscle revascularisation' OR 'cardiac muscle revascularization' OR 'myocardium revascularization' OR 'myocardium revascularisation' OR 'coronary revascularisation' OR 'coronary revascularization' OR 'heart revascularisation' OR 'heart revascularization' OR 'myocardial revascularisation' OR 'myocardial revascularization' OR 'revascularisation, transmyocardial laser' OR 'revascularization, transmyocardial laser' OR 'transmyocardial laser revascularisation' OR 'transmyocardial laser revascularization' OR 'vineberg operation' OR 'cardiopulmonary bypass'/exp OR 'cardiopulmonary bypass' OR 'atriopulmonary shunt' OR 'bypass, cardiopulmonary' OR 'cardiopulmonary shunt' OR 'heart lung bypass' OR 'angioplasty'/exp OR 'angioplasty' OR 'transluminal coronary angioplasty'/exp OR 'coronary artery dilatation, transluminal' OR p.t.c.a. OR ptca OR 'transluminal valvuloplasty'/exp OR 'transluminal valvuloplasty' OR 'balloon valvotomy' OR valvuloplasty OR valvulotomy OR 'valve repair' OR valvotomy OR valvulotomy OR 'annuloplasty'/exp OR annuloplasty OR 'heart valve replacement'/exp OR 'valve replacement' OR 'valvular replacement' OR 'valve implantation' OR 'valve prosthesis implantation' OR 'valvular replacement' OR 'transcatheter aortic valve implantation'/exp OR TAVI OR 'pacemaker implantation'/exp OR 'pacemaker implantation' OR 'artificial heart pacemaker implantation' OR 'heart pacemaker implantation' OR 'maze procedure'/exp OR 'maze procedure' OR 'Cox maze operation' OR 'Cox maze procedure' OR 'Cox maze surgery' OR 'Cox-maze ablation' OR 'Cox-maze technique' OR 'maze ablation' OR 'maze operation' OR 'maze surgery' OR 'maze technique' OR 'surgical Cox-maze procedure' OR 'surgical maze' OR 'aortic aneurysm surgery'/exp OR 'aortic aneurysm surgery' OR 'aortic surgery'/exp OR 'aortic surgery' OR 'aorta surgery' OR 'aortopexy' OR 'surgery, aorta' OR 'heart transplantation'/exp OR 'heart transplant*' OR 'cardiac transplant*' OR 'heart allograft' OR 'heart allotransplantation' OR 'heart heterograft' OR 'transplant, heart' OR 'heart heterotransplantation' OR 'heart homograft' OR 'heart homotransplantation' OR 'heart orthotopic transplantation' OR 'heart tissue transplantation' OR 'heart ventricle transplantation' OR 'heart graft'/exp OR 'heart graft' OR 'cardiac graft' OR 'graft, heart' OR 'Ventricular Assist Device Surg*' OR 'Insertion of Total Artificial Heart' OR 'thorax surgery'/exp OR 'thorax surg*' OR 'cardiothoracic surg*' OR 'chest surg*' OR 'chest wall surg*' OR 'surgery, chest' OR 'surgery, thoracic' OR 'surgery, thorax' OR 'thoracic operation' OR 'thoracic surg*' OR 'left ventricular remodeling'/exp OR 'left ventricular remodeling' OR 'surgical ventricular restoration'/exp OR 'surgical ventricular restoration' OR 'atrial fibrillation ablation'/exp OR 'atrial fibrillation ablation' OR 'thoracoscopic surgery'/exp OR 'thoracoscopic surg*' OR 'thoracotomy'/exp OR thoracotomy OR 'video assisted thoracoscopic surgery'/exp OR 'video assisted thoracoscopic surg*' #2 'breathing exercise'/exp OR 'breathing exercise' OR 'incentive spirometry'/exp OR 'incentive spiromet*' OR 'incentive spirometer'/exp OR 'Respiflo 5000' OR Coach OR Triflo OR Triflow OR Voldyne OR respiron #3 'crossover procedure':de OR 'double-blind procedure':de OR 'randomized controlled trial':de OR 'single-blind procedure':de OR (random* OR factorial* OR crossover* OR cross NEXT/1 over* OR placebo* OR doubl* NEAR/1 blind* OR singl* NEAR/1 blind* OR assign* OR allocat* OR volunteer*):de,ab,ti #4 #1 AND #2 AND #3 Cochrane Central Register of Controlled Trials (or CENTRAL) via Cochrane Library - 136 results #1 MeSH descriptor: [Cardiac Surgical Procedures] explode all trees #2 MeSH descriptor: [Coronary Artery Bypass] explode all trees #3 MeSH descriptor: [Myocardial Revascularization] explode all trees #4 MeSH descriptor: [Cardiopulmonary Bypass] explode all trees #5 MeSH descriptor: [Angioplasty] explode all trees #6 MeSH descriptor: [Balloon Valvuloplasty] explode all trees #7 MeSH descriptor: [Cardiac Valve Annuloplasty] explode all trees #8 MeSH descriptor: [Transcatheter Aortic Valve Replacement] explode all trees #9 MeSH descriptor: [Heart Valve Prosthesis Implantation] explode all trees #10 MeSH descriptor: [Heart Transplantation] explode all trees #11 MeSH descriptor: [Thoracic Surgical Procedures] explode all trees #12 MeSH descriptor: [Thoracotomy] explode all trees #13 MeSH descriptor: [Thoracic Surgery, Video-Assisted] explode all trees #14 MeSH descriptor: [Thoracic Surgery] explode all trees #15 "Heart Surg*" OR "Cardiac Surg*" OR "Cardiovascular Surg*" OR (Coronary Artery Bypass Grafting) OR CABG OR (Heart Bypass) OR (Coronary Bypass) OR (Aortocoronary Bypass) OR (Myocardial Revascularization) OR (Transmyocardial Revascularization) OR (Heart Myectomy) OR (Heart Myotomy) OR (Heart-Lung Bypass) OR (Cardiology Robotic Surgery) OR (Valve Repair) OR (Valvular Surgery) OR (Valve Surgery) OR Annuloplasty OR (Cardiac Valve Annulus Repair) OR (Heart Valve Annulus Repair) OR (Cardiac Valve Annular Reduction) OR (Cardiac Valve Annulus Shortening) OR (Cardiac Valve Annulus Reduction) OR (Valve Replacement) OR TAVR OR (Insertion of Pacemaker) OR (Insertion of implantable cardioverter defibrillator) OR (Maze Surgery) OR (Aortic Aneurysm Repair) OR (Aortic Surgery) OR "Heart Transplant*" OR (Heart Grafting) OR "Cardiac Transplant*" OR (Insertion of Ventricular Assist Device) OR (VAD Surgery) OR (Insertion of Total Artificial Heart) OR "Thoracic Surg*" OR (Arrhythmia Surgery) OR (Left Ventricular Remodeling) OR (Surgical Ventricular Restoration) OR (Atrial Fibrillation Ablation) OR (Atrial Fibrillation Surgery) OR (Hypertrophic Cardiomyopathy Surgery) OR (Thoracoscopic Surgical Procedures) OR (Thoracoscopic Surgeries) OR Thoracotomies OR Thoracostomy OR (Video-Assisted Thoracic Surgery) OR VATS #16 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 #17 MeSH descriptor: [Breathing Exercises] explode all trees #18 Incentive Spirometr* OR (Flow-Incentive Spirometer) OR Coach OR Triflo OR Triflow OR Voldyne OR respiron #19 #17 OR #18 #20 #16 AND #19 Latin American and Caribbean Health Sciences Literature (LILACS) via Virtual Health Library Regional Portal - 46 results #1 MH:"Procedimentos Cirúrgicos Cardíacos" OR (Cardiac Surgical Procedures) OR (Procedimientos Quirúrgicos Cardíacos) OR MH:E04.100.376$ OR MH:E04.928.220$ OR MH:"Ponte de Artéria Coronária" OR (Coronary Artery Bypass) OR (Puente de Arteria Coronaria) OR (Derivação da Artéria Coronária) OR (Ponte Aortocoronária) OR MH:E04.100.376.719.332$ OR MH:E04.100.814.868.750$ OR MH:E04.928.220.520.220$ OR MH:"Ponte Cardiopulmonar" OR (Cardiopulmonary Bypass) OR (Puente Cardiopulmonar) OR (Circuito Cardiopulmonar) OR (Derivação Cardiopulmonar) OR (Ponte Coração-Pulmão) OR MH:E04.292.413$ OR MH:Angioplastia OR Angioplasty OR MH:E02.148.050 OR MH:E04.100.814.529.124$ OR MH:E04.502.382.124$ OR MH:E05.157.016$ OR MH:"Valvuloplastia com Balão" OR Valvuloplasty OR Valvuloplastia OR MH:E02.148.108$ OR MH:E05.157.125$ OR MH:"Anuloplastia da Valva Cardíaca" OR (Cardiac Valve Annuloplasty) OR (Anuloplastia de la Válvula Cardíaca) OR (Anuloplastia Valvar Cardíaca) OR (Anuloplastia da Válvula Cardíaca) OR MH:E04.100.376.062$ OR MH:E04.928.220.109$ OR MH:"Substituição da Valva Aórtica Transcateter" OR (Transcatheter Aortic Valve Replacement) OR (Reemplazo de la Válvula Aórtica Transcatéter) OR MH:E04.100.376.485.500$ OR MH:E04.650.410.500$ OR MH:E04.928.220.410.500$ OR MH:"Implante de Prótese de Valva Cardíaca" OR (Heart Valve Prosthesis Implantation) OR (Implantación de Prótesis de Válvulas Cardíacas) OR (Implantação de Prótese Valvar Cardíaca) OR (Implantação de Prótese de Valva) OR (Implantação de Prótese de Valva Cardíaca) OR (Implante de Prótese Valvar Cardíaca) OR (Implante de Prótese de Valva) OR MH:E04.100.376.485$ OR MH:E04.650.410$ OR MH:E04.928.220.410$ OR MH:"Transplante de Coração" OR (Heart Transplantation) OR (Trasplante de Corazón) OR (Enxerto Cardíaco) OR (Enxerto de Coração) OR (Transplantação Cardíaco) OR (Transplantação de Coração) OR (Transplante Cardíaco) OR MH:E04.100.376.475$ OR MH:E04.928.220.390$ OR MH:E04.936.450.475$ OR MH:"Procedimentos Cirúrgicos Torácicos" OR (Thoracic Surgical Procedures) OR (Procedimientos Quirúrgicos Torácicos) MH:E04.928$ OR MH:Toracotomia OR Thoracotomy OR Toracotomía OR MH:E04.928.760$ OR MH:"Cirurgia Torácica Vídeoassistida" OR MH:"Thoracic Surgery, Video-Assisted" OR (Cirugía Torácica Asistida por Video) OR CTVA OR VATS OR MH:E01.370.388.250.840.830$ OR MH:E01.370.388.250.950.830$ OR MH:E04.502.250.840.830$ OR MH:E04.502.250.950.830$ OR MH:E04.928.752.830$ #2 MH:"Exercícios Respiratórios" OR (Breathing Exercises) OR (Ejercicios Respiratorios) OR (Exercício Respiratório) OR (Exercícios para os Músculos Respiratórios) OR MH:E02.190.525.186$ OR MH:E02.779.474.124$ OR (Espirometria de incentivo) OR Voldyne OR Triflo OR Triflow Filter: LILACS PEDro - 1st search - 47 results / 2nd search - 81 results #1 Heart Surg* / Subdiscipline: Cardiothoracics / Therapy: Respiratory Therapy / Method: Clinical trial #2 Cardiac Surg* / Subdiscipline: Cardiothoracics / Therapy: Respiratory Therapy / Method: Clinical trial Cumulative Index of Nursing and Allied Health (or CINAHL®) via EBSCO - 80 results S1 (MM "Surgery, Cardiovascular+") OR (MM "Thoracic Surgery, Video-Assisted") OR (MM "Thoracic Surgery+") OR (MM "Coronary Artery Bypass+") OR (MM "Myocardial Revascularization+") OR (MM "Angioplasty, Transluminal, Percutaneous Coronary") OR (MM "Cardiopulmonary Bypass") OR (MM "Angioplasty+") OR (MM "Angioplasty, Balloon, Laser-Assisted") OR (MM "Angioplasty, Balloon+") OR (MM "Angioplasty, Laser+") OR (MM "Percutaneous Coronary Intervention") OR (MM "Balloon Dilatation+") OR (MM "Cardiac Valve Annuloplasty+") OR (MM "Mitral Valve Annuloplasty") OR (MM "Transcatheter Aortic Valve Implantation") OR (MM "Heart Valve Prosthesis") OR (MM "Heart Transplantation+") OR (MM "Heart-Lung Transplantation") OR (MM "Thoracotomy") OR (MM "Thoracostomy+") S2 "Heart Surg*" OR "Cardiac Surg*" OR "Cardiovascular Surg*" OR (Coronary Artery Bypass Grafting) OR CABG OR (Heart Bypass) OR (Coronary Bypass) OR (Aortocoronary Bypass) OR (Myocardial Revascularization) OR (Transmyocardial Revascularization) OR (Heart Myectomy) OR (Heart Myotomy) OR (Heart-Lung Bypass) OR (Cardiology Robotic Surgery) OR (Valve Repair) OR (Valvular Surgery) OR (Valve Surgery) OR Annuloplasty OR (Cardiac Valve Annulus Repair) OR (Heart Valve Annulus Repair) OR (Cardiac Valve Annular Reduction) OR (Cardiac Valve Annulus Shortening) OR (Cardiac Valve Annulus Reduction) OR (Valve Replacement) OR TAVR OR (Insertion of Pacemaker) OR (Insertion of implantable cardioverter defibrillator) OR (Maze Surgery) OR (Aortic Aneurysm Repair) OR (Aortic Surgery) OR "Heart Transplant*" OR (Heart Grafting) OR "Cardiac Transplant*" OR (Insertion of Ventricular Assist Device) OR (VAD Surgery) OR (Insertion of Total Artificial Heart) OR "Thoracic Surg*" OR (Arrhythmia Surgery) OR (Left Ventricular Remodeling) OR (Surgical Ventricular Restoration) OR (Atrial Fibrillation Ablation) OR (Atrial Fibrillation Surgery) OR (Hypertrophic Cardiomyopathy Surgery) OR (Thoracoscopic Surgical Procedures) OR (Thoracoscopic Surgeries) OR Thoracotomies OR Thoracostomy OR (Video-Assisted Thoracic Surgery) OR VATS S3 S1 OR S2 S4 (MM "Breathing Exercises+") S5 "Incentive Spiromet*" OR (Flow-Incentive Spirometer) OR Triflo OR Triflow OR Voldyne OR respiron S6 S4 OR S5 S7 S3 AND S6 S8 TX allocat* random* OR (MH "Quantitative Studies") OR (MH "Placebos") OR TX placebo* OR TX random* allocat* OR (MH "Random Assignment") OR TX randomi* control* trial* OR TX ((singl* n1 blind*) OR (singl* n1 mask*) ) OR TX ( (doubl* n1 blind*) OR (doubl* n1 mask*) ) OR TX ( (tripl* n1 blind*) OR (tripl* n1 mask*) ) OR TX ( (trebl* n1 blind*) OR (trebl* n1 mask*) ) OR TX clinic* n1 trial* OR PT Clinical trial OR (MH "Clinical Trials+") S9 S7 AND S9 Scopus® via Elsevier - 810 results #1 TITLE-ABS-KEY("Cardiac Surgi*" OR "Coronary Artery Bypass" "Myocardial Revascularization" OR "Cardiopulmonary Bypass" OR Angioplasty "Balloon Valvuloplasty" OR "Cardiac Valve Annuloplasty" OR "Transcatheter Aortic Valve Replacement" "Heart Valve Prosthesis Implantation" OR "Heart Transplant*" OR "Thoracic Surg*") #2 "Heart Surg*" OR "Cardiac Surg*" OR "Cardiovascular Surg*" OR "Coronary Artery Bypass Graf*" OR CABG OR "Heart Bypass" OR "Coronary Bypass" OR "Aortocoronary Bypass" OR "Myocardial Revascularization" OR "Transmyocardial Revascularization" OR "Heart Myectomy" OR "Heart Myotomy" OR "Heart-Lung Bypass" OR "Cardiology Robotic Surg*" OR "Valve Repair" OR "Valvular Surg*" OR "Valve Surg*" OR Annuloplasty OR "Cardiac Valve Annulus Repair" OR "Heart Valve Annulus Repair" OR "Cardiac Valve Annular Reduction" OR "Cardiac Valve Annulus Shortening" OR "Cardiac Valve Annulus Reduction" OR "Valve Replacement" OR TAVR OR "Insertion of Pacemaker" OR "Insertion of implantable cardioverter defibrillator" OR "Maze Surg*" OR "Aortic Aneurysm Repair" OR "Aortic Surg*" OR "Heart Transplant*" OR "Heart Graft*" OR "Cardiac Transplant*" OR "Insertion of Ventricular Assist Device" OR "VAD Surg*" OR "Insertion of Total Artificial Heart" OR "Thoracic Surg*" OR "Arrhythmia Surg*" OR "Left Ventricular Remodeling" OR "Surgical Ventricular Restoration" OR "Atrial Fibrillation Ablation" OR "Atrial Fibrillation Surg*" OR "Hypertrophic Cardiomyopathy Surg*" OR "Thoracoscopic Surg*" OR Thoracotom* OR Thoracostomy OR "Video-Assisted Thoracic Surg*" OR VATS #3 #1 OR #2 #4 TITLE-ABS-KEY("Breathing Exercis*") #5 "Incentive Spirometr*" OR (Flow-Incentive Spirometer) OR Coach OR Triflo OR Triflow OR Voldyne OR respiron #6 #4 OR #5 #7 #3 AND #6 #8 TITLE-ABS-KEY((clinic* w/1 trial*) OR (randomi* w/1 control*) OR (randomi* w/2 trial*) OR (random* w/1 assign*) OR (random* w/1 allocat*) OR (control* w/1 clinic*) OR (control* w/1 trial) OR placebo* OR (Quantitat* w/1 Stud*) OR (control* w/1 stud*) OR (randomi* w/1 stud*) OR (singl* w/1 blind*) OR (singl* w/1 mask*) OR (doubl* w/1 blind*) OR (doubl* w/1 mask*) OR (tripl* w/1 blind*) OR (tripl* w/1 mask*) OR (trebl* w/1 blind*) OR (trebl* w/1 mask*)) AND NOT (SRCTYPE(b) OR SRCTYPE(k) OR SRCTYPE(p) OR SRCTYPE(r) OR SRCTYPE(d) OR DOCTYPE(ab) OR DOCTYPE(bk) OR DOCTYPE(ch) OR DOCTYPE(bz) OR DOCTYPE(cr) OR DOCTYPE(ed) OR DOCTYPE(er) OR DOCTYPE(le) OR DOCTYPE(no) OR DOCTYPE(pr) OR DOCTYPE(rp) OR DOCTYPE(re) OR DOCTYPE(sh)) #9 #7 AND #8 SciELO - 1st search - 3 results / 2nd search - 4 results #1 (Heart Surg*) AND (Incentive Spiromet*) #2 (Cardiac Surg*) AND (Incentive Spiromet*) OpenGrey Database - 0 results Incentive Spiromet* ClinicalTrials.gov - 6 results Condition: (Cardiac Surg*) OR (Heart Surg*) OR (Thoracic Surg*) Other terms: (Breathing Exercis*) OR (Incentive Spiromet*) OR (Flow-Incentive Spirometer) OR Triflo OR Triflow OR Voldyne OR respiron clinicaltrialsregister.eu - 0 results #1 Incentive Spiromet* Rebec - 0 results #1 Cardiac Surg* #2 Heart Surg* World Health Organization International Clinical Trials Registry Platform - No access at the time of search. #1 (Heart Surg*) AND (Incentive Spiromet*) #2 (Cardiac Surg*) AND (Incentive Spiromet*) ) to capture all potentially qualifying studies through the Medical Literature Analysis and Retrieval System Online (or MEDLINE®), Embase®, Cochrane Central Register of Controlled Trials (or CENTRAL), Physiotherapy Evidence Database (PEDro), Cumulative Index of Nursing and Allied Health (or CINAHL®), Latin American and Caribbean Health Sciences Literature (or LILACS), Scientific Electronic Library Online (or SciELO), and Scopus® databases, as well as in the OpenGrey database, the main clinical trial registration sites, conferences, congresses, and symposiums in the area described in the protocol[1616 Santos EC, Pinto ACPN, Macedo JRFF, Lunardi AC. Effect of incentive spirometry after cardiac surgery: protocol for a systematic review. Fisioter Bras. 2020;21(1):117-25. doi:10.33233/fb.v21i1.3625.
https://doi.org/10.33233/fb.v21i1.3625....
]. When necessary, we contacted the authors of the clinical trials to request additional data. The snowball technique, which consists of searching the reference lists of the included studies, was used to optimize the search. The search was performed on July 22 and 24, 2022.

Study Selection and Data Extraction

Two authors independently selected the studies identified by the search strategy based on eligibility criteria. Duplicate publications were excluded, after which the authors selected the studies by titles and abstracts. Non-randomized trials and studies lacking predefined outcomes were excluded. In some cases, it was necessary to read the full texts. Where reports with the same participants but different outcome measurements or using different time points for the assessments were found, both reports were included. However, the two reports were considered as parts of only one study.

The Rayyan app was used to optimize the process of screening and selecting the studies[1717 Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210. doi:10.1186/s13643-016-0384-4.
https://doi.org/10.1186/s13643-016-0384-...
]. Disagreements between authors regarding the inclusion of the study were resolved by a third author. Two authors extracted data independently, and disagreements were also resolved by a third author.

Methodological Rigor of Included Studies and Certainty of Evidence

We assessed the methodological characteristics of the trials using the PEDro scale[1818 Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713-21.]. We used PEDro scores available at https://pedro.org.au/. Where PEDro scores were not available, two previously trained authors evaluated the clinical trials using the PEDro scale. The PEDro methodological rigor scale ranges between 1 and 10, with higher scores indicating higher quality studies. The studies are classified according to the scores as follows: < 4 are considered “poor”, 4 to 5 are considered “fair”, 6 to 8 are considered “good”, and 9 to 10 are considered “excellent”[1919 Gonzalez GZ, Moseley AM, Maher CG, Nascimento DP, Costa LDCM, Costa LO. Methodologic quality and statistical reporting of physical therapy randomized controlled trials relevant to musculoskeletal conditions. Arch Phys Med Rehabil. 2018;99(1):129-36. doi:10.1016/j.apmr.2017.08.485.
https://doi.org/10.1016/j.apmr.2017.08.4...
]. We assessed the certainty of evidence using the Classification of Recommendations, Assessment, Development and Evaluation (GRADE)[2020 Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490. doi:10.1136/bmj.328.7454.1490.
https://doi.org/10.1136/bmj.328.7454.149...
], through the software GRADEpro in the main outcomes[2121 GRADEpro GDT: GRADEpro Guideline Development Tool [Software]. McMaster University, 2020 (developed by Evidence Prime, Inc.). Available from gradepro.org.].

Data Analysis

When at least two studies were sufficiently homogeneous in terms of participants, interventions, and outcome measures, we pooled their results in a meta-analysis. Meta-analyses were performed using an inverse variance method and random effects model in Review Manager version 5.3 (The Nordic Cochrane Center, Copenhagen, Denmark)[2222 Review Manager 5 (RevMan 5) [Computer program]. Version 5.3. Copenhagen: Nordic Cochrane Centre, Cochrane, 2014.]. Continuous variables were analyzed using the weighted mean differences (MD) and for studies that evaluated the same outcome with different instruments, we used the standardized mean differences (SMD) with 95% confidence interval (CI)[2323 Murad MH, Wang Z, Chu H, Lin L. When continuous outcomes are measured using different scales: guide for meta-analysis and interpretation. BMJ. 2019;364:k4817. doi:10.1136/bmj.k4817.
https://doi.org/10.1136/bmj.k4817....
]. Dichotomous variables were analyzed using risk ratios (RR) with 95% CI.

Trials were pooled according to similarity of intervention, populations, and the outcomes measured. Separate meta-analyses were conducted to examine the effects of IS in the following comparisons:

  • IS vs. respiratory care.

  • IS vs. NIV.

  • IS vs. other therapies.

In case of trials that examined the effects of multiple interventions that were of interest for this review, to avoid double counting the participants, we included two reasonably independent comparisons. However, we split the “shared” group sample size (respiratory care) into two smaller sample sizes. For example, Stock et al. (1984)[2424 Stock MC, Downs JB, Cooper RB, Lebenson IM, Cleveland J, Weaver DE, et al. Comparison of continuous positive airway pressure, incentive spirometry, and conservative therapy after cardiac operations. Crit Care Med. 1984;12(11):969-72. doi:10.1097/00003246-198411000-00010.
https://doi.org/10.1097/00003246-1984110...
] had three groups in its clinical trial: intervention group (with 12 participants), control group 1 (with 13 participants), and control group 2 (with 13 participants). In this situation, the analysis was performed twice; in the first analysis, the intervention group (with six participants [half the original sample size]) was analyzed vs. control group 1. In the second analysis, the intervention group (with six participants [half the original sample size]) was compared with control group 2.

Therefore, in the included clinical trials with three comparison groups (flow-IS group vs. volume-IS vs. respiratory care), and where data were analyzed twice in our study, we initially identified the name of the main author, and then the year of publication, followed by the letter “a” (Amin et al 2021a: flow-IS group vs. respiratory care) and in the second mention, we identified the name of the main author, and then the year of publication, followed by the letter “b” (Amin et al 2021b: volume-IS group vs. second standard care)[2525 Higgins JPT, Eldridge S, Li T (editors). Chapter 23: Including variants on randomized trials. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021).].

Assessment of Heterogeneity

As planned, where appropriate data were available, we carried out subgroup analyses so as to investigate the influence of each comparison on the size of the treatment. Among the preplanned subgroup analyses, it was possible to perform subgroup analyses considering the type of device used (flow-oriented or volume-oriented) in the main comparisons (IS vs. respiratory care; IS vs. NIV; and IS vs. other therapies).

To estimate the heterogeneity across the studies in each meta-analysis, the I2 statistic was used. As suggested in the Cochrane Handbook for Systematic Reviews of Interventions, if heterogeneity was substantial (I2 ≥ 50%), a sensitivity analysis was considered[2626 Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. Chichester UK: The Cochrane Collaboration and John Wiley & Sons Ltd., 2019. 703 p.]. Although we intended to perform separate analyses for studies with no blinding or deficiency in blinding of outcome assessors, with inappropriate randomization methods, with a large number (> 20%) of patients lost to follow-up, with imputation of standard deviation, or when adherence was not reported, we could not perform sensitivity analyses because we did not find enough studies with appropriate blinding, randomization, or follow-up.

RESULTS

Twenty-three reports of 22 studies were included in this systematic review[2727 Iverson LI, Ecker RR, Fox HE, May IA. A comparative study of IPPB, the incentive spirometer, and blow bottles: the prevention of atelectasis following cardiac surgery. Ann Thorac Surg. 1978;25(3):197-200. doi:10.1016/s0003-4975(10)63521-7.
https://doi.org/10.1016/s0003-4975(10)63...

28 Gale GD, Sanders DE. Incentive spirometry: its value after cardiac surgery. Can Anaesth Soc J. 1980;27(5):475-80. doi:10.1007/BF03007047.
https://doi.org/10.1007/BF03007047....

29 Dull JL, Dull WL. Are maximal inspiratory breathing exercises or incentive spirometry better than early mobilization after cardiopulmonary bypass? Phys Ther. 1983;63(5):655-9. doi:10.1093/ptj/63.5.655.
https://doi.org/10.1093/ptj/63.5.655....

30 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. Physiotherapy after coronary artery surgery: are breathing exercises necessary? Thorax. 1989;44(8):634-9. doi:10.1136/thx.44.8.634.
https://doi.org/10.1136/thx.44.8.634....

31 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. A comparison of breathing exercises, incentive spirometry and mobilisation after coronary artery surgery. Physiother Theory Pract. 1990;6:117-26. doi:10.3109/09593989009037789.
https://doi.org/10.3109/0959398900903778...

32 Oikkonen M, Karjalainen K, Kähärä V, Kuosa R, Schavikin L. Comparison of incentive spirometry and intermittent positive pressure breathing after coronary artery bypass graft. Chest. 1991;99(1):60-5. doi:10.1378/chest.99.1.60.
https://doi.org/10.1378/chest.99.1.60....

33 Crowe JM, Bradley CA. The effectiveness of incentive spirometry with physical therapy for high-risk patients after coronary artery bypass surgery. Phys Ther. 1997;77(3):260-8. doi:10.1093/ptj/77.3.260.
https://doi.org/10.1093/ptj/77.3.260....

34 Savcı S, Sakınç S, İnce DI, Arikan H, Can Z, Buran Y, et al. Active cycle of breathing techniques and incentive spirometer in coronary artery bypass graft surgery. Fizyoter Rehabil. 2006;17(2):61-9.

35 Romanini W, Muller AP, Carvalho KA, Olandoski M, Faria-Neto JR, Mendes FL, et al. The effects of intermittent positive pressure and incentive spirometry in the postoperative of myocardial revascularization. Arq Bras Cardiol. 2007;89(2):94-9, 105-10. doi:10.1590/s0066-782x2007001400006.
https://doi.org/10.1590/s0066-782x200700...

36 Renault JA, Costa-Val R, Rosseti MB, Houri Neto M. Comparison between deep breathing exercises and incentive spirometry after CABG surgery. Rev Bras Cir Cardiovasc. 2009;24(2):165-72. doi:10.1590/s0102-76382009000200012.
https://doi.org/10.1590/s0102-7638200900...

37 Dias CM, Vieira Rde O, Oliveira JF, Lopes AJ, Menezes SL, Guimarães FS. Three physiotherapy protocols: effects on pulmonary volumes after cardiac surgery. J Bras Pneumol. 2011;37(1):54-60. doi:10.1590/s1806-37132011000100009.
https://doi.org/10.1590/s1806-3713201100...

38 El-Kader SMA. Blood gases response to different breathing modalities in phase I of cardiac rehabilitation program after coronary artery bypass graft. Eur J Gen Med. 2011;8(2):85-91. doi.org/10.29333/ejgm/82706.
https://doi.org/doi.org/10.29333/ejgm/82...

39 Almutairi F, Fallows S, Mason-Whitehead E. Continuous positive airway pressure (cpap) had better outcomes when compared with incentive spirometry (IS) to re-open collapse alveoli after cardiac surgery: randomized study. Am J Respir Crit Care Med. 2012;185:A4869. doi:10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4869.
https://doi.org/10.1164/ajrccm-conferenc...

40 Al-Mutairi FH, Fallows SJ, Abukhudair WA, Islam BB, Morris MM. Difference between continuous positive airway pressure via mask therapy and incentive spirometry to treat or prevent post-surgical atelectasis. Saudi Med J. 2012;33(11):1190-5.

41 Mueenudheen TP, Moiz JA, Gupta VP. A comparative study on the effects of incentive spirometry and deep breathing exercise on pulmonary functions after uncomplicated coronary artery bypass grafting surgery. Indian J Physiother Occup Ther. 2012;6(2):63-7.

42 Rizwan A, Jalwan J, Mukherjee S. To compare the immediate effect of deep breathing exercise and incentive spirometry on ABG after mitral valve replacement surgery. Indian J Physiother Occup Ther. 2012;6(4):12-7.

43 Zangerolamo TB, Barrientos TG, Baltieri L, Moreno M, Pazzianotto-Forti EM. Effects of flow-oriented incentive spirometry after myocardial revascularization. Rev Bras Cardiol. 2013;26(3):180-5.

44 Yazdannik A, Bollbanabad HM, Mirmohammadsadeghi M, Khalifezade A. The effect of incentive spirometry on arterial blood gases after coronary artery bypass surgery (CABG). Iran J Nurs Midwifery Res. 2016;21(1):89-92. doi:10.4103/1735-9066.174761.
https://doi.org/10.4103/1735-9066.174761...

45 Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
https://doi.org/10.1016/j.hlc.2019.09.00...

46 Alam M, Hussain S, Shehzad MI, Mushtaq A, Rauf A, Ishaq S. Comparing the effect of incentive spirometry with acapella on blood gases in physiotherapy after coronary artery bypass graft. Cureus. 2020;12(2):e6851. doi:10.7759/cureus.6851.
https://doi.org/10.7759/cureus.6851....

47 Amin R, Alaparthi GK, Samuel SR, Bairapareddy KC, Raghavan H, Vaishali K. Effects of three pulmonary ventilation regimes in patients undergoing coronary artery bypass graft surgery: a randomized clinical trial. Sci Rep. 2021;11(1):6730. doi:10.1038/s41598-021-86281-4.
https://doi.org/10.1038/s41598-021-86281...
-4848 Zerang F, Amouzeshi A, Barkhordari-Sharifabad M. Comparison of the effect of incentive spirometry and deep breathing exercises on hemodynamic parameters of patients undergoing coronary artery bypass graft surgery: a clinical trial. J Vasc Nurs. 2022;40(3):134-9. doi:10.1016/j.jvn.2022.08.002.
https://doi.org/10.1016/j.jvn.2022.08.00...
]. Twenty-two publications were reported in full; from one clinical trial, only the abstract was reported. One study with two publications was included in this systematic review. The reports of this study were named as Jenkins et al. (1989)[3030 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. Physiotherapy after coronary artery surgery: are breathing exercises necessary? Thorax. 1989;44(8):634-9. doi:10.1136/thx.44.8.634.
https://doi.org/10.1136/thx.44.8.634....
] and Jenkins et al. (1990)[3131 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. A comparison of breathing exercises, incentive spirometry and mobilisation after coronary artery surgery. Physiother Theory Pract. 1990;6:117-26. doi:10.3109/09593989009037789.
https://doi.org/10.3109/0959398900903778...
], however, as planned, they were considered as part of only one study. The authors of the clinical trial published in abstract format were contacted in an attempt to request additional data[3939 Almutairi F, Fallows S, Mason-Whitehead E. Continuous positive airway pressure (cpap) had better outcomes when compared with incentive spirometry (IS) to re-open collapse alveoli after cardiac surgery: randomized study. Am J Respir Crit Care Med. 2012;185:A4869. doi:10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4869.
https://doi.org/10.1164/ajrccm-conferenc...
], however, we did not receive any answers. In this case, we used the data available in the abstract. Twenty-one studies were randomized controlled trials (RCTs) and one was a quasi-randomized trial. The flow chart of this systematic review is shown in Figure 1.

Fig. 1
Flow diagram of systematic review. CENTRAL=Cochrane Central Register of Controlled Trials; CINAHL®=Cumulative Index of Nursing and Allied Health; LILACS=Latin American and Caribbean Health Sciences Literature; PEDro=Physiotherapy Evidence Database; SciELO=Scientific Electronic Library Online.

Included Studies

Overall, we included 21 randomized trials and one quasi-randomized controlled trial in this systematic review. The studies involved 1,677 patients, with ages ranging from 38.3 to 65 years[3131 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. A comparison of breathing exercises, incentive spirometry and mobilisation after coronary artery surgery. Physiother Theory Pract. 1990;6:117-26. doi:10.3109/09593989009037789.
https://doi.org/10.3109/0959398900903778...
,4545 Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
https://doi.org/10.1016/j.hlc.2019.09.00...
], sample sizes ranging from 16 to 270 participants[4343 Zangerolamo TB, Barrientos TG, Baltieri L, Moreno M, Pazzianotto-Forti EM. Effects of flow-oriented incentive spirometry after myocardial revascularization. Rev Bras Cardiol. 2013;26(3):180-5.,4646 Alam M, Hussain S, Shehzad MI, Mushtaq A, Rauf A, Ishaq S. Comparing the effect of incentive spirometry with acapella on blood gases in physiotherapy after coronary artery bypass graft. Cureus. 2020;12(2):e6851. doi:10.7759/cureus.6851.
https://doi.org/10.7759/cureus.6851....
], and study follow-up time ranging from two days to hospital discharge (Table 1)[3333 Crowe JM, Bradley CA. The effectiveness of incentive spirometry with physical therapy for high-risk patients after coronary artery bypass surgery. Phys Ther. 1997;77(3):260-8. doi:10.1093/ptj/77.3.260.
https://doi.org/10.1093/ptj/77.3.260....
,3939 Almutairi F, Fallows S, Mason-Whitehead E. Continuous positive airway pressure (cpap) had better outcomes when compared with incentive spirometry (IS) to re-open collapse alveoli after cardiac surgery: randomized study. Am J Respir Crit Care Med. 2012;185:A4869. doi:10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4869.
https://doi.org/10.1164/ajrccm-conferenc...
,4040 Al-Mutairi FH, Fallows SJ, Abukhudair WA, Islam BB, Morris MM. Difference between continuous positive airway pressure via mask therapy and incentive spirometry to treat or prevent post-surgical atelectasis. Saudi Med J. 2012;33(11):1190-5.,4242 Rizwan A, Jalwan J, Mukherjee S. To compare the immediate effect of deep breathing exercise and incentive spirometry on ABG after mitral valve replacement surgery. Indian J Physiother Occup Ther. 2012;6(4):12-7.]. Regarding the characteristics of the surgery and intervention, 74% of patients underwent CABG, 48% of patients received treatment using volume-oriented IS, 39% of patients used flow-oriented IS, and three studies did not have enough information to determine whether the type of spirometer was flowor volume-oriented (Table 2)[3939 Almutairi F, Fallows S, Mason-Whitehead E. Continuous positive airway pressure (cpap) had better outcomes when compared with incentive spirometry (IS) to re-open collapse alveoli after cardiac surgery: randomized study. Am J Respir Crit Care Med. 2012;185:A4869. doi:10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4869.
https://doi.org/10.1164/ajrccm-conferenc...
,4646 Alam M, Hussain S, Shehzad MI, Mushtaq A, Rauf A, Ishaq S. Comparing the effect of incentive spirometry with acapella on blood gases in physiotherapy after coronary artery bypass graft. Cureus. 2020;12(2):e6851. doi:10.7759/cureus.6851.
https://doi.org/10.7759/cureus.6851....
,4848 Zerang F, Amouzeshi A, Barkhordari-Sharifabad M. Comparison of the effect of incentive spirometry and deep breathing exercises on hemodynamic parameters of patients undergoing coronary artery bypass graft surgery: a clinical trial. J Vasc Nurs. 2022;40(3):134-9. doi:10.1016/j.jvn.2022.08.002.
https://doi.org/10.1016/j.jvn.2022.08.00...
]. The hospital LOS ranged from 6.5 to 12.5 days, and the length of ICU stay ranged from 2.61 to 6.87 days (Table 3). PaO2 ranged on average from 59.4 mmHg to 99 mmHg[2424 Stock MC, Downs JB, Cooper RB, Lebenson IM, Cleveland J, Weaver DE, et al. Comparison of continuous positive airway pressure, incentive spirometry, and conservative therapy after cardiac operations. Crit Care Med. 1984;12(11):969-72. doi:10.1097/00003246-198411000-00010.
https://doi.org/10.1097/00003246-1984110...
,2828 Gale GD, Sanders DE. Incentive spirometry: its value after cardiac surgery. Can Anaesth Soc J. 1980;27(5):475-80. doi:10.1007/BF03007047.
https://doi.org/10.1007/BF03007047....
], and SO2 from 79 to 97.7%[3535 Romanini W, Muller AP, Carvalho KA, Olandoski M, Faria-Neto JR, Mendes FL, et al. The effects of intermittent positive pressure and incentive spirometry in the postoperative of myocardial revascularization. Arq Bras Cardiol. 2007;89(2):94-9, 105-10. doi:10.1590/s0066-782x2007001400006.
https://doi.org/10.1590/s0066-782x200700...
,3939 Almutairi F, Fallows S, Mason-Whitehead E. Continuous positive airway pressure (cpap) had better outcomes when compared with incentive spirometry (IS) to re-open collapse alveoli after cardiac surgery: randomized study. Am J Respir Crit Care Med. 2012;185:A4869. doi:10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4869.
https://doi.org/10.1164/ajrccm-conferenc...
].

Table 1
Characteristics of the studies included in the systematic review.
Table 2
Characteristics of the surgery and intervention.
Table 3
Summary of findings for clinical outcomes.

Considering the primary outcomes analysis, among the included studies, nine clinical trials reported PPC rate[2424 Stock MC, Downs JB, Cooper RB, Lebenson IM, Cleveland J, Weaver DE, et al. Comparison of continuous positive airway pressure, incentive spirometry, and conservative therapy after cardiac operations. Crit Care Med. 1984;12(11):969-72. doi:10.1097/00003246-198411000-00010.
https://doi.org/10.1097/00003246-1984110...
,2727 Iverson LI, Ecker RR, Fox HE, May IA. A comparative study of IPPB, the incentive spirometer, and blow bottles: the prevention of atelectasis following cardiac surgery. Ann Thorac Surg. 1978;25(3):197-200. doi:10.1016/s0003-4975(10)63521-7.
https://doi.org/10.1016/s0003-4975(10)63...
,2828 Gale GD, Sanders DE. Incentive spirometry: its value after cardiac surgery. Can Anaesth Soc J. 1980;27(5):475-80. doi:10.1007/BF03007047.
https://doi.org/10.1007/BF03007047....
,3030 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. Physiotherapy after coronary artery surgery: are breathing exercises necessary? Thorax. 1989;44(8):634-9. doi:10.1136/thx.44.8.634.
https://doi.org/10.1136/thx.44.8.634....

31 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. A comparison of breathing exercises, incentive spirometry and mobilisation after coronary artery surgery. Physiother Theory Pract. 1990;6:117-26. doi:10.3109/09593989009037789.
https://doi.org/10.3109/0959398900903778...

32 Oikkonen M, Karjalainen K, Kähärä V, Kuosa R, Schavikin L. Comparison of incentive spirometry and intermittent positive pressure breathing after coronary artery bypass graft. Chest. 1991;99(1):60-5. doi:10.1378/chest.99.1.60.
https://doi.org/10.1378/chest.99.1.60....

33 Crowe JM, Bradley CA. The effectiveness of incentive spirometry with physical therapy for high-risk patients after coronary artery bypass surgery. Phys Ther. 1997;77(3):260-8. doi:10.1093/ptj/77.3.260.
https://doi.org/10.1093/ptj/77.3.260....
-3434 Savcı S, Sakınç S, İnce DI, Arikan H, Can Z, Buran Y, et al. Active cycle of breathing techniques and incentive spirometer in coronary artery bypass graft surgery. Fizyoter Rehabil. 2006;17(2):61-9.,4545 Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
https://doi.org/10.1016/j.hlc.2019.09.00...
], five reported adverse events rate[2424 Stock MC, Downs JB, Cooper RB, Lebenson IM, Cleveland J, Weaver DE, et al. Comparison of continuous positive airway pressure, incentive spirometry, and conservative therapy after cardiac operations. Crit Care Med. 1984;12(11):969-72. doi:10.1097/00003246-198411000-00010.
https://doi.org/10.1097/00003246-1984110...
,2727 Iverson LI, Ecker RR, Fox HE, May IA. A comparative study of IPPB, the incentive spirometer, and blow bottles: the prevention of atelectasis following cardiac surgery. Ann Thorac Surg. 1978;25(3):197-200. doi:10.1016/s0003-4975(10)63521-7.
https://doi.org/10.1016/s0003-4975(10)63...
,3232 Oikkonen M, Karjalainen K, Kähärä V, Kuosa R, Schavikin L. Comparison of incentive spirometry and intermittent positive pressure breathing after coronary artery bypass graft. Chest. 1991;99(1):60-5. doi:10.1378/chest.99.1.60.
https://doi.org/10.1378/chest.99.1.60....
,3737 Dias CM, Vieira Rde O, Oliveira JF, Lopes AJ, Menezes SL, Guimarães FS. Three physiotherapy protocols: effects on pulmonary volumes after cardiac surgery. J Bras Pneumol. 2011;37(1):54-60. doi:10.1590/s1806-37132011000100009.
https://doi.org/10.1590/s1806-3713201100...
,4545 Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
https://doi.org/10.1016/j.hlc.2019.09.00...
], and three reported mortality rate (Table 3)[2626 Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. Chichester UK: The Cochrane Collaboration and John Wiley & Sons Ltd., 2019. 703 p.,4040 Al-Mutairi FH, Fallows SJ, Abukhudair WA, Islam BB, Morris MM. Difference between continuous positive airway pressure via mask therapy and incentive spirometry to treat or prevent post-surgical atelectasis. Saudi Med J. 2012;33(11):1190-5.,4343 Zangerolamo TB, Barrientos TG, Baltieri L, Moreno M, Pazzianotto-Forti EM. Effects of flow-oriented incentive spirometry after myocardial revascularization. Rev Bras Cardiol. 2013;26(3):180-5.].

With respect to the secondary outcomes analysis, four trials reported LOS[3333 Crowe JM, Bradley CA. The effectiveness of incentive spirometry with physical therapy for high-risk patients after coronary artery bypass surgery. Phys Ther. 1997;77(3):260-8. doi:10.1093/ptj/77.3.260.
https://doi.org/10.1093/ptj/77.3.260....
,4040 Al-Mutairi FH, Fallows SJ, Abukhudair WA, Islam BB, Morris MM. Difference between continuous positive airway pressure via mask therapy and incentive spirometry to treat or prevent post-surgical atelectasis. Saudi Med J. 2012;33(11):1190-5.,4343 Zangerolamo TB, Barrientos TG, Baltieri L, Moreno M, Pazzianotto-Forti EM. Effects of flow-oriented incentive spirometry after myocardial revascularization. Rev Bras Cardiol. 2013;26(3):180-5.,4545 Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
https://doi.org/10.1016/j.hlc.2019.09.00...
], two reported ICU LOS[3636 Renault JA, Costa-Val R, Rosseti MB, Houri Neto M. Comparison between deep breathing exercises and incentive spirometry after CABG surgery. Rev Bras Cir Cardiovasc. 2009;24(2):165-72. doi:10.1590/s0102-76382009000200012.
https://doi.org/10.1590/s0102-7638200900...
,4343 Zangerolamo TB, Barrientos TG, Baltieri L, Moreno M, Pazzianotto-Forti EM. Effects of flow-oriented incentive spirometry after myocardial revascularization. Rev Bras Cardiol. 2013;26(3):180-5.], eight reported parameters of lung function[2424 Stock MC, Downs JB, Cooper RB, Lebenson IM, Cleveland J, Weaver DE, et al. Comparison of continuous positive airway pressure, incentive spirometry, and conservative therapy after cardiac operations. Crit Care Med. 1984;12(11):969-72. doi:10.1097/00003246-198411000-00010.
https://doi.org/10.1097/00003246-1984110...
,2929 Dull JL, Dull WL. Are maximal inspiratory breathing exercises or incentive spirometry better than early mobilization after cardiopulmonary bypass? Phys Ther. 1983;63(5):655-9. doi:10.1093/ptj/63.5.655.
https://doi.org/10.1093/ptj/63.5.655....
,3030 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. Physiotherapy after coronary artery surgery: are breathing exercises necessary? Thorax. 1989;44(8):634-9. doi:10.1136/thx.44.8.634.
https://doi.org/10.1136/thx.44.8.634....
,3333 Crowe JM, Bradley CA. The effectiveness of incentive spirometry with physical therapy for high-risk patients after coronary artery bypass surgery. Phys Ther. 1997;77(3):260-8. doi:10.1093/ptj/77.3.260.
https://doi.org/10.1093/ptj/77.3.260....
,3434 Savcı S, Sakınç S, İnce DI, Arikan H, Can Z, Buran Y, et al. Active cycle of breathing techniques and incentive spirometer in coronary artery bypass graft surgery. Fizyoter Rehabil. 2006;17(2):61-9.,3636 Renault JA, Costa-Val R, Rosseti MB, Houri Neto M. Comparison between deep breathing exercises and incentive spirometry after CABG surgery. Rev Bras Cir Cardiovasc. 2009;24(2):165-72. doi:10.1590/s0102-76382009000200012.
https://doi.org/10.1590/s0102-7638200900...
,4141 Mueenudheen TP, Moiz JA, Gupta VP. A comparative study on the effects of incentive spirometry and deep breathing exercise on pulmonary functions after uncomplicated coronary artery bypass grafting surgery. Indian J Physiother Occup Ther. 2012;6(2):63-7.,4747 Amin R, Alaparthi GK, Samuel SR, Bairapareddy KC, Raghavan H, Vaishali K. Effects of three pulmonary ventilation regimes in patients undergoing coronary artery bypass graft surgery: a randomized clinical trial. Sci Rep. 2021;11(1):6730. doi:10.1038/s41598-021-86281-4.
https://doi.org/10.1038/s41598-021-86281...
], ten reported PaO2, nine reported SO2, and one reported reintubation rate. No trials evaluated the use of antibiotics (which was an outcome of interest for this review[1616 Santos EC, Pinto ACPN, Macedo JRFF, Lunardi AC. Effect of incentive spirometry after cardiac surgery: protocol for a systematic review. Fisioter Bras. 2020;21(1):117-25. doi:10.33233/fb.v21i1.3625.
https://doi.org/10.33233/fb.v21i1.3625....
]).

For these continuous outcomes, results were reported differently across studies, and we performed transformations where it was adequate. In two clinical trials, PaO2 was converted from kilopascals to millimeters of mercury and in one clinical trial the standard deviation was estimated using the Revman calculator[2828 Gale GD, Sanders DE. Incentive spirometry: its value after cardiac surgery. Can Anaesth Soc J. 1980;27(5):475-80. doi:10.1007/BF03007047.
https://doi.org/10.1007/BF03007047....
,3131 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. A comparison of breathing exercises, incentive spirometry and mobilisation after coronary artery surgery. Physiother Theory Pract. 1990;6:117-26. doi:10.3109/09593989009037789.
https://doi.org/10.3109/0959398900903778...
,3232 Oikkonen M, Karjalainen K, Kähärä V, Kuosa R, Schavikin L. Comparison of incentive spirometry and intermittent positive pressure breathing after coronary artery bypass graft. Chest. 1991;99(1):60-5. doi:10.1378/chest.99.1.60.
https://doi.org/10.1378/chest.99.1.60....
]. For some studies the standard deviation was also estimated using the Revman calculator[2424 Stock MC, Downs JB, Cooper RB, Lebenson IM, Cleveland J, Weaver DE, et al. Comparison of continuous positive airway pressure, incentive spirometry, and conservative therapy after cardiac operations. Crit Care Med. 1984;12(11):969-72. doi:10.1097/00003246-198411000-00010.
https://doi.org/10.1097/00003246-1984110...
,3737 Dias CM, Vieira Rde O, Oliveira JF, Lopes AJ, Menezes SL, Guimarães FS. Three physiotherapy protocols: effects on pulmonary volumes after cardiac surgery. J Bras Pneumol. 2011;37(1):54-60. doi:10.1590/s1806-37132011000100009.
https://doi.org/10.1590/s1806-3713201100...
,3939 Almutairi F, Fallows S, Mason-Whitehead E. Continuous positive airway pressure (cpap) had better outcomes when compared with incentive spirometry (IS) to re-open collapse alveoli after cardiac surgery: randomized study. Am J Respir Crit Care Med. 2012;185:A4869. doi:10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4869.
https://doi.org/10.1164/ajrccm-conferenc...
,4747 Amin R, Alaparthi GK, Samuel SR, Bairapareddy KC, Raghavan H, Vaishali K. Effects of three pulmonary ventilation regimes in patients undergoing coronary artery bypass graft surgery: a randomized clinical trial. Sci Rep. 2021;11(1):6730. doi:10.1038/s41598-021-86281-4.
https://doi.org/10.1038/s41598-021-86281...
]. In one clinical trial, LOS was registered as median, with minimum and maximum, and this was converted to mean and standard deviation for our analysis[4545 Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
https://doi.org/10.1016/j.hlc.2019.09.00...
,4949 Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13. doi:10.1186/1471-2288-5-13.
https://doi.org/10.1186/1471-2288-5-13....
] (Table 4). For some studies, transformations were not possible. For instance, one clinical trial recorded forced expiratory flow without standard deviation[2929 Dull JL, Dull WL. Are maximal inspiratory breathing exercises or incentive spirometry better than early mobilization after cardiopulmonary bypass? Phys Ther. 1983;63(5):655-9. doi:10.1093/ptj/63.5.655.
https://doi.org/10.1093/ptj/63.5.655....
], and insufficient information to estimate the standard deviation. Therefore, we did not pool the results in the meta-analysis. When results were presented using different measures, such as those from studies reporting lung function, which reported values both as a percentage of predicted values and as absolute values in liters, then results were pooled using the SMD.

Table 4
Summary of findings for clinical outcomes.

Assessment of Methodological Rigor

Among the included studies, in general, the PEDro score ranged from 2 to 7 points, with a mean and standard deviation of 4.5±1.1. For seven trials, the scores were not available on the PEDro platform, therefore, the scores were independently graded by two authors[2727 Iverson LI, Ecker RR, Fox HE, May IA. A comparative study of IPPB, the incentive spirometer, and blow bottles: the prevention of atelectasis following cardiac surgery. Ann Thorac Surg. 1978;25(3):197-200. doi:10.1016/s0003-4975(10)63521-7.
https://doi.org/10.1016/s0003-4975(10)63...
,3939 Almutairi F, Fallows S, Mason-Whitehead E. Continuous positive airway pressure (cpap) had better outcomes when compared with incentive spirometry (IS) to re-open collapse alveoli after cardiac surgery: randomized study. Am J Respir Crit Care Med. 2012;185:A4869. doi:10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4869.
https://doi.org/10.1164/ajrccm-conferenc...
,4242 Rizwan A, Jalwan J, Mukherjee S. To compare the immediate effect of deep breathing exercise and incentive spirometry on ABG after mitral valve replacement surgery. Indian J Physiother Occup Ther. 2012;6(4):12-7.

43 Zangerolamo TB, Barrientos TG, Baltieri L, Moreno M, Pazzianotto-Forti EM. Effects of flow-oriented incentive spirometry after myocardial revascularization. Rev Bras Cardiol. 2013;26(3):180-5.
-4444 Yazdannik A, Bollbanabad HM, Mirmohammadsadeghi M, Khalifezade A. The effect of incentive spirometry on arterial blood gases after coronary artery bypass surgery (CABG). Iran J Nurs Midwifery Res. 2016;21(1):89-92. doi:10.4103/1735-9066.174761.
https://doi.org/10.4103/1735-9066.174761...
,4747 Amin R, Alaparthi GK, Samuel SR, Bairapareddy KC, Raghavan H, Vaishali K. Effects of three pulmonary ventilation regimes in patients undergoing coronary artery bypass graft surgery: a randomized clinical trial. Sci Rep. 2021;11(1):6730. doi:10.1038/s41598-021-86281-4.
https://doi.org/10.1038/s41598-021-86281...
,4848 Zerang F, Amouzeshi A, Barkhordari-Sharifabad M. Comparison of the effect of incentive spirometry and deep breathing exercises on hemodynamic parameters of patients undergoing coronary artery bypass graft surgery: a clinical trial. J Vasc Nurs. 2022;40(3):134-9. doi:10.1016/j.jvn.2022.08.002.
https://doi.org/10.1016/j.jvn.2022.08.00...
]. After the evaluation of the two authors, three inconsistencies were observed, one on item 11 and two on item 8[2727 Iverson LI, Ecker RR, Fox HE, May IA. A comparative study of IPPB, the incentive spirometer, and blow bottles: the prevention of atelectasis following cardiac surgery. Ann Thorac Surg. 1978;25(3):197-200. doi:10.1016/s0003-4975(10)63521-7.
https://doi.org/10.1016/s0003-4975(10)63...
,4242 Rizwan A, Jalwan J, Mukherjee S. To compare the immediate effect of deep breathing exercise and incentive spirometry on ABG after mitral valve replacement surgery. Indian J Physiother Occup Ther. 2012;6(4):12-7.,4444 Yazdannik A, Bollbanabad HM, Mirmohammadsadeghi M, Khalifezade A. The effect of incentive spirometry on arterial blood gases after coronary artery bypass surgery (CABG). Iran J Nurs Midwifery Res. 2016;21(1):89-92. doi:10.4103/1735-9066.174761.
https://doi.org/10.4103/1735-9066.174761...
]. In this situation, a third author was consulted to arbitrate. Considering the PEDro scale, the following percentages of studies did not meet the criteria: on item 1, 21.7%; on item 2, 8.7%; on item 3, 95.7%; on item 4, 13%; on items 5 and 6, 100%; on item 7, 78.2%; on item 8, 52.1%; on item 9, 95.7%; and on item 11, 8.7%. On item 10, all studies met the criteria. In the classification of the PEDro scale, 16 (69.6%) studies were judged as having “fair”[2424 Stock MC, Downs JB, Cooper RB, Lebenson IM, Cleveland J, Weaver DE, et al. Comparison of continuous positive airway pressure, incentive spirometry, and conservative therapy after cardiac operations. Crit Care Med. 1984;12(11):969-72. doi:10.1097/00003246-198411000-00010.
https://doi.org/10.1097/00003246-1984110...
,2727 Iverson LI, Ecker RR, Fox HE, May IA. A comparative study of IPPB, the incentive spirometer, and blow bottles: the prevention of atelectasis following cardiac surgery. Ann Thorac Surg. 1978;25(3):197-200. doi:10.1016/s0003-4975(10)63521-7.
https://doi.org/10.1016/s0003-4975(10)63...
,2828 Gale GD, Sanders DE. Incentive spirometry: its value after cardiac surgery. Can Anaesth Soc J. 1980;27(5):475-80. doi:10.1007/BF03007047.
https://doi.org/10.1007/BF03007047....
,3030 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. Physiotherapy after coronary artery surgery: are breathing exercises necessary? Thorax. 1989;44(8):634-9. doi:10.1136/thx.44.8.634.
https://doi.org/10.1136/thx.44.8.634....
,3131 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. A comparison of breathing exercises, incentive spirometry and mobilisation after coronary artery surgery. Physiother Theory Pract. 1990;6:117-26. doi:10.3109/09593989009037789.
https://doi.org/10.3109/0959398900903778...
,3535 Romanini W, Muller AP, Carvalho KA, Olandoski M, Faria-Neto JR, Mendes FL, et al. The effects of intermittent positive pressure and incentive spirometry in the postoperative of myocardial revascularization. Arq Bras Cardiol. 2007;89(2):94-9, 105-10. doi:10.1590/s0066-782x2007001400006.
https://doi.org/10.1590/s0066-782x200700...
,3737 Dias CM, Vieira Rde O, Oliveira JF, Lopes AJ, Menezes SL, Guimarães FS. Three physiotherapy protocols: effects on pulmonary volumes after cardiac surgery. J Bras Pneumol. 2011;37(1):54-60. doi:10.1590/s1806-37132011000100009.
https://doi.org/10.1590/s1806-3713201100...

38 El-Kader SMA. Blood gases response to different breathing modalities in phase I of cardiac rehabilitation program after coronary artery bypass graft. Eur J Gen Med. 2011;8(2):85-91. doi.org/10.29333/ejgm/82706.
https://doi.org/doi.org/10.29333/ejgm/82...

39 Almutairi F, Fallows S, Mason-Whitehead E. Continuous positive airway pressure (cpap) had better outcomes when compared with incentive spirometry (IS) to re-open collapse alveoli after cardiac surgery: randomized study. Am J Respir Crit Care Med. 2012;185:A4869. doi:10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4869.
https://doi.org/10.1164/ajrccm-conferenc...

40 Al-Mutairi FH, Fallows SJ, Abukhudair WA, Islam BB, Morris MM. Difference between continuous positive airway pressure via mask therapy and incentive spirometry to treat or prevent post-surgical atelectasis. Saudi Med J. 2012;33(11):1190-5.

41 Mueenudheen TP, Moiz JA, Gupta VP. A comparative study on the effects of incentive spirometry and deep breathing exercise on pulmonary functions after uncomplicated coronary artery bypass grafting surgery. Indian J Physiother Occup Ther. 2012;6(2):63-7.

42 Rizwan A, Jalwan J, Mukherjee S. To compare the immediate effect of deep breathing exercise and incentive spirometry on ABG after mitral valve replacement surgery. Indian J Physiother Occup Ther. 2012;6(4):12-7.

43 Zangerolamo TB, Barrientos TG, Baltieri L, Moreno M, Pazzianotto-Forti EM. Effects of flow-oriented incentive spirometry after myocardial revascularization. Rev Bras Cardiol. 2013;26(3):180-5.
-4444 Yazdannik A, Bollbanabad HM, Mirmohammadsadeghi M, Khalifezade A. The effect of incentive spirometry on arterial blood gases after coronary artery bypass surgery (CABG). Iran J Nurs Midwifery Res. 2016;21(1):89-92. doi:10.4103/1735-9066.174761.
https://doi.org/10.4103/1735-9066.174761...
,4747 Amin R, Alaparthi GK, Samuel SR, Bairapareddy KC, Raghavan H, Vaishali K. Effects of three pulmonary ventilation regimes in patients undergoing coronary artery bypass graft surgery: a randomized clinical trial. Sci Rep. 2021;11(1):6730. doi:10.1038/s41598-021-86281-4.
https://doi.org/10.1038/s41598-021-86281...
,4848 Zerang F, Amouzeshi A, Barkhordari-Sharifabad M. Comparison of the effect of incentive spirometry and deep breathing exercises on hemodynamic parameters of patients undergoing coronary artery bypass graft surgery: a clinical trial. J Vasc Nurs. 2022;40(3):134-9. doi:10.1016/j.jvn.2022.08.002.
https://doi.org/10.1016/j.jvn.2022.08.00...
], four (17.4%) as “good”[3232 Oikkonen M, Karjalainen K, Kähärä V, Kuosa R, Schavikin L. Comparison of incentive spirometry and intermittent positive pressure breathing after coronary artery bypass graft. Chest. 1991;99(1):60-5. doi:10.1378/chest.99.1.60.
https://doi.org/10.1378/chest.99.1.60....

33 Crowe JM, Bradley CA. The effectiveness of incentive spirometry with physical therapy for high-risk patients after coronary artery bypass surgery. Phys Ther. 1997;77(3):260-8. doi:10.1093/ptj/77.3.260.
https://doi.org/10.1093/ptj/77.3.260....
-3434 Savcı S, Sakınç S, İnce DI, Arikan H, Can Z, Buran Y, et al. Active cycle of breathing techniques and incentive spirometer in coronary artery bypass graft surgery. Fizyoter Rehabil. 2006;17(2):61-9.,4545 Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
https://doi.org/10.1016/j.hlc.2019.09.00...
], three (13%) as “poor”[2929 Dull JL, Dull WL. Are maximal inspiratory breathing exercises or incentive spirometry better than early mobilization after cardiopulmonary bypass? Phys Ther. 1983;63(5):655-9. doi:10.1093/ptj/63.5.655.
https://doi.org/10.1093/ptj/63.5.655....
,3636 Renault JA, Costa-Val R, Rosseti MB, Houri Neto M. Comparison between deep breathing exercises and incentive spirometry after CABG surgery. Rev Bras Cir Cardiovasc. 2009;24(2):165-72. doi:10.1590/s0102-76382009000200012.
https://doi.org/10.1590/s0102-7638200900...
,4646 Alam M, Hussain S, Shehzad MI, Mushtaq A, Rauf A, Ishaq S. Comparing the effect of incentive spirometry with acapella on blood gases in physiotherapy after coronary artery bypass graft. Cureus. 2020;12(2):e6851. doi:10.7759/cureus.6851.
https://doi.org/10.7759/cureus.6851....
], and zero (0%) as “excellent” quality (Table 5). Considering the low methodological rigor of the studies included in this review, we were not able to perform sensitivity analysis including only high-quality studies.

Table 5
Quality assessment of the clinical trials using the Physiotherapy Evidence Database (or PEDro) scale.

Comparisons of Interventions

We rated the certainty of the evidence for each outcome in all comparisons using the GRADE approach[2121 GRADEpro GDT: GRADEpro Guideline Development Tool [Software]. McMaster University, 2020 (developed by Evidence Prime, Inc.). Available from gradepro.org.]. The details of each evaluation can be found in Supplement 2 Supplement 2 Assessment of certainty of evidence. Question 1: Incentive spirometry vs. respiratory care in patients undergoing cardiac surgery. Question 2: Incentive spirometry vs. other therapies in patients undergoing cardiac surgery. Question 3: Incentive spirometry vs. noninvasive ventilation in patients undergoing cardiac surgery. Certainty assessment No. of patients Effect Certainty Importance No. of studies Study design Risk of bias Inconsistency Indirectness Imprecision Other considerations Incentive spirometry Control Relative (95% CI) Absolute (95% CI) IS vs. Respiratory care - Postoperative pulmonary complications (assessed with: number of events [pneumonia and atelectasis] recorded) 4 Randomized trials *Very seriousa,b,c,d Not serious Not serious Not serious None 45/189 (24.2%) 65/203 (32.0%) RR 0.91 (0.72 to 1.14) 29 fewer per 1,000 (from 90 fewer to 45 more) ⨁⨁◯◯ Low Critical IS vs. Respiratory care - LOS (assessed with: number of days spent in hospital) 3 Randomized trials *Very seriousa,b,c,d,j Not serious Not serious *Seriousi None 145 146 - MD 1.38 lower (2.96 lower to 0.21 higher) ⨁◯◯◯ Very low Important IS vs. Respiratory care - Length of ICU stay (assessed with: number of days spend in ICU) 2 Randomized trials *Very seriousb,c,e,f,g,h Not serious Not serious *Seriousi None 26 26 - MD 0.78 lower (1.61 lower to 0.06 higher) ⨁◯◯◯ Very low Critical IS vs. Respiratory care - Peak of expiratory flow (assessed with: spirometry [L/min]) 2 Randomized trials *Very seriousb,c,e,f Not serious Not serious *Seriousi None 49 65 - MD 0.59 lower (1.97 lower to 0.78 higher) ⨁◯◯◯ Very low Important IS vs. Respiratory care - Forced expiratory volume in one second (assessed with: spirometry [% and liters]) 5 Randomized trials *Very seriousb,c,e,f Not serious Not serious Not serious None 203 200 - SMD 0.16 SD lower (0.48 lower to 0.16 higher) ⨁⨁◯◯ Low Important IS vs. Respiratory care - Forced vital capacity (assessed with: spirometry [% and liters]) 5 Randomized trials *Very seriousb,c,e,f *Seriousk Not serious Not serious None 203 200 - SMD 0.14 SD higher (0.4 lower to 0.67 higher) ⨁◯◯◯ Very low Important IS vs. Respiratory care - Vital capacity (assessed with: spirometry [% and liters]) 3 Randomized trials *Very seriousb,c,e,f,j,l *Seriousk Not serious Not serious None 57 73 - SMD 0.38 SD higher (0.59 lower to 1.34 higher) ⨁◯◯◯ Very low Important IS vs. Respiratory care - Arterial oxygen partial pressure (mmHg) 6 Randomized trials *Very seriousb,c,e,f,j,l *Seriousk Not serious Not serious None 125 157 - MD 4.48 lower (8.32 lower to 0.63 lower) ⨁◯◯◯ Very low Critical IS vs. Respiratory care - Oxygen saturation (%) 3 Randomized trials *Very seriousb,c,e,f,j,l *Seriousk Not serious Not serious None 71 71 - MD 2.54 higher (1.74 lower to 6.82 higher) ⨁◯◯◯ Very low Critical IS vs. Other therapies - Postoperative pulmonary complications (assessed with: number of events [pneumonia and atelectasis] recorded) 3 Randomized trials *Very seriousb,c,e,f,l *Seriousk Not serious Not serious None 38/54 (70.4%) 63/95 (66.3%) RR 1.04 (0.73 to 1.49) 27 more per 1,000 (from 179 fewer to 325 more) ⨁◯◯◯Very low Critical IS vs. Other therapies - Forced expiratory volume in one second (assessed with: spirometry [liters]) 2 Randomized trials *Very seriousb,c,e,f Not serious Not serious *Seriousi None 25 50 - MD 0.08 higher (0.08 lower to 0.25 higher) ⨁◯◯◯ Very low Important IS vs. Other therapies - Forced vital capacity (assessed with: spirometry [% and liters]) 3 Randomized trials *Very seriousb,c,e,f,j,l Not serious Not serious *Seriousi None 37 73 - SMD 0.15 SD higher (0.25 lower to 0.55 higher) ⨁◯◯◯ Very low Important IS vs. Other therapies - Arterial oxygen partial pressure (mmHg) 3 Randomized trials *Very seriousb,c,e,f,j,l *Seriousk Not serious Not serious None 44 87 - MD 3.63 lower (9.18 lower to 1.93 higher) ⨁◯◯◯ Very low Critical IS vs. NIV - Postoperative pulmonary complications (assessed with: number of events [pneumonia and atelectasis] recorded) 4 Randomized trials *Very seriousb,c,e,f,l *Seriousk Not serious Not serious None 95/113 (84.1%) 106/138 (76.8%) "RR 1.14 (0.84 to 1.55)" 108 more per 1,000 (from 123 fewer to 422 more) ⨁◯◯◯ Very low Critical IS vs. NIV - Mortality (assessed with: number of events recorded) 2 Randomized trials *Very seriousb,c,e,f,h Not serious Not serious *Seriousi None 0/65 (0.0%) 4/114 (3.5%) RR 0.49 (0.08 to 2.93) 18 fewer per 1,000 (from 32 fewer to 68 more) ⨁◯◯◯ Very low Critical IS vs. NIV - Adverse events (assessed with: number of events recorded) 3 Randomized trials *Very seriousb,c,e,f,l Not serious Not serious *Seriousi None 13/61 (21.3%) 14/81 (17.3%) RR 1.10 (0.62 to 1.95) 17 more per 1,000 (from 66 fewer to 164 more) ⨁◯◯◯ Very low Critical IS vs. NIV - Arterial oxygen partial pressure (mmHg) 4 Randomized trials *Very seriousb,c,e,f,l *Seriousk Not serious Not serious None 96 120 - MD 2.95 higher (4.69 lower to 10.58 higher) ⨁◯◯◯ Very low Critical IS vs. NIV - Oxygen saturation (%) 2 Randomized trials *Very seriousb,c,e,f,h *Seriousk Not serious Not serious None 56 92 - MD 0.99 lower (2.12 lower to 0.14 higher) ⨁◯◯◯ Very low Critical CI=confidence interval; ICU=intensive care unit; IS=incentive spirometry; LOS=length of stay; MD=mean difference; NIV=noninvasive ventilation; RR=risk ratio; SD=standard deviation; SMD=standardized mean difference *For very serious limitations, we downgraded two levels, and for serious limitations, we downgraded one level a. Allocation was not concealed in most studies b. There was no blinding of all subjects in the studies c. There was no blinding of all therapists who administered the therapy d. Data for at least one key outcome was not analyzed by “intention to treat” in most studies e. Allocation was not concealed f. Data for at least one key outcome was not analyzed by “intention to treat” g. Measures of at least one key outcome were not obtained from > 85% of the subjects initially allocated to groups h. There was no blinding of all assessors who measured at least one key outcome i. Imprecision with few studies and few participants j. Measures of at least one key outcome were not obtained from > 85% of the subjects initially allocated to groups in most studies l. There was no blinding of all assessors who measured at least one key outcome in most studies .

Incentive Spirometry vs. Respiratory Care

Primary Outcomes

There may be a small difference or no difference on PPC rate between IS and respiratory care (RR 0.91; 95% CI 0.72 to 1.14) (low certainty of evidence) (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figure 2A). The evidence is of very low certainty for the other primary outcomes. Only one trial evaluated the mortality rate[4343 Zangerolamo TB, Barrientos TG, Baltieri L, Moreno M, Pazzianotto-Forti EM. Effects of flow-oriented incentive spirometry after myocardial revascularization. Rev Bras Cardiol. 2013;26(3):180-5.]. This trial also used flow IS and compared its effects to the effects of respiratory care (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figure 2B). In the same way, only one trial evaluated the adverse events[4545 Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
https://doi.org/10.1016/j.hlc.2019.09.00...
]. This trial used flow IS and compared its effects to the effects of respiratory care (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figure 2C).

Secondary Outcomes

We found low certainty of evidence that there may be a small or no difference on FEV1 between IS and respiratory care (SMD -0.16; 95% CI -0.48 to 0.16) (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figure 3D). The evidence is of very low certainty for all the other secondary outcomes of this comparison. For these outcomes, no differences in LOS (MD -1.38; 95% CI -2.96 to 0.21), length of ICU stay (MD -0.78; 95% CI -1.61 to 0.06), PEF (MD -0.60; 95% CI -1.97 to 0.78), FVC (SMD 0.14; 95% CI -0.40 to 0.67), VC (SMD 0.38; 95% CI -0.59 to 1.34), and SO2 (MD 2.54; 95% CI -1.74 to 6.82) were observed, comparing IS and respiratory care (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figures 3A, 3B, 3C, 3E, 3F, and 3H). However, in the subgroup analysis of VC, flow IS was superior compared to respiratory care. The Amin et al. (2021)[4747 Amin R, Alaparthi GK, Samuel SR, Bairapareddy KC, Raghavan H, Vaishali K. Effects of three pulmonary ventilation regimes in patients undergoing coronary artery bypass graft surgery: a randomized clinical trial. Sci Rep. 2021;11(1):6730. doi:10.1038/s41598-021-86281-4.
https://doi.org/10.1038/s41598-021-86281...
] study was not included in the PEF meta-analysis as it did not have sufficient extractable data. The Barkhordari-Sharifabad et al. (2021)[4848 Zerang F, Amouzeshi A, Barkhordari-Sharifabad M. Comparison of the effect of incentive spirometry and deep breathing exercises on hemodynamic parameters of patients undergoing coronary artery bypass graft surgery: a clinical trial. J Vasc Nurs. 2022;40(3):134-9. doi:10.1016/j.jvn.2022.08.002.
https://doi.org/10.1016/j.jvn.2022.08.00...
] study was not included in the SO2 meta-analysis as it was unclear whether it used flow-oriented IS or volume-oriented IS.

The meta-analysis showed that IS leads to lower recovery of PaO2 than respiratory care (MD -4.48; 95% CI -8.32 to -0.63) (very low certainty of evidence). In the subgroup analyses, flow-oriented IS was inferior to recovery PaO2 compared to respiratory care (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figure 3G). Two trials evaluated MIP[3636 Renault JA, Costa-Val R, Rosseti MB, Houri Neto M. Comparison between deep breathing exercises and incentive spirometry after CABG surgery. Rev Bras Cir Cardiovasc. 2009;24(2):165-72. doi:10.1590/s0102-76382009000200012.
https://doi.org/10.1590/s0102-7638200900...
,4545 Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
https://doi.org/10.1016/j.hlc.2019.09.00...
], however, only one had sufficient extractable data (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figure 3I)[4545 Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
https://doi.org/10.1016/j.hlc.2019.09.00...
].

Incentive Spirometry vs. Other Therapies

Primary Outcomes

The evidence for the primary outcomes of IS vs. other therapies is of very low certainty. We found no differences on PPC between IS and other therapies (RR 1.04; 95% CI 0.73 to 1.49) (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figure 4A). Only one study evaluated adverse events (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figure 4B).

Secondary Outcomes

The evidence for the secondary outcomes is also of very low certainty. No difference was observed between IS and other therapies regarding FEV1 (MD 0.08; 95% CI -0.08 to 0.25), FVC (SMD 0.15; 95% CI -0.25 to 0.55), and PaO2 (MD -3.63; 95% CI -9.18 to 1.93) (very low certainty of evidence) (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figures 5B, 5C, and 5E). Only one study evaluated PEF[3030 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. Physiotherapy after coronary artery surgery: are breathing exercises necessary? Thorax. 1989;44(8):634-9. doi:10.1136/thx.44.8.634.
https://doi.org/10.1136/thx.44.8.634....
], and another study evaluated VC (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figure 5A, 5D)[3131 Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. A comparison of breathing exercises, incentive spirometry and mobilisation after coronary artery surgery. Physiother Theory Pract. 1990;6:117-26. doi:10.3109/09593989009037789.
https://doi.org/10.3109/0959398900903778...
].

Incentive Spirometry vs. NIV

Primary Outcomes

Four trials compared the effects of IS vs. NIV on PPC, and three trials on mortality and adverse events. The evidence for the primary outcomes of IS vs. NIV is of very low certainty. All trials used volume-oriented IS. No differences were found between volume-oriented IS and NIV on PPC (RR 1.14; 95% CI 0.84 to 1.55), mortality (RR 0.49; 95% CI 0.08 to 2.93), and adverse events (RR 1.10; 95% CI 0.62 to 1.95) (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figures 6A, 6B, and 6C).

Secondary Outcomes

The evidence for secondary outcomes is also of very low certainty. No differences were found between IS and NIV on PaO2 (MD 2.95; 95% CI -4.69 to 10.58) or on SO2 (MD -0.99; 95% CI -2.12 to 0.14) (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figures 7D, 7E). Only one trial compared the effects of IS and NIV on FEV1, FVC, VC, and MIP. All trials used volume-oriented IS (Supplement 3 Supplement 3 Meta-analyses of the results. Fig. 2 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 3 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. Fig. 4 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 5 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity. Fig. 6 Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications. Fig. 7 Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity. - Figures 7A, 7B, 7C, and 7F). A single study recorded the reintubation rate, with zero reintubation in the IS group and one reintubation in the standard care group[3232 Oikkonen M, Karjalainen K, Kähärä V, Kuosa R, Schavikin L. Comparison of incentive spirometry and intermittent positive pressure breathing after coronary artery bypass graft. Chest. 1991;99(1):60-5. doi:10.1378/chest.99.1.60.
https://doi.org/10.1378/chest.99.1.60....
].

DISCUSSION

To the best of our knowledge, this is the first systematic review with meta-analysis to investigate the effects of IS exclusively in patients undergoing cardiac surgery, performing sub-analysis to pool the studies according to the type of IS used as respiratory care. The results showed that the use of IS was not superior to respiratory care, other therapies, and NIV on the outcomes evaluated. On the other hand, IS was inferior to respiratory care for recovery PaO2. In the subgroup analysis, flow-oriented IS was inferior to respiratory care on recovery PaO2. However, flow-oriented IS was superior to respiratory care on VC. Overall, the methodological rigor of the clinical trials included in this review was “fair” and the certainty of evidence ranged from “very low” to “low”.

In general, although our meta-analysis showed that IS is not different from respiratory care, other therapies, or NIV, except for PaO2 (in IS vs. respiratory care) for which we cannot make any positive or negative statements about effectiveness after cardiac surgery, the majority of the included studies present severe methodological problems and inadequate sample size. In addition, over the years studies have investigated the effects of IS on PPC, adverse events, and mortality after surgical procedures on the thorax, showing different results, some in agreement with and others contrary to our findings[1111 Overend TJ, Anderson CM, Lucy SD, Bhatia C, Jonsson BI, Timmermans C. The effect of incentive spirometry on postoperative pulmonary complications: a systematic review. Chest. 2001;120(3):971-8. doi:10.1378/chest.120.3.971.
https://doi.org/10.1378/chest.120.3.971....
,5050 Freitas ER, Soares BG, Cardoso JR, Atallah AN. Incentive spirometry for preventing pulmonary complications after coronary artery bypass graft. Cochrane Database Syst Rev. 2007;(3):CD004466. Update in: Cochrane Database Syst Rev. 2012;9:CD004466. doi:10.1002/14651858.CD004466.pub2.
https://doi.org/10.1002/14651858.CD00446...
,5151 Freitas ER, Soares BG, Cardoso JR, Atallah ÁN. Incentive spirometry for preventing pulmonary complications after coronary artery bypass graft. Cochrane Database Syst Rev. 2012;2012(9):CD004466. doi:10.1002/14651858.CD004466.pub3.
https://doi.org/10.1002/14651858.CD00446...
].

Our results are in line with a previous Cochrane systematic review that included seven RCTs with a total of 592 patients to assess the effects of IS for preventing pulmonary complications after CABG[5151 Freitas ER, Soares BG, Cardoso JR, Atallah ÁN. Incentive spirometry for preventing pulmonary complications after coronary artery bypass graft. Cochrane Database Syst Rev. 2012;2012(9):CD004466. doi:10.1002/14651858.CD004466.pub3.
https://doi.org/10.1002/14651858.CD00446...
]. This review found no evidence of a benefit from IS in reducing pulmonary complications and in decreasing the negative effects on pulmonary function in patients undergoing CABG. Of note, besides including only patients that had undergone CABG, this review is outdated and did not perform the certainty of evidence evaluation. The inclusion of a broader and updated body of knowledge and GRADE assessments in our review is of particular importance, as it facilitates decision making of physiotherapists working in the frontline.

A clinical trial investigated the effects of IS after cardiac surgery in 90 patients; 47 patients were treated with flow-oriented IS + deep breathing exercise, and 43 patients received only deep breathing exercise (control group)[4545 Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
https://doi.org/10.1016/j.hlc.2019.09.00...
]. Patients who received IS + deep breathing exercise had no reduction in atelectasis, pneumonia, pneumothorax, and pleural effusion. However, the control group had fewer adverse events (dyspnea) (P-value = 0.03)[4545 Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
https://doi.org/10.1016/j.hlc.2019.09.00...
]. On the other hand, one thing is certain, although, to date, the clinical efficacy on PPC is not proven, IS is widely used and investigated[5252 Eltorai AEM, Baird GL, Pangborn J, Eltorai AS, Antoci V Jr, Paquette K, et al. Financial impact of incentive spirometry. Inquiry. 2018;55:46958018794993. doi:10.1177/0046958018794993.
https://doi.org/10.1177/0046958018794993...
].

A preliminary trial[5353 Kotani T, Akazawa T, Sakuma T, Nagaya S, Sonoda M, Tanaka Y, et al. Effects of incentive spirometry on respiratory motion in healthy subjects using cine breathing magnetic resonance imaging. Ann Rehabil Med. 2015;39(3):360-5. doi:10.5535/arm.2015.39.3.360.
https://doi.org/10.5535/arm.2015.39.3.36...
] that investigated the effectiveness of IS (flow-oriented device) on respiratory motion in healthy subjects suggested that two weeks of respiratory training using IS is useful for improving respiratory motion and pulmonary function. A clinical trial[5454 Alaparthi GK, Augustine AJ, Anand R, Mahale A. Comparison of diaphragmatic breathing exercise, volume and flow incentive spirometry, on diaphragm excursion and pulmonary function in patients undergoing laparoscopic surgery: a randomized controlled trial. Minim Invasive Surg. 2016;2016:1967532. doi:10.1155/2016/1967532.
https://doi.org/10.1155/2016/1967532....
] with 260 surgical patients (non-cardiac patients) showed that IS (flow-oriented and volume-oriented) and diaphragmatic breathing exercise better preserve pulmonary function and diaphragm excursion. If these findings are also demonstrated in patients after cardiac surgery using IS, this method will represent an easily accessible and low-cost device to be used in the treatment of these patients.

A broad range of different types of IS devices and treatment protocols were used in the studies included in this review. However, we were unable to determine which of them is more effective. Although we planned to perform other subgroup analyses, we were also unable to identify whether the type of surgery, the severity of the disease, or details of the intervention, such as frequency, duration, and time the intervention started could influence the effect of intervention. Due to the heterogeneity of the RCTs regarding the combinations of interventions and comparisons, different comparisons had to be made, and we were only able to perform a few comprehensive meta-analyses. Therefore, the precision of effect estimates was jeopardized.

Furthermore, due to several methodological limitations in the included studies and conflicting results, further well-designed trials, with long-term follow-up, and which report the rate of core outcome results, such as PPC, adverse events, mortality, lung function, and LOS, are needed, as well as in the ICU. New RCTs should be standardized to provide more homogeneous and reliable data to properly compare the results. For example, studies should evaluate the same IS device, delivered using standardized protocols, for treating similar types of surgeries.

Of note, some limitations should be underscored. In addition, there is a need for clear and complete reporting of outcome data for the interventions being compared. All trials included in this review had important methodological limitations. Although blinding of participants and personnel may be very difficult from a practical perspective, several other factors such as the lack of blinding of outcome assessors, loss to follow-up, and the absence of intention-to-treat analyses were common methodological limitations in the available studies.

Overall, due to the serious risk of bias and imprecision, the overall certainty of the available evidence is very low, and several questions persist. Thus, it is unclear whether IS used alone or in combination with other therapies is effective when compared to other interventions used alone or in combination.

Moreover, although some studies concluded that IS was safe, the available information on adverse events was insufficient to perform a comprehensive meta-analysis that could provide more accurate results on the safety of IS. The evidence is currently insufficient to support or refute the routine use of IS after cardiac surgeries. The results of the six ongoing RCTs are necessary to provide more precise and reliable information on which to base further trials and protocols, and to guide clinical decision-making processes on the use of IS after cardiac surgeries.

We believe the strengths of this systematic review include transparency, rigid methods, assessment of the quality of evidence for each outcome, and extensive and careful searches, with no restrictions on language or publication date. We searched the gray literature database and ongoing studies and performed a rigorous critical assessment of the current body of evidence. Furthermore, the assessment of certainty of evidence using the GRADE approach is paramount in pointing out limitations in current trials and upon which to base further high quality RCTs. Another strong point of this review was the separate analysis by the type of IS (flowor volume-oriented IS), when possible. This high-quality review underlines that there is an urgent need to conduct high-quality RCTs in this field.

Limitations

We consider as limitations of this systematic review the inclusion of biased clinical trials, such as those with lack of blinding of outcome assessors, or without adequate randomization; substantial heterogeneity among studies that made them unsuitable for meta-analysis; or studies with small samples that do not allow us to provide accurate estimates of the effects. As another limitation, we were unable to explain the heterogeneity in the meta-analysis of the PaO2 and SO2 outcomes.

CONCLUSION

This meta-analysis revealed that IS was not superior to standard respiratory care for PPC and clinical outcomes, therefore its use should not be widely recommended until high-quality further studies are performed to ensure this clinical guidance.

  • This study was carried out at the Universidade Federal do Amapá, Macapá, Amapá, Brazil.

Supplement 1 Search strategy

14.08.2020 Medical Literature Analysis and Retrieval System Online (or MEDLINE®) via PubMed® - 175 results #1 ("Cardiac Surgical Procedures"[Mesh]) OR "Heart Surg*" OR "Cardiac Surg*" OR "Cardiovascular Surg*" OR ("Coronary Artery Bypass"[Mesh]) OR (Coronary Artery Bypass Grafting) OR CABG OR (Heart Bypass) OR (Coronary Bypass) OR (Aortocoronary Bypass) OR ("Myocardial Revascularization"[Mesh]) OR (Transmyocardial Revascularization) OR (Heart Myectomy) OR (Heart Myotomy) OR ("Cardiopulmonary Bypass"[Mesh]) OR (Heart-Lung Bypass) OR (Cardiology Robotic Surgery) OR ("Angioplasty"[Mesh]) OR ("Balloon Valvuloplasty"[Mesh]) OR (Valve Repair) OR (Valvular Surgery) OR (Valve Surgery) OR ("Cardiac Valve Annuloplasty"[Mesh]) OR Annuloplasty OR (Cardiac Valve Annulus Repair) OR (Heart Valve Annulus Repair) OR (Cardiac Valve Annular Reduction) OR (Cardiac Valve Annulus Shortening) OR (Cardiac Valve Annulus Reduction) OR (Valve Replacement) OR ("Transcatheter Aortic Valve Replacement"[Mesh]) OR TAVR OR ("Heart Valve Prosthesis Implantation"[Mesh]) OR (Insertion of Pacemaker) OR (Insertion of implantable cardioverter defibrillator) OR (Maze Surgery) OR (Aortic Aneurysm Repair) OR (Aortic Surgery) OR ("Heart Transplantation"[Mesh]) OR "Heart Transplant*" OR (Heart Grafting) OR "Cardiac Transplant*" OR (Insertion of Ventricular Assist Device) OR (VAD Surgery) OR (Insertion of Total Artificial Heart) OR ("Thoracic Surgery"[Mesh]) OR ("Thoracic Surgical Procedures"[Mesh]) OR "Thoracic Surg*" OR (Arrhythmia Surgery) OR (Left Ventricular Remodeling) OR (Surgical Ventricular Restoration) OR (Atrial Fibrillation Ablation) OR (Atrial Fibrillation Surgery) OR (Hypertrophic Cardiomyopathy Surgery) OR (Thoracoscopic Surgical Procedures) OR (Thoracoscopic Surgeries) OR ("Thoracotomy"[Mesh]) OR Thoracotomies OR Thoracostomy OR ("Thoracic Surgery, Video-Assisted"[Mesh]) OR (Video-Assisted Thoracic Surgery) OR VATS #2 ("Breathing Exercises"[Mesh]) OR "Incentive Spiromet*" OR (Flow-Incentive Spirometer) OR Triflo OR Triflow OR Voldyne OR respiron #3 ((((clinical[Title/Abstract] AND trial[Title/Abstract]) OR clinical trials as topic[MeSH Terms] OR clinical trial[Publication Type] OR random*[Title/Abstract] OR random allocation[MeSH Terms] OR therapeutic use[MeSH Subheading]))) #4 #1 AND #2 AND #3 Embase® via Elsevier - 304 results #1 'heart surgery'/exp OR 'heart surg*' OR 'cardiac surg*' OR 'cardiosurgery' OR 'heart operation' OR 'myocardial resection' OR 'surgery, heart' OR 'open heart surgery'/exp OR 'intracardiac surgery' OR 'minimally invasive cardiac surgery'/exp OR 'coronary artery bypass graft'/exp OR 'coronary artery bypass' OR 'aorta coronary artery bypass' OR 'aorta coronary bypass' OR 'aorta coronary vein bypass' OR 'aorta coronary vein shunt' OR 'aortic coronary artery bypass' OR 'aortic coronary bypass' OR 'aorticocoronary anastomosis' OR 'aorto coronary artery bypass' OR 'aorto coronary bypass' OR 'aorto coronary vein bypass' OR 'aortocoronary anastomosis' OR 'aortocoronary artery bypass' OR 'aortocoronary artery bypass' OR 'aortocoronary bypass' OR 'aortocoronary shunt' OR 'aortocoronary vein bypass' OR 'aortocoronary venous bypass' OR 'coronary artery graft' OR 'coronary bypass' OR 'coronary vein bypass' OR 'coronary venous bypass' OR 'heart muscle revascularization'/exp OR 'heart muscle revascularization' OR 'heart muscle revascularisation' OR 'anastomosis, internal mammary artery' OR 'artery implantation, mammary' OR 'implantation, internal mammary artery' OR 'internal mammary arterial anastomosis' OR 'internal mammary arterial implantation' OR 'internal mammary artery anastomosis' OR 'internal mammary artery graft' OR 'internal mammary artery implant' OR 'internal mammary artery implantation' OR 'internal mammary artery reimplantation' OR 'internal mammary-coronary artery anastomosis' OR 'mammary arterial implantation' OR 'mammary artery implantation' OR 'cardiac muscle revascularisation' OR 'cardiac muscle revascularization' OR 'myocardium revascularization' OR 'myocardium revascularisation' OR 'coronary revascularisation' OR 'coronary revascularization' OR 'heart revascularisation' OR 'heart revascularization' OR 'myocardial revascularisation' OR 'myocardial revascularization' OR 'revascularisation, transmyocardial laser' OR 'revascularization, transmyocardial laser' OR 'transmyocardial laser revascularisation' OR 'transmyocardial laser revascularization' OR 'vineberg operation' OR 'cardiopulmonary bypass'/exp OR 'cardiopulmonary bypass' OR 'atriopulmonary shunt' OR 'bypass, cardiopulmonary' OR 'cardiopulmonary shunt' OR 'heart lung bypass' OR 'angioplasty'/exp OR 'angioplasty' OR 'transluminal coronary angioplasty'/exp OR 'coronary artery dilatation, transluminal' OR p.t.c.a. OR ptca OR 'transluminal valvuloplasty'/exp OR 'transluminal valvuloplasty' OR 'balloon valvotomy' OR valvuloplasty OR valvulotomy OR 'valve repair' OR valvotomy OR valvulotomy OR 'annuloplasty'/exp OR annuloplasty OR 'heart valve replacement'/exp OR 'valve replacement' OR 'valvular replacement' OR 'valve implantation' OR 'valve prosthesis implantation' OR 'valvular replacement' OR 'transcatheter aortic valve implantation'/exp OR TAVI OR 'pacemaker implantation'/exp OR 'pacemaker implantation' OR 'artificial heart pacemaker implantation' OR 'heart pacemaker implantation' OR 'maze procedure'/exp OR 'maze procedure' OR 'Cox maze operation' OR 'Cox maze procedure' OR 'Cox maze surgery' OR 'Cox-maze ablation' OR 'Cox-maze technique' OR 'maze ablation' OR 'maze operation' OR 'maze surgery' OR 'maze technique' OR 'surgical Cox-maze procedure' OR 'surgical maze' OR 'aortic aneurysm surgery'/exp OR 'aortic aneurysm surgery' OR 'aortic surgery'/exp OR 'aortic surgery' OR 'aorta surgery' OR 'aortopexy' OR 'surgery, aorta' OR 'heart transplantation'/exp OR 'heart transplant*' OR 'cardiac transplant*' OR 'heart allograft' OR 'heart allotransplantation' OR 'heart heterograft' OR 'transplant, heart' OR 'heart heterotransplantation' OR 'heart homograft' OR 'heart homotransplantation' OR 'heart orthotopic transplantation' OR 'heart tissue transplantation' OR 'heart ventricle transplantation' OR 'heart graft'/exp OR 'heart graft' OR 'cardiac graft' OR 'graft, heart' OR 'Ventricular Assist Device Surg*' OR 'Insertion of Total Artificial Heart' OR 'thorax surgery'/exp OR 'thorax surg*' OR 'cardiothoracic surg*' OR 'chest surg*' OR 'chest wall surg*' OR 'surgery, chest' OR 'surgery, thoracic' OR 'surgery, thorax' OR 'thoracic operation' OR 'thoracic surg*' OR 'left ventricular remodeling'/exp OR 'left ventricular remodeling' OR 'surgical ventricular restoration'/exp OR 'surgical ventricular restoration' OR 'atrial fibrillation ablation'/exp OR 'atrial fibrillation ablation' OR 'thoracoscopic surgery'/exp OR 'thoracoscopic surg*' OR 'thoracotomy'/exp OR thoracotomy OR 'video assisted thoracoscopic surgery'/exp OR 'video assisted thoracoscopic surg*' #2 'breathing exercise'/exp OR 'breathing exercise' OR 'incentive spirometry'/exp OR 'incentive spiromet*' OR 'incentive spirometer'/exp OR 'Respiflo 5000' OR Coach OR Triflo OR Triflow OR Voldyne OR respiron #3 'crossover procedure':de OR 'double-blind procedure':de OR 'randomized controlled trial':de OR 'single-blind procedure':de OR (random* OR factorial* OR crossover* OR cross NEXT/1 over* OR placebo* OR doubl* NEAR/1 blind* OR singl* NEAR/1 blind* OR assign* OR allocat* OR volunteer*):de,ab,ti #4 #1 AND #2 AND #3 Cochrane Central Register of Controlled Trials (or CENTRAL) via Cochrane Library - 136 results #1 MeSH descriptor: [Cardiac Surgical Procedures] explode all trees #2 MeSH descriptor: [Coronary Artery Bypass] explode all trees #3 MeSH descriptor: [Myocardial Revascularization] explode all trees #4 MeSH descriptor: [Cardiopulmonary Bypass] explode all trees #5 MeSH descriptor: [Angioplasty] explode all trees #6 MeSH descriptor: [Balloon Valvuloplasty] explode all trees #7 MeSH descriptor: [Cardiac Valve Annuloplasty] explode all trees #8 MeSH descriptor: [Transcatheter Aortic Valve Replacement] explode all trees #9 MeSH descriptor: [Heart Valve Prosthesis Implantation] explode all trees #10 MeSH descriptor: [Heart Transplantation] explode all trees #11 MeSH descriptor: [Thoracic Surgical Procedures] explode all trees #12 MeSH descriptor: [Thoracotomy] explode all trees #13 MeSH descriptor: [Thoracic Surgery, Video-Assisted] explode all trees #14 MeSH descriptor: [Thoracic Surgery] explode all trees #15 "Heart Surg*" OR "Cardiac Surg*" OR "Cardiovascular Surg*" OR (Coronary Artery Bypass Grafting) OR CABG OR (Heart Bypass) OR (Coronary Bypass) OR (Aortocoronary Bypass) OR (Myocardial Revascularization) OR (Transmyocardial Revascularization) OR (Heart Myectomy) OR (Heart Myotomy) OR (Heart-Lung Bypass) OR (Cardiology Robotic Surgery) OR (Valve Repair) OR (Valvular Surgery) OR (Valve Surgery) OR Annuloplasty OR (Cardiac Valve Annulus Repair) OR (Heart Valve Annulus Repair) OR (Cardiac Valve Annular Reduction) OR (Cardiac Valve Annulus Shortening) OR (Cardiac Valve Annulus Reduction) OR (Valve Replacement) OR TAVR OR (Insertion of Pacemaker) OR (Insertion of implantable cardioverter defibrillator) OR (Maze Surgery) OR (Aortic Aneurysm Repair) OR (Aortic Surgery) OR "Heart Transplant*" OR (Heart Grafting) OR "Cardiac Transplant*" OR (Insertion of Ventricular Assist Device) OR (VAD Surgery) OR (Insertion of Total Artificial Heart) OR "Thoracic Surg*" OR (Arrhythmia Surgery) OR (Left Ventricular Remodeling) OR (Surgical Ventricular Restoration) OR (Atrial Fibrillation Ablation) OR (Atrial Fibrillation Surgery) OR (Hypertrophic Cardiomyopathy Surgery) OR (Thoracoscopic Surgical Procedures) OR (Thoracoscopic Surgeries) OR Thoracotomies OR Thoracostomy OR (Video-Assisted Thoracic Surgery) OR VATS #16 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 #17 MeSH descriptor: [Breathing Exercises] explode all trees #18 Incentive Spirometr* OR (Flow-Incentive Spirometer) OR Coach OR Triflo OR Triflow OR Voldyne OR respiron #19 #17 OR #18 #20 #16 AND #19 Latin American and Caribbean Health Sciences Literature (LILACS) via Virtual Health Library Regional Portal - 46 results #1 MH:"Procedimentos Cirúrgicos Cardíacos" OR (Cardiac Surgical Procedures) OR (Procedimientos Quirúrgicos Cardíacos) OR MH:E04.100.376$ OR MH:E04.928.220$ OR MH:"Ponte de Artéria Coronária" OR (Coronary Artery Bypass) OR (Puente de Arteria Coronaria) OR (Derivação da Artéria Coronária) OR (Ponte Aortocoronária) OR MH:E04.100.376.719.332$ OR MH:E04.100.814.868.750$ OR MH:E04.928.220.520.220$ OR MH:"Ponte Cardiopulmonar" OR (Cardiopulmonary Bypass) OR (Puente Cardiopulmonar) OR (Circuito Cardiopulmonar) OR (Derivação Cardiopulmonar) OR (Ponte Coração-Pulmão) OR MH:E04.292.413$ OR MH:Angioplastia OR Angioplasty OR MH:E02.148.050 OR MH:E04.100.814.529.124$ OR MH:E04.502.382.124$ OR MH:E05.157.016$ OR MH:"Valvuloplastia com Balão" OR Valvuloplasty OR Valvuloplastia OR MH:E02.148.108$ OR MH:E05.157.125$ OR MH:"Anuloplastia da Valva Cardíaca" OR (Cardiac Valve Annuloplasty) OR (Anuloplastia de la Válvula Cardíaca) OR (Anuloplastia Valvar Cardíaca) OR (Anuloplastia da Válvula Cardíaca) OR MH:E04.100.376.062$ OR MH:E04.928.220.109$ OR MH:"Substituição da Valva Aórtica Transcateter" OR (Transcatheter Aortic Valve Replacement) OR (Reemplazo de la Válvula Aórtica Transcatéter) OR MH:E04.100.376.485.500$ OR MH:E04.650.410.500$ OR MH:E04.928.220.410.500$ OR MH:"Implante de Prótese de Valva Cardíaca" OR (Heart Valve Prosthesis Implantation) OR (Implantación de Prótesis de Válvulas Cardíacas) OR (Implantação de Prótese Valvar Cardíaca) OR (Implantação de Prótese de Valva) OR (Implantação de Prótese de Valva Cardíaca) OR (Implante de Prótese Valvar Cardíaca) OR (Implante de Prótese de Valva) OR MH:E04.100.376.485$ OR MH:E04.650.410$ OR MH:E04.928.220.410$ OR MH:"Transplante de Coração" OR (Heart Transplantation) OR (Trasplante de Corazón) OR (Enxerto Cardíaco) OR (Enxerto de Coração) OR (Transplantação Cardíaco) OR (Transplantação de Coração) OR (Transplante Cardíaco) OR MH:E04.100.376.475$ OR MH:E04.928.220.390$ OR MH:E04.936.450.475$ OR MH:"Procedimentos Cirúrgicos Torácicos" OR (Thoracic Surgical Procedures) OR (Procedimientos Quirúrgicos Torácicos) MH:E04.928$ OR MH:Toracotomia OR Thoracotomy OR Toracotomía OR MH:E04.928.760$ OR MH:"Cirurgia Torácica Vídeoassistida" OR MH:"Thoracic Surgery, Video-Assisted" OR (Cirugía Torácica Asistida por Video) OR CTVA OR VATS OR MH:E01.370.388.250.840.830$ OR MH:E01.370.388.250.950.830$ OR MH:E04.502.250.840.830$ OR MH:E04.502.250.950.830$ OR MH:E04.928.752.830$ #2 MH:"Exercícios Respiratórios" OR (Breathing Exercises) OR (Ejercicios Respiratorios) OR (Exercício Respiratório) OR (Exercícios para os Músculos Respiratórios) OR MH:E02.190.525.186$ OR MH:E02.779.474.124$ OR (Espirometria de incentivo) OR Voldyne OR Triflo OR Triflow Filter: LILACS PEDro - 1st search - 47 results / 2nd search - 81 results #1 Heart Surg* / Subdiscipline: Cardiothoracics / Therapy: Respiratory Therapy / Method: Clinical trial #2 Cardiac Surg* / Subdiscipline: Cardiothoracics / Therapy: Respiratory Therapy / Method: Clinical trial Cumulative Index of Nursing and Allied Health (or CINAHL®) via EBSCO - 80 results S1 (MM "Surgery, Cardiovascular+") OR (MM "Thoracic Surgery, Video-Assisted") OR (MM "Thoracic Surgery+") OR (MM "Coronary Artery Bypass+") OR (MM "Myocardial Revascularization+") OR (MM "Angioplasty, Transluminal, Percutaneous Coronary") OR (MM "Cardiopulmonary Bypass") OR (MM "Angioplasty+") OR (MM "Angioplasty, Balloon, Laser-Assisted") OR (MM "Angioplasty, Balloon+") OR (MM "Angioplasty, Laser+") OR (MM "Percutaneous Coronary Intervention") OR (MM "Balloon Dilatation+") OR (MM "Cardiac Valve Annuloplasty+") OR (MM "Mitral Valve Annuloplasty") OR (MM "Transcatheter Aortic Valve Implantation") OR (MM "Heart Valve Prosthesis") OR (MM "Heart Transplantation+") OR (MM "Heart-Lung Transplantation") OR (MM "Thoracotomy") OR (MM "Thoracostomy+") S2 "Heart Surg*" OR "Cardiac Surg*" OR "Cardiovascular Surg*" OR (Coronary Artery Bypass Grafting) OR CABG OR (Heart Bypass) OR (Coronary Bypass) OR (Aortocoronary Bypass) OR (Myocardial Revascularization) OR (Transmyocardial Revascularization) OR (Heart Myectomy) OR (Heart Myotomy) OR (Heart-Lung Bypass) OR (Cardiology Robotic Surgery) OR (Valve Repair) OR (Valvular Surgery) OR (Valve Surgery) OR Annuloplasty OR (Cardiac Valve Annulus Repair) OR (Heart Valve Annulus Repair) OR (Cardiac Valve Annular Reduction) OR (Cardiac Valve Annulus Shortening) OR (Cardiac Valve Annulus Reduction) OR (Valve Replacement) OR TAVR OR (Insertion of Pacemaker) OR (Insertion of implantable cardioverter defibrillator) OR (Maze Surgery) OR (Aortic Aneurysm Repair) OR (Aortic Surgery) OR "Heart Transplant*" OR (Heart Grafting) OR "Cardiac Transplant*" OR (Insertion of Ventricular Assist Device) OR (VAD Surgery) OR (Insertion of Total Artificial Heart) OR "Thoracic Surg*" OR (Arrhythmia Surgery) OR (Left Ventricular Remodeling) OR (Surgical Ventricular Restoration) OR (Atrial Fibrillation Ablation) OR (Atrial Fibrillation Surgery) OR (Hypertrophic Cardiomyopathy Surgery) OR (Thoracoscopic Surgical Procedures) OR (Thoracoscopic Surgeries) OR Thoracotomies OR Thoracostomy OR (Video-Assisted Thoracic Surgery) OR VATS S3 S1 OR S2 S4 (MM "Breathing Exercises+") S5 "Incentive Spiromet*" OR (Flow-Incentive Spirometer) OR Triflo OR Triflow OR Voldyne OR respiron S6 S4 OR S5 S7 S3 AND S6 S8 TX allocat* random* OR (MH "Quantitative Studies") OR (MH "Placebos") OR TX placebo* OR TX random* allocat* OR (MH "Random Assignment") OR TX randomi* control* trial* OR TX ((singl* n1 blind*) OR (singl* n1 mask*) ) OR TX ( (doubl* n1 blind*) OR (doubl* n1 mask*) ) OR TX ( (tripl* n1 blind*) OR (tripl* n1 mask*) ) OR TX ( (trebl* n1 blind*) OR (trebl* n1 mask*) ) OR TX clinic* n1 trial* OR PT Clinical trial OR (MH "Clinical Trials+") S9 S7 AND S9 Scopus® via Elsevier - 810 results #1 TITLE-ABS-KEY("Cardiac Surgi*" OR "Coronary Artery Bypass" "Myocardial Revascularization" OR "Cardiopulmonary Bypass" OR Angioplasty "Balloon Valvuloplasty" OR "Cardiac Valve Annuloplasty" OR "Transcatheter Aortic Valve Replacement" "Heart Valve Prosthesis Implantation" OR "Heart Transplant*" OR "Thoracic Surg*") #2 "Heart Surg*" OR "Cardiac Surg*" OR "Cardiovascular Surg*" OR "Coronary Artery Bypass Graf*" OR CABG OR "Heart Bypass" OR "Coronary Bypass" OR "Aortocoronary Bypass" OR "Myocardial Revascularization" OR "Transmyocardial Revascularization" OR "Heart Myectomy" OR "Heart Myotomy" OR "Heart-Lung Bypass" OR "Cardiology Robotic Surg*" OR "Valve Repair" OR "Valvular Surg*" OR "Valve Surg*" OR Annuloplasty OR "Cardiac Valve Annulus Repair" OR "Heart Valve Annulus Repair" OR "Cardiac Valve Annular Reduction" OR "Cardiac Valve Annulus Shortening" OR "Cardiac Valve Annulus Reduction" OR "Valve Replacement" OR TAVR OR "Insertion of Pacemaker" OR "Insertion of implantable cardioverter defibrillator" OR "Maze Surg*" OR "Aortic Aneurysm Repair" OR "Aortic Surg*" OR "Heart Transplant*" OR "Heart Graft*" OR "Cardiac Transplant*" OR "Insertion of Ventricular Assist Device" OR "VAD Surg*" OR "Insertion of Total Artificial Heart" OR "Thoracic Surg*" OR "Arrhythmia Surg*" OR "Left Ventricular Remodeling" OR "Surgical Ventricular Restoration" OR "Atrial Fibrillation Ablation" OR "Atrial Fibrillation Surg*" OR "Hypertrophic Cardiomyopathy Surg*" OR "Thoracoscopic Surg*" OR Thoracotom* OR Thoracostomy OR "Video-Assisted Thoracic Surg*" OR VATS #3 #1 OR #2 #4 TITLE-ABS-KEY("Breathing Exercis*") #5 "Incentive Spirometr*" OR (Flow-Incentive Spirometer) OR Coach OR Triflo OR Triflow OR Voldyne OR respiron #6 #4 OR #5 #7 #3 AND #6 #8 TITLE-ABS-KEY((clinic* w/1 trial*) OR (randomi* w/1 control*) OR (randomi* w/2 trial*) OR (random* w/1 assign*) OR (random* w/1 allocat*) OR (control* w/1 clinic*) OR (control* w/1 trial) OR placebo* OR (Quantitat* w/1 Stud*) OR (control* w/1 stud*) OR (randomi* w/1 stud*) OR (singl* w/1 blind*) OR (singl* w/1 mask*) OR (doubl* w/1 blind*) OR (doubl* w/1 mask*) OR (tripl* w/1 blind*) OR (tripl* w/1 mask*) OR (trebl* w/1 blind*) OR (trebl* w/1 mask*)) AND NOT (SRCTYPE(b) OR SRCTYPE(k) OR SRCTYPE(p) OR SRCTYPE(r) OR SRCTYPE(d) OR DOCTYPE(ab) OR DOCTYPE(bk) OR DOCTYPE(ch) OR DOCTYPE(bz) OR DOCTYPE(cr) OR DOCTYPE(ed) OR DOCTYPE(er) OR DOCTYPE(le) OR DOCTYPE(no) OR DOCTYPE(pr) OR DOCTYPE(rp) OR DOCTYPE(re) OR DOCTYPE(sh)) #9 #7 AND #8 SciELO - 1st search - 3 results / 2nd search - 4 results #1 (Heart Surg*) AND (Incentive Spiromet*) #2 (Cardiac Surg*) AND (Incentive Spiromet*) OpenGrey Database - 0 results Incentive Spiromet* ClinicalTrials.gov - 6 results Condition: (Cardiac Surg*) OR (Heart Surg*) OR (Thoracic Surg*) Other terms: (Breathing Exercis*) OR (Incentive Spiromet*) OR (Flow-Incentive Spirometer) OR Triflo OR Triflow OR Voldyne OR respiron clinicaltrialsregister.eu - 0 results #1 Incentive Spiromet* Rebec - 0 results #1 Cardiac Surg* #2 Heart Surg* World Health Organization International Clinical Trials Registry Platform - No access at the time of search. #1 (Heart Surg*) AND (Incentive Spiromet*) #2 (Cardiac Surg*) AND (Incentive Spiromet*)

Supplement 2 Assessment of certainty of evidence.

Question 1: Incentive spirometry vs. respiratory care in patients undergoing cardiac surgery. Question 2: Incentive spirometry vs. other therapies in patients undergoing cardiac surgery. Question 3: Incentive spirometry vs. noninvasive ventilation in patients undergoing cardiac surgery. Certainty assessment No. of patients Effect Certainty Importance No. of studies Study design Risk of bias Inconsistency Indirectness Imprecision Other considerations Incentive spirometry Control Relative (95% CI) Absolute (95% CI) IS vs. Respiratory care - Postoperative pulmonary complications (assessed with: number of events [pneumonia and atelectasis] recorded) 4 Randomized trials *Very seriousa,b,c,d Not serious Not serious Not serious None 45/189 (24.2%) 65/203 (32.0%) RR 0.91 (0.72 to 1.14) 29 fewer per 1,000 (from 90 fewer to 45 more) ⨁⨁◯◯ Low Critical IS vs. Respiratory care - LOS (assessed with: number of days spent in hospital) 3 Randomized trials *Very seriousa,b,c,d,j Not serious Not serious *Seriousi None 145 146 - MD 1.38 lower (2.96 lower to 0.21 higher) ⨁◯◯◯ Very low Important IS vs. Respiratory care - Length of ICU stay (assessed with: number of days spend in ICU) 2 Randomized trials *Very seriousb,c,e,f,g,h Not serious Not serious *Seriousi None 26 26 - MD 0.78 lower (1.61 lower to 0.06 higher) ⨁◯◯◯ Very low Critical IS vs. Respiratory care - Peak of expiratory flow (assessed with: spirometry [L/min]) 2 Randomized trials *Very seriousb,c,e,f Not serious Not serious *Seriousi None 49 65 - MD 0.59 lower (1.97 lower to 0.78 higher) ⨁◯◯◯ Very low Important IS vs. Respiratory care - Forced expiratory volume in one second (assessed with: spirometry [% and liters]) 5 Randomized trials *Very seriousb,c,e,f Not serious Not serious Not serious None 203 200 - SMD 0.16 SD lower (0.48 lower to 0.16 higher) ⨁⨁◯◯ Low Important IS vs. Respiratory care - Forced vital capacity (assessed with: spirometry [% and liters]) 5 Randomized trials *Very seriousb,c,e,f *Seriousk Not serious Not serious None 203 200 - SMD 0.14 SD higher (0.4 lower to 0.67 higher) ⨁◯◯◯ Very low Important IS vs. Respiratory care - Vital capacity (assessed with: spirometry [% and liters]) 3 Randomized trials *Very seriousb,c,e,f,j,l *Seriousk Not serious Not serious None 57 73 - SMD 0.38 SD higher (0.59 lower to 1.34 higher) ⨁◯◯◯ Very low Important IS vs. Respiratory care - Arterial oxygen partial pressure (mmHg) 6 Randomized trials *Very seriousb,c,e,f,j,l *Seriousk Not serious Not serious None 125 157 - MD 4.48 lower (8.32 lower to 0.63 lower) ⨁◯◯◯ Very low Critical IS vs. Respiratory care - Oxygen saturation (%) 3 Randomized trials *Very seriousb,c,e,f,j,l *Seriousk Not serious Not serious None 71 71 - MD 2.54 higher (1.74 lower to 6.82 higher) ⨁◯◯◯ Very low Critical IS vs. Other therapies - Postoperative pulmonary complications (assessed with: number of events [pneumonia and atelectasis] recorded) 3 Randomized trials *Very seriousb,c,e,f,l *Seriousk Not serious Not serious None 38/54 (70.4%) 63/95 (66.3%) RR 1.04 (0.73 to 1.49) 27 more per 1,000 (from 179 fewer to 325 more) ⨁◯◯◯Very low Critical IS vs. Other therapies - Forced expiratory volume in one second (assessed with: spirometry [liters]) 2 Randomized trials *Very seriousb,c,e,f Not serious Not serious *Seriousi None 25 50 - MD 0.08 higher (0.08 lower to 0.25 higher) ⨁◯◯◯ Very low Important IS vs. Other therapies - Forced vital capacity (assessed with: spirometry [% and liters]) 3 Randomized trials *Very seriousb,c,e,f,j,l Not serious Not serious *Seriousi None 37 73 - SMD 0.15 SD higher (0.25 lower to 0.55 higher) ⨁◯◯◯ Very low Important IS vs. Other therapies - Arterial oxygen partial pressure (mmHg) 3 Randomized trials *Very seriousb,c,e,f,j,l *Seriousk Not serious Not serious None 44 87 - MD 3.63 lower (9.18 lower to 1.93 higher) ⨁◯◯◯ Very low Critical IS vs. NIV - Postoperative pulmonary complications (assessed with: number of events [pneumonia and atelectasis] recorded) 4 Randomized trials *Very seriousb,c,e,f,l *Seriousk Not serious Not serious None 95/113 (84.1%) 106/138 (76.8%) "RR 1.14 (0.84 to 1.55)" 108 more per 1,000 (from 123 fewer to 422 more) ⨁◯◯◯ Very low Critical IS vs. NIV - Mortality (assessed with: number of events recorded) 2 Randomized trials *Very seriousb,c,e,f,h Not serious Not serious *Seriousi None 0/65 (0.0%) 4/114 (3.5%) RR 0.49 (0.08 to 2.93) 18 fewer per 1,000 (from 32 fewer to 68 more) ⨁◯◯◯ Very low Critical IS vs. NIV - Adverse events (assessed with: number of events recorded) 3 Randomized trials *Very seriousb,c,e,f,l Not serious Not serious *Seriousi None 13/61 (21.3%) 14/81 (17.3%) RR 1.10 (0.62 to 1.95) 17 more per 1,000 (from 66 fewer to 164 more) ⨁◯◯◯ Very low Critical IS vs. NIV - Arterial oxygen partial pressure (mmHg) 4 Randomized trials *Very seriousb,c,e,f,l *Seriousk Not serious Not serious None 96 120 - MD 2.95 higher (4.69 lower to 10.58 higher) ⨁◯◯◯ Very low Critical IS vs. NIV - Oxygen saturation (%) 2 Randomized trials *Very seriousb,c,e,f,h *Seriousk Not serious Not serious None 56 92 - MD 0.99 lower (2.12 lower to 0.14 higher) ⨁◯◯◯ Very low Critical CI=confidence interval; ICU=intensive care unit; IS=incentive spirometry; LOS=length of stay; MD=mean difference; NIV=noninvasive ventilation; RR=risk ratio; SD=standard deviation; SMD=standardized mean difference *For very serious limitations, we downgraded two levels, and for serious limitations, we downgraded one level a. Allocation was not concealed in most studies b. There was no blinding of all subjects in the studies c. There was no blinding of all therapists who administered the therapy d. Data for at least one key outcome was not analyzed by “intention to treat” in most studies e. Allocation was not concealed f. Data for at least one key outcome was not analyzed by “intention to treat” g. Measures of at least one key outcome were not obtained from > 85% of the subjects initially allocated to groups h. There was no blinding of all assessors who measured at least one key outcome i. Imprecision with few studies and few participants j. Measures of at least one key outcome were not obtained from > 85% of the subjects initially allocated to groups in most studies l. There was no blinding of all assessors who measured at least one key outcome in most studies

Supplement 3 Meta-analyses of the results.

Fig. 2
Meta-analyses of the results for the primary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; PPC=postoperative pulmonary complications.

Fig. 3
Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. respiratory care. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; ICU=intensive care unit; LOS=length of stay; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity.

Fig. 4
Meta-analyses of the results for the primary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; PPC=postoperative pulmonary complications.

Fig. 5
Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. other therapies. CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; PEF=peak of expiratory flow; SD=standard deviation; VC=vital capacity.

Fig. 6
Meta-analyses of the results for the primary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; PPC=postoperative pulmonary complications.

Fig. 7
Meta-analyses of the results for the secondary outcomes of incentive spirometry vs. noninvasive ventilation (NIV). CI=confidence interval; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; PaO2=partial pressure of oxygen; SD=standard deviation; SO2=oxygen saturation; VC=vital capacity.

  • No financial support.

REFERENCES

  • 1
    Health AIo. Elective surgery waiting times 2017-18. Canberra: AIHW; 2019.
  • 2
    Mejia OAV, Lisboa LAF, Caneo LF, Arita ET, Brandão CMA, Dias RR, et al. Analysis of >100,000 cardiovascular surgeries performed at the heart institute and a new era of outcomes. Arq Bras Cardiol. 2020;114(4):603-12. doi:10.36660/abc.20190736.
    » https://doi.org/10.36660/abc.20190736.
  • 3
    Lee JJ, Park NH, Lee KS, Chee HK, Sim SB, Kim MJ, et al. Projections of demand for cardiovascular surgery and supply of surgeons. Korean J Thorac Cardiovasc Surg. 2016;49(Suppl 1):S37-S43. doi:10.5090/kjtcs.2016.49.S1.S37.
    » https://doi.org/10.5090/kjtcs.2016.49.S1.S37.
  • 4
    Gomes WJ, Moreira RS, Zilli AC, Bettiati LC Jr, Figueira FAMDS, D' Azevedo SSP, et al. The Brazilian registry of adult patient undergoing cardiovascular surgery, the BYPASS project: results of the first 1,722 patients. Braz J Cardiovasc Surg. 2017;32(2):71-6. Erratum in: Braz J Cardiovasc Surg. 2017;32(5):442. doi:10.21470/1678-9741-2017-0053.
  • 5
    Chen X, Hou L, Zhang Y, Liu X, Shao B, Yuan B, et al. The effects of five days of intensive preoperative inspiratory muscle training on postoperative complications and outcome in patients having cardiac surgery: a randomized controlled trial. Clin Rehabil. 2019;33(5):913-22. doi:10.1177/0269215519828212.
    » https://doi.org/10.1177/0269215519828212.
  • 6
    Patra C, Chamaiah Gatti P, Panigrahi A. Morbidity After cardiac surgery under cardiopulmonary bypass and associated factors: a retrospective observational study. Indian Heart J. 2019;71(4):350-5. doi:10.1016/j.ihj.2019.07.004.
    » https://doi.org/10.1016/j.ihj.2019.07.004.
  • 7
    Akintoye E, Sellke F, Marchioli R, Tavazzi L, Mozaffarian D. Factors associated with postoperative atrial fibrillation and other adverse events after cardiac surgery. J Thorac Cardiovasc Surg. 2018;155(1):242-51.e10. doi:10.1016/j.jtcvs.2017.07.063.
    » https://doi.org/10.1016/j.jtcvs.2017.07.063.
  • 8
    Taboada M, Rey R, Martínez S, Soto-Jove R, Mirón P, Selas S, et al. Reintubation in the ICU following cardiac surgery: is it more difficult than first-time intubation in the operating room?: a prospective observational study. Eur J Anaesthesiol. 2020;37(1):25-30. doi:10.1097/EJA.0000000000001019.
    » https://doi.org/10.1097/EJA.0000000000001019.
  • 9
    Curiel-Balsera E, Mora-Ordoñez JM, Castillo-Lorente E, Benitez-Parejo J, Herruzo-Avilés A, Ravina-Sanz JJ, et al. Mortality and complications in elderly patients undergoing cardiac surgery. J Crit Care. 2013;28(4):397-404. doi:10.1016/j.jcrc.2012.12.011.
    » https://doi.org/10.1016/j.jcrc.2012.12.011.
  • 10
    Ball L, Costantino F, Pelosi P. Postoperative complications of patients undergoing cardiac surgery. Curr Opin Crit Care. 2016;22(4):386-92. doi:10.1097/MCC.0000000000000319.
    » https://doi.org/10.1097/MCC.0000000000000319.
  • 11
    Overend TJ, Anderson CM, Lucy SD, Bhatia C, Jonsson BI, Timmermans C. The effect of incentive spirometry on postoperative pulmonary complications: a systematic review. Chest. 2001;120(3):971-8. doi:10.1378/chest.120.3.971.
    » https://doi.org/10.1378/chest.120.3.971.
  • 12
    Restrepo RD, Wettstein R, Wittnebel L, Tracy M. Incentive spirometry: 2011. Respir Care. 2011;56(10):1600-4. doi:10.4187/respcare.01471.
    » https://doi.org/10.4187/respcare.01471.
  • 13
    Eltorai AEM, Baird GL, Eltorai AS, Healey TT, Agarwal S, Ventetuolo CE, et al. Effect of an incentive spirometer patient reminder after coronary artery bypass grafting: a randomized clinical trial. JAMA Surg. 2019;154(7):579-88. doi:10.1001/jamasurg.2019.0520.
    » https://doi.org/10.1001/jamasurg.2019.0520.
  • 14
    Sullivan KA, Churchill IF, Hylton DA, Hanna WC. Use of incentive spirometry in adults following cardiac, thoracic, and upper abdominal surgery to prevent post-operative pulmonary complications: a systematic review and meta-analysis. Respiration. 2021;100(11):1114-27. doi:10.1159/000517012.
    » https://doi.org/10.1159/000517012.
  • 15
    Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097.
    » https://doi.org/10.1371/journal.pmed.1000097.
  • 16
    Santos EC, Pinto ACPN, Macedo JRFF, Lunardi AC. Effect of incentive spirometry after cardiac surgery: protocol for a systematic review. Fisioter Bras. 2020;21(1):117-25. doi:10.33233/fb.v21i1.3625.
    » https://doi.org/10.33233/fb.v21i1.3625.
  • 17
    Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210. doi:10.1186/s13643-016-0384-4.
    » https://doi.org/10.1186/s13643-016-0384-4.
  • 18
    Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713-21.
  • 19
    Gonzalez GZ, Moseley AM, Maher CG, Nascimento DP, Costa LDCM, Costa LO. Methodologic quality and statistical reporting of physical therapy randomized controlled trials relevant to musculoskeletal conditions. Arch Phys Med Rehabil. 2018;99(1):129-36. doi:10.1016/j.apmr.2017.08.485.
    » https://doi.org/10.1016/j.apmr.2017.08.485.
  • 20
    Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490. doi:10.1136/bmj.328.7454.1490.
    » https://doi.org/10.1136/bmj.328.7454.1490.
  • 21
    GRADEpro GDT: GRADEpro Guideline Development Tool [Software]. McMaster University, 2020 (developed by Evidence Prime, Inc.). Available from gradepro.org.
  • 22
    Review Manager 5 (RevMan 5) [Computer program]. Version 5.3. Copenhagen: Nordic Cochrane Centre, Cochrane, 2014.
  • 23
    Murad MH, Wang Z, Chu H, Lin L. When continuous outcomes are measured using different scales: guide for meta-analysis and interpretation. BMJ. 2019;364:k4817. doi:10.1136/bmj.k4817.
    » https://doi.org/10.1136/bmj.k4817.
  • 24
    Stock MC, Downs JB, Cooper RB, Lebenson IM, Cleveland J, Weaver DE, et al. Comparison of continuous positive airway pressure, incentive spirometry, and conservative therapy after cardiac operations. Crit Care Med. 1984;12(11):969-72. doi:10.1097/00003246-198411000-00010.
    » https://doi.org/10.1097/00003246-198411000-00010.
  • 25
    Higgins JPT, Eldridge S, Li T (editors). Chapter 23: Including variants on randomized trials. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021).
  • 26
    Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. Chichester UK: The Cochrane Collaboration and John Wiley & Sons Ltd., 2019. 703 p.
  • 27
    Iverson LI, Ecker RR, Fox HE, May IA. A comparative study of IPPB, the incentive spirometer, and blow bottles: the prevention of atelectasis following cardiac surgery. Ann Thorac Surg. 1978;25(3):197-200. doi:10.1016/s0003-4975(10)63521-7.
    » https://doi.org/10.1016/s0003-4975(10)63521-7.
  • 28
    Gale GD, Sanders DE. Incentive spirometry: its value after cardiac surgery. Can Anaesth Soc J. 1980;27(5):475-80. doi:10.1007/BF03007047.
    » https://doi.org/10.1007/BF03007047.
  • 29
    Dull JL, Dull WL. Are maximal inspiratory breathing exercises or incentive spirometry better than early mobilization after cardiopulmonary bypass? Phys Ther. 1983;63(5):655-9. doi:10.1093/ptj/63.5.655.
    » https://doi.org/10.1093/ptj/63.5.655.
  • 30
    Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. Physiotherapy after coronary artery surgery: are breathing exercises necessary? Thorax. 1989;44(8):634-9. doi:10.1136/thx.44.8.634.
    » https://doi.org/10.1136/thx.44.8.634.
  • 31
    Jenkins SC, Soutar SA, Loukota JM, Johnson LC, Moxham J. A comparison of breathing exercises, incentive spirometry and mobilisation after coronary artery surgery. Physiother Theory Pract. 1990;6:117-26. doi:10.3109/09593989009037789.
    » https://doi.org/10.3109/09593989009037789.
  • 32
    Oikkonen M, Karjalainen K, Kähärä V, Kuosa R, Schavikin L. Comparison of incentive spirometry and intermittent positive pressure breathing after coronary artery bypass graft. Chest. 1991;99(1):60-5. doi:10.1378/chest.99.1.60.
    » https://doi.org/10.1378/chest.99.1.60.
  • 33
    Crowe JM, Bradley CA. The effectiveness of incentive spirometry with physical therapy for high-risk patients after coronary artery bypass surgery. Phys Ther. 1997;77(3):260-8. doi:10.1093/ptj/77.3.260.
    » https://doi.org/10.1093/ptj/77.3.260.
  • 34
    Savcı S, Sakınç S, İnce DI, Arikan H, Can Z, Buran Y, et al. Active cycle of breathing techniques and incentive spirometer in coronary artery bypass graft surgery. Fizyoter Rehabil. 2006;17(2):61-9.
  • 35
    Romanini W, Muller AP, Carvalho KA, Olandoski M, Faria-Neto JR, Mendes FL, et al. The effects of intermittent positive pressure and incentive spirometry in the postoperative of myocardial revascularization. Arq Bras Cardiol. 2007;89(2):94-9, 105-10. doi:10.1590/s0066-782x2007001400006.
    » https://doi.org/10.1590/s0066-782x2007001400006.
  • 36
    Renault JA, Costa-Val R, Rosseti MB, Houri Neto M. Comparison between deep breathing exercises and incentive spirometry after CABG surgery. Rev Bras Cir Cardiovasc. 2009;24(2):165-72. doi:10.1590/s0102-76382009000200012.
    » https://doi.org/10.1590/s0102-76382009000200012.
  • 37
    Dias CM, Vieira Rde O, Oliveira JF, Lopes AJ, Menezes SL, Guimarães FS. Three physiotherapy protocols: effects on pulmonary volumes after cardiac surgery. J Bras Pneumol. 2011;37(1):54-60. doi:10.1590/s1806-37132011000100009.
    » https://doi.org/10.1590/s1806-37132011000100009.
  • 38
    El-Kader SMA. Blood gases response to different breathing modalities in phase I of cardiac rehabilitation program after coronary artery bypass graft. Eur J Gen Med. 2011;8(2):85-91. doi.org/10.29333/ejgm/82706.
    » https://doi.org/doi.org/10.29333/ejgm/82706
  • 39
    Almutairi F, Fallows S, Mason-Whitehead E. Continuous positive airway pressure (cpap) had better outcomes when compared with incentive spirometry (IS) to re-open collapse alveoli after cardiac surgery: randomized study. Am J Respir Crit Care Med. 2012;185:A4869. doi:10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4869.
    » https://doi.org/10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A4869.
  • 40
    Al-Mutairi FH, Fallows SJ, Abukhudair WA, Islam BB, Morris MM. Difference between continuous positive airway pressure via mask therapy and incentive spirometry to treat or prevent post-surgical atelectasis. Saudi Med J. 2012;33(11):1190-5.
  • 41
    Mueenudheen TP, Moiz JA, Gupta VP. A comparative study on the effects of incentive spirometry and deep breathing exercise on pulmonary functions after uncomplicated coronary artery bypass grafting surgery. Indian J Physiother Occup Ther. 2012;6(2):63-7.
  • 42
    Rizwan A, Jalwan J, Mukherjee S. To compare the immediate effect of deep breathing exercise and incentive spirometry on ABG after mitral valve replacement surgery. Indian J Physiother Occup Ther. 2012;6(4):12-7.
  • 43
    Zangerolamo TB, Barrientos TG, Baltieri L, Moreno M, Pazzianotto-Forti EM. Effects of flow-oriented incentive spirometry after myocardial revascularization. Rev Bras Cardiol. 2013;26(3):180-5.
  • 44
    Yazdannik A, Bollbanabad HM, Mirmohammadsadeghi M, Khalifezade A. The effect of incentive spirometry on arterial blood gases after coronary artery bypass surgery (CABG). Iran J Nurs Midwifery Res. 2016;21(1):89-92. doi:10.4103/1735-9066.174761.
    » https://doi.org/10.4103/1735-9066.174761.
  • 45
    Manapunsopee S, Thanakiatpinyo T, Wongkornrat W, Chuaychoo B, Thirapatarapong W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart Lung Circ. 2020;29(8):1180-6. doi:10.1016/j.hlc.2019.09.009.
    » https://doi.org/10.1016/j.hlc.2019.09.009.
  • 46
    Alam M, Hussain S, Shehzad MI, Mushtaq A, Rauf A, Ishaq S. Comparing the effect of incentive spirometry with acapella on blood gases in physiotherapy after coronary artery bypass graft. Cureus. 2020;12(2):e6851. doi:10.7759/cureus.6851.
    » https://doi.org/10.7759/cureus.6851.
  • 47
    Amin R, Alaparthi GK, Samuel SR, Bairapareddy KC, Raghavan H, Vaishali K. Effects of three pulmonary ventilation regimes in patients undergoing coronary artery bypass graft surgery: a randomized clinical trial. Sci Rep. 2021;11(1):6730. doi:10.1038/s41598-021-86281-4.
    » https://doi.org/10.1038/s41598-021-86281-4.
  • 48
    Zerang F, Amouzeshi A, Barkhordari-Sharifabad M. Comparison of the effect of incentive spirometry and deep breathing exercises on hemodynamic parameters of patients undergoing coronary artery bypass graft surgery: a clinical trial. J Vasc Nurs. 2022;40(3):134-9. doi:10.1016/j.jvn.2022.08.002.
    » https://doi.org/10.1016/j.jvn.2022.08.002.
  • 49
    Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13. doi:10.1186/1471-2288-5-13.
    » https://doi.org/10.1186/1471-2288-5-13.
  • 50
    Freitas ER, Soares BG, Cardoso JR, Atallah AN. Incentive spirometry for preventing pulmonary complications after coronary artery bypass graft. Cochrane Database Syst Rev. 2007;(3):CD004466. Update in: Cochrane Database Syst Rev. 2012;9:CD004466. doi:10.1002/14651858.CD004466.pub2.
  • 51
    Freitas ER, Soares BG, Cardoso JR, Atallah ÁN. Incentive spirometry for preventing pulmonary complications after coronary artery bypass graft. Cochrane Database Syst Rev. 2012;2012(9):CD004466. doi:10.1002/14651858.CD004466.pub3.
    » https://doi.org/10.1002/14651858.CD004466.pub3.
  • 52
    Eltorai AEM, Baird GL, Pangborn J, Eltorai AS, Antoci V Jr, Paquette K, et al. Financial impact of incentive spirometry. Inquiry. 2018;55:46958018794993. doi:10.1177/0046958018794993.
    » https://doi.org/10.1177/0046958018794993.
  • 53
    Kotani T, Akazawa T, Sakuma T, Nagaya S, Sonoda M, Tanaka Y, et al. Effects of incentive spirometry on respiratory motion in healthy subjects using cine breathing magnetic resonance imaging. Ann Rehabil Med. 2015;39(3):360-5. doi:10.5535/arm.2015.39.3.360.
    » https://doi.org/10.5535/arm.2015.39.3.360.
  • 54
    Alaparthi GK, Augustine AJ, Anand R, Mahale A. Comparison of diaphragmatic breathing exercise, volume and flow incentive spirometry, on diaphragm excursion and pulmonary function in patients undergoing laparoscopic surgery: a randomized controlled trial. Minim Invasive Surg. 2016;2016:1967532. doi:10.1155/2016/1967532.
    » https://doi.org/10.1155/2016/1967532.

Publication Dates

  • Publication in this collection
    29 Apr 2024
  • Date of issue
    2024

History

  • Received
    05 Apr 2023
  • Accepted
    16 May 2023
Sociedade Brasileira de Cirurgia Cardiovascular Rua Afonso Celso, 1178 Vila Mariana, CEP: 04119-061 - São Paulo/SP Brazil, Tel +55 (11) 3849-0341, Tel +55 (11) 5096-0079 - São Paulo - SP - Brazil
E-mail: bjcvs@sbccv.org.br