Abstracts
The phytochemical study of the stem bark of Aspidosperma nitidum led to the isolation of a new type of indole alkaloid with a 1,2,9-triazabicyclo[7.2.1] system, which has been called braznitidumine 1. The characterization of its chemical structure was carried out by IR, UV, ESIMS, and ¹H, 13C, and 15N NMR by using 1D and 2D (¹H ¹H COSY, ¹H ¹H NOESY, ¹H 13C HSQC and ¹H 13C HMBC) experiments. ¹H ¹H NOESY results showed that 1 presents a folded conformation with the approximation of the indole and the imidazolidine di-hydropyran groups. This configuration was investigated by theoretical calculations involving geometry optimization (DFT/BLYP/6-31G*) for the conformational analysis of this alkaloid. It confirmed the distance between the two groups in agreement with the NOESY experimental data.
Apocynaceae; Aspidosperma nitidum; indole alkaloid; 1,2,9-triazabicyclo[7.2.1] system
O estudo fitoquímico das cascas do cerne de Aspidosperma nitidum permitiu o isolamento de um novo tipo de alcalóide indólico, contendo um sistema 1,2,9-triazabiciclo[7.2.1], que foi denominado braznitidumina 1. A caracterização de sua estrutura química foi realizada pela análises dos dados de IV, UV, ESI-EM e RMN de ¹H, 13C e 15N, empregando experimentos 1D e 2D (¹H ¹H COSY, ¹H ¹H NOESY, ¹H 13C HSQC e ¹H 13C HMBC). Pela análise do experimento ¹H ¹H NOESY, verificou-se que 1 apresenta uma conformação dobrada com aproximação entre os grupos indólico e imidazolidino-di-hidropirano. Essa configuração foi investigada por cálculos teóricos envolvendo otimizações de geometria (DFT/BLYP/6-31G*) para análise conformacional desse alcalóide, pela qual a distância entre os dois grupos mostrou-se compatível com as informações obtidas pelo experimento NOESY.
ARTICLE
NMR structural analysis of #braznitidumine: a new indole alkaloid with 1,2,9-triazabicyclo[7.2.1] system, isolated from Aspidosperma nitidum (Apocynaceae)
Maria M. PereiraI, II; Antônio Flávio de C. AlcântaraII, III; Dorila Piló-Veloso*, II; Délio S. RaslanII
IDepartamento de Medicamentos e Alimentos, Faculdade de Farmácia, Universidade Federal do Amazonas, 69010-300 Manaus-AM, Brazil
IIDepartamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil
IIIDepartamento de Química, ICE, Universidade Federal do Amazonas, 69077-000 Manaus-AM, Brazil
ABSTRACT
The phytochemical study of the stem bark of Aspidosperma nitidum led to the isolation of a new type of indole alkaloid with a 1,2,9-triazabicyclo[7.2.1] system, which has been called braznitidumine 1. The characterization of its chemical structure was carried out by IR, UV, ESIMS, and 1H, 13C, and 15N NMR by using 1D and 2D (1H 1H COSY, 1H 1H NOESY, 1H 13C HSQC and 1H 13C HMBC) experiments. 1H 1H NOESY results showed that 1 presents a folded conformation with the approximation of the indole and the imidazolidine di-hydropyran groups. This configuration was investigated by theoretical calculations involving geometry optimization (DFT/BLYP/6-31G*) for the conformational analysis of this alkaloid. It confirmed the distance between the two groups in agreement with the NOESY experimental data.
Keywords: Apocynaceae, Aspidosperma nitidum, indole alkaloid, 1,2,9-triazabicyclo[7.2.1] system
RESUMO
O estudo fitoquímico das cascas do cerne de Aspidosperma nitidum permitiu o isolamento de um novo tipo de alcalóide indólico, contendo um sistema 1,2,9-triazabiciclo[7.2.1], que foi denominado braznitidumina 1. A caracterização de sua estrutura química foi realizada pela análises dos dados de IV, UV, ESI-EM e RMN de 1H, 13C e 15N, empregando experimentos 1D e 2D (1H 1H COSY, 1H 1H NOESY, 1H 13C HSQC e 1H 13C HMBC). Pela análise do experimento 1H 1H NOESY, verificou-se que 1 apresenta uma conformação dobrada com aproximação entre os grupos indólico e imidazolidino-di-hidropirano. Essa configuração foi investigada por cálculos teóricos envolvendo otimizações de geometria (DFT/BLYP/6-31G*) para análise conformacional desse alcalóide, pela qual a distância entre os dois grupos mostrou-se compatível com as informações obtidas pelo experimento NOESY.
Introduction
The Aspidosperma Mart. (Apocinaceae) genus is native to Americas and is found from Mexico to Argentina.1 The literature reports the presence of alkaloids in species of this genus, mainly indole ones.2Aspidosperma nitidum, popularly known as carapanaúba, is widely distributed in the Amazonas State, Brazil. The stem barks of this species are largely employed in folk medicine as a contraceptive, antimalarial, antiinflammatory (uterus and ovary), anticarcinogenic, antidiabetic, antileprosy, and for stomach upsets.3 Nevertheless, just one report has been found in literature on its chemical components.4 In that work the only reported alkaloid from this species was 10-methoxydihydrocorynantheol.
In this paper, we report the results of the phytochemical study of the Aspidosperma nitidum species. From the ethanolic extract was isolated the indole alkaloid (1) named braznitidumine, which has a very interesting bridged chemical structure containing a 1,2,9-triazabicyclo[7.2.1] system. The structure was determined by means of spectroscopic techniques, mainly ESIMS, IR and 1D and 2D NMR spectra.
Results and Discussion
Purification of the stem bark ethanol extract of Aspidosperma nitidum by silica gel column chromatography resulted in the isolation of the new indole alkaloid (1). Its molecular formula, C24H32N4O6 , was deduced from the precisely determined mass of the molecular ion peak [M+] at m/z 472.682 in the positive mode ESIMS. This molecular formula has 11 degrees of unsaturations, which is in agreement with 1H (1D and 2D COSY), 13C (1D and 2D HSQC, HMBC) NMR spectral data. 1D 1H and 13C ({1H} and DEPT) and 2D (1H 13C HSQC, 1H 15N HSQC, 1H 13C HMBC, 1H 15N HMBC) NMR experiments led to the elucidation of a very interesting new indole alkaloid, name braznitidumine, as yet unreported in the literature.
A NH and a conjugated carbonyl group were identified by absorption bands at 3430 and 1697 cm-1, respectively, observed in the IR spectrum of 1.5 The UV spectral data of 1 in methanol, lmax 208.80, 217.37, 272.20, and 305.50 nm, were characteristic of indole systems.6
Tables 1 and 2 show 1H, 13C, and 15N NMR data of compound 1. The 1H NMR spectrum showed most of the hydrogen resonance as unresolved broad signals (290 to 300 K). This spectrum revealed the presence of an indole group by singlets at dH 7.01 (H-9) and 6.90 (H-6), which show correlations in the 1H 13C HSQC with the 13C signals at dC 101.1 (C-9) and 95.4 (C-6), respectively. It also displayed long range correlations in the 1H 13C HMBC of the signal at dH 7.01 with the 13C signals at dC 95.4 (C-6), 102.1 (C-9b), 130.8 (C-5a), and 146.9 (C-7); of the signal at dH 6.90 with the 13C signals at dC 101.1 (C-9), 118.2 (C-9a), and 144.6 (C-8); of the signal at dH 3.76, relative to six hydrogens of methoxyl groups (MeO-7 and MeO-8), with the 13C signals at dC 95.4 (C-6), 101.1 (C-9), 144.6 (C-8), and 146.9 (C-7) (Figure 1). These last correlations indicate the phenyl moiety of an indole group, with two orto methoxyl substituents. The 1H NMR spectrum also shows a singlet at dH 11.13 (H-5), which is not correlated to any signal either by 1H 1H COSY or 1H 13C HSQC, but that is correlated with the 15N signal at dN 127.4 (N-5) by 1H 15N HSQC. Through these last data, it was identified an NH by the indole group. Finally, a correlation was observed of the 1H signal at dH 6.90 (H-6) with the 15N signal at dN 127.4 (N-5) by 1H 15N HMBC.
The connectivity of the indole group with the rest of the molecule was deduced from the following 1H 13C HMBC correlations: the signal at dH 2.98 (H-10) with the 13C signals at dC 102.1 (C-9b) via 2J, 127.3 (C-4a) via 3J, and 118.2 (C-9a) via 3J; the signal at dH 3.84 (H-11) with the 13C signal at dC 102.1 (C-9b) via 3J; the signal at dH 4.90 (H-4) with the 13C signals at dC 102.1 (C-9b) via 3J and 127.3 (C-4a) via 2J.
The homonuclear spin-spin couplings of H-10 with H-11 and of H-4 with both hydrogens having signals at dH 2.00 (H-2) and 2.64 (H-3) were revealed by 2D 1H 1H COSY and so was the coupling between H-2 and H-3. Other 1H 13C HSQC correlations were observed: H-3 with the 13C signal at dC 32.3 (C-3); H-10 with the 13C signal at dC 17.8 (C-10); H-11 with the 13C signal at dC 54.3 (C-11); H-4 with the 13C signal at dC 64.0 (C-4). No HSQC correlation was observed to the H-2 signal. In addition, 1H 13C HMBC long range 2J and 3J correlations were observed for the H-11 signal and the MeO-4 signal at dH 3.26 with the 13C signals at dC 17.8 (C-10) and 64.0 (C-4), respectively. 1H 15N HSQC shows correlation of the 1H signal at dH 2.00 (H-2) with the 15N signal at dN 55.0 (N-2), which shows long range correlations with the signals at dH 2.64 (H-3), 3.00 (H-16a), and 3.26 (MeO-4) in 1H 15N HMBC.
Some broad and relatively very small signals characteristic of nitrogen-bonded aliphatic carbons7 were observed in the 13C NMR spectrum at dC 27.6 (CH-16a), 32.3 (CH2-3), 35.7 (CH-12a), 54.3 (CH2-11), and 61.4 (CH2-17). The 1H 13C HMQC and 1H 13C HSQC experiments confirmed these signals were due to hydrogenated carbons.
The substituted indole fragment shown in Figure 1 was inferred from all the data discussed above. In this fragment, the proximity of the NH indole and the oxygen of MeO-4 may lead to the formation of a hydrogen bond and thus explain the deshielding at dH 11.13 observed for H-5.
In addition, the combination of 1H and 13C NMR data with the IR spectrum revealed a molecular fragment of dihydropyran methyl ester (Figure 2). All the three signals of both non-hydrogenated 13C at dC 107.6 (C-16) and 166.4 (C-18) as well as the one of 13C at dC 155.0 (C-15), show correlations by 1H 13C HSQC with the 1H signal at dH 7.53 (H-15), and are therefore compatible with the conjugated carbonyl system deduced from the IR spectrum. The 1H signals at dH 3.66 (MeO-18) and at dH 3.00 (H-16a) are both correlated with the carbonyl 13C signal at dC 166.4 (C-18) in 1H 13C HMBC. On the other hand, H-16a is correlated with the nitrogenated 13C signal at dC 27.6 (C-16a) in 1H 13C HSQC and with the 13C signal at dC 71.3 (C-13) in 1H 13C HMBC. H-16a is coupled with a hydrogen with a signal at dH 2.26 (H-12a) in 1H 1H COSY (Table 2). The latter shows spin-spin coupling with hydrogens presenting signals at dH 4.55 (H-13) and 4.03 (H-17) in 1H 1H COSY and it correlates with the nitrogenated 13C signal at dC 35.7 (C-12a) in 1H 13C HSQC. The spin-spin coupling between H-12a and H-17 is weak and is only detected by 1H 1H COSY, possibly due to a W 4J coupling.
The methyl signal at dH 1.44 (Me-13), which is correlated with the 13C signal at dC 17.9 (Me-13) in 1H 13C HSQC, is correlated with the signal at dH 4.55 (H-13) in 1H 1H COSY and with the 13C signal at dC 35.7 (C-12a) in 1H 13C HMBC. Finally, in 1H 13C HSQC, the 13C signal at dC 61.4 (C-17) is correlated with the signal at dH 4.03 and so must be the remaining of the cited aliphatic nitrogenated CH2 detected in the DEPT experiment. As its attached hydrogen shows weak coupling with H-12a in the 1H 1H COSY and also because of its chemical shift, this CH2 group is thought to be linked to two nitrogen atoms in a fused 5-6 ring system, i.e. a substituted fused imidazolidine-pyran system fragment of 1, as shown in Figure 2. The literature reports some other indole alkaloids isolated from Aspidosperma species as isomitrafiliane, 3-isoajamalicine, mitrafiline, and isomitrafilinic acid with a substituted pyran fragment, but none with the fused imidazolidine-pyran system shown in Figure 2.8 Taking into account the molecular formula and the deduced structure of both the indole (Figure 1) and the imidazolidine-pyran (Figure 2) fragments, one of the aliphatic nitrogen atoms of each of these fragments must be shared to connect them. Hence, the structure containing the bridgehead-nitrogen bridged-bicyclic system shown in Figure 3 is proposed for braznitidumine 1. In accord with this, 1H 15N HMBC shows long range correlation of the signal at dN 55.0 (N-2) with the signal at dH 2.64 (H-3, via 2J), with the signal at dH 3.00 (H-16a, via 3J), and with the signal at dH 3.26, showing weak coupling (MeO-4, via 5J). No other correlations were observed in the NMR experiments performed (1H 1H COSY, 1H 13C HMBC, 1H 15N HMBC) via scalar homonuclear or heteronuclear spin-spin coupling of imidazolidine-pyran system atoms with indole fragment atoms. However, the proposed structure 1 was confirmed by dipolar interaction due to spatial proximity observed as correlations in 1H 1H NOESY experiment (Table 2). Figure 3 shows the 1H 1H NOESY correlations detected for braznitidumine 1.
No correlation of the signal at dH 2.26 (H-12a) with the signal at dH 3.00 (H-16a) in 1H 1H NOESY was observed. The correlations of H-12a with both Me-13 and H-17 show that they are on the same side of the molecule. The latter correlates also with OMe-4. Thus, the relative configuration of H-12a is established relatively to those groups in the molecule. However, nothing may be deduced for H-16a configuration, because the only correlation it presents is with the NH-2 (Figure 3). Therefore, H-16a may be cis or trans relatively to H-12a.
The correlations of MeO-18 with H-4, H-5, and H-6, as well as the correlation of Me-13 with H-11 indicates their spatial proximity, which could be explained if braznitidumine show a folded conformation. This conformation may be accounted for if the imidazolidine-pyran ring fusion is trans or cis as may be seen by the Dreiding model as well by the DFT/BLYP/6-31G* optimized geometry (Figures 4a and 4b, respectively).
Figure 4 shows the DFT/BLYP/6-31G* optimized geometry of 1 considering the solvent (DMSO) effect by PCM method. By single bond rotations of this geometry, the folding could be verified from spatial proximity of Me-13 with H-11, as well as of MeO-18 with H-4, H-6, and H-5. In the folded trans configuration (Figure 4a), the hydrogen interatomic distances are: CH3O-18 H-5 = 2.470 Å; CH3O-18 H-6 = 4.326 Å; CH3O-18 H-4 = 1.210 Å; CH3O-4 H-17 = 3.140 Å; CH3-13 H-17 = 4.320 Å. In the folded cis configuration (Figure 4b), the hydrogen interatomic distances are: CH3O-18 H-5 = 2.241 Å; CH3O-18 H-6 = 2.594 Å; CH3O-18 H-4 = 1.192 Å; CH3O-4 H-17 = 2.792 Å; CH3-13 H-17 = 2.464 Å.
Experimental
General Procedures
Melting point was obtained on a Mettler FP82 HT and was uncorrected. FTIR spectrum was determined in KBr disk on an FTIR Perkin Elmer Spectrum 200 spectrometer. ESI-MS spectrum was obtained in positive mode in a Q-TOF MicroTM MICROMASS spectrometer. UV spectrum was obtained in 1% methanol solution in a Perkin Elmer 202 spectrometer. Chromatographic purification was carried out on silica gel (70-230 mesh). In the thin layer chromatography analysis was used silica gel 60F254 and 60G mixture (1:3).
1H and 13C NMR spectra were measured on a Bruker DRX400 AVANCE spectrometer, with inverse probes and field gradient, operating at 400.129 and 100.613 MHz, respectively. DMSO-d6 was used as a solvent (the sample was dissolved in 0.75 mL of solvent and transferred to a 5 mm NMR tube), with TMS as an internal reference (d = 0). 15N spectra were measured on a Bruker DRX400 AVANCE spectrometer with inverse probe and field gradient, operating at 40.549 MHz, at Centro Nacional de Ressonância Magnética Nuclear (CNRMN), UFRJ. DMSO-d6 was used as a solvent with urea as external reference (78 ppm in DMSO-d6). Chemical shifts are given in the d-scale (ppm) and coupling constants J in Hz. Experiments were carried out using pulse sequence and programs provided by the manufacturer. One dimensional (1D) 1H and 13C NMR spectra were acquired under standard conditions by using a direct detection 5 mm 1H/13C dual probe. Standard pulse sequences were used for two dimensional (2D) homonuclear and heteronuclear shift correlation spectra by using a multinuclear inverse detection 5 mm probe with field gradient at z axis. For 1H 13C HMBC, three delays for evolution of long range coupling [1/(nJC-H)] 65, 125, and 130 ms] were used. For the 2D 1H 1H NOESY experiment two mixing times (350 and 700 ms) were pre-optimized by a specific Bruker computer program.
Theoretical calculations
Theoretical studies were carried out using the software package GAUSSIAN03.9 Spatial arrangements determined through NOESY experiments were used as initial models for geometry optimization calculations by the semi-empirical PM3 method in the gaseous state.10 Geometries obtained by PM3 method were optimized again by the Density Functional Theory (DTF)11 method with BLYP functionals12 with a 6-31G*13 basis set (DFT/BLYP/6-31G*). All structures obtained by theoretical calculations were characterized as true energy minima in PES through frequency calculations (when the frequencies are real, they correspond to a true minimal energy structure). Calculations of solvent effects were performed for optimized geometries in the DFT/BLYP/6-31G* level by using the Polarizable Continuum Model (PCM) at the same calculation level.14
Material and isolation of 1
Stem of A. nitidum was collected near Manaus City, Amazon State in June 2000. A voucher specimen (181832) is deposited in the Herbarium of Instituto Nacional de Pesquisas da Amazônia (INPA). The dried and powered stem barks (1.5 kg) of A. nitidum were extracted with EtOH and yielded 173 g of crude ethanol extract after the removal of the solvent. This extract was chromatographed on silica gel column and eluted with methylene chloride, acetyl acetate, and ethanol. The ethanol solution evaporated under vacuum yielded 40.20 g of a residue, which was rechromatographed on silica gel with ethyl acetate:methanol 9:1 as an eluent. Compound 1 (120.0 mg) was obtained as a yellow solid; mp 272.9-273.1 °C; Dragendorff positive test for alkaloids (orange-yellow color); IR (KBr) nmax/cm-1: 3430, 2949, 1697, 1485, 1442, 1308, 1285. MS (ESI+) m/z: 472.682 (M+; 0.3), 427.214 ([MC2H6O]+; 1). For NMR data see Tables 1 and 2.
Conclusions
The structure of alkaloid braznitidumine (1) could be elucidated through the analysis of its 1D and 2D 1H, 13C, and 15N NMR spectra. It showed a new and interesting framework including a 1,2,9-triazabicyclo[7.2.1] system in a folded molecule. The new compound may show either a trans or a cis fused imidazolidine-pyran system fragment in its structure. Geometry optimization calculations (DFT/BLYP/6-31G*) are compatible with nOe data and corroborate 1H 1H NOESY results.
Acknowledgments
The authors thank CNPq, FAPEAM, and FAPEMIG the financial support and Prof. Fábio C. L. Almeida from Centro Nacional de Ressonância Magnética Nuclear (CNRMN), UFRJ, the 15N NMR spectra. M. M. Pereira thanks CAPES for PICDT grant.
Supplementary Information
Supplementary data are available at free of charge at http://jbcs.sbq.org.br, as PDF file.
References
1. Rocha, A. I. R.; Acta Amaz. 1982, 12, 381; Roberto, G. M. T.; Ahond, A.; Poupat, C.; Potier, P.; Jousselin, A.; Jacquemin, H.; J. Nat. Prod. 1983, 46, 694; Nicholas, A.; Baijnath, A. A.; Bot. Rev. 1994, 60, 440.
2. Ferreira, P. C.; Marini-Bettolo, G. B.; Schumtz, J.; Experientia 1959, 15, 179; Ondetti, M. A.; Deulofeu, V.; Tetrahedron Lett. 1959, 1; Warnhoff, E. W.; J. Am. Chem. Soc. 1959, 81, 4433; Ondetti, M. A.; Deulofeu, V.; Tetrahedron Lett. 1960, 18; Ondetti, M. A.; Deulofeu, V.; Tetrahedron Lett. 1961, 160; Wenkert, E.; J. Am. Chem. Soc. 1962, 84, 98; Ohashi, M.; Joule, J. A.; Djerassi, C.; Tetrahedron Lett. 1964, 3899; Joule, J. A.; Djerassi, C.; J. Chem. Soc. 1964, 2777; Brown, Jr., K. S.; Phytochemistry 1976, 15, 1093; Allen, J. R. F.; Holmstedt, B. R.; Phytochemistry 1980, 19, 1573; Garcia, M. R. R.; Bolzani, V. S.; Serur, L. M.; Matos, F. J. A.; Gottlieb, O. R.; Biochem. Syst. Ecol. 1987, 15, 187; Nunes, D. S.; Koike, L.; Taveira, J. J.; Reis, F. A. M.; Phytochemistry 1992, 31, 2507; Mitaine, A. C.; Mesbah, K.; Richard, B.; Petermann, C.; Arrazola, S.; Moretti, C.; Hanrot, M. Z.; Oliver, L. L. M.; Planta Med. 1996, 62, 458; Oliveira, F. Q.; Junqueira, R. G.; Stehmann, J. R.; Brandão, M. G. L.; Rev. Bras. Plant. Med. 2003, 5, 23.
3. Brandão, M. G. L.; Grandi, T. S. M.; Rocha, E. M. M.; Sawyer, D. R.; Krettli, A. U.; J. Ethnopharmacol. 1992, 36, 175; Ribeiro, J. E. L. S.; Hopkins, M. J. G.; Vicentini, A.; Sothers, C. A.; Costa, M. A. S.; Brito, J. M.; Souza, M. A. D.; Martins, L. H. P.; Lohmann, L. G.; Assunção, P. A. C. L.; Pereira, E. C.; Silva, C. F.; Mesquita, M. R.; Procópio, L. C.; Guia de Identificação das Plantas Vasculares de uma Floresta de Terra-Firme na Amazônia Central, Midas Printing: Manaus, 1999, p. 568; Weniger, B.; Robledo, S.; Arango, G. J.; Deharo, E.; Aragon, R.; Muñoz, V.; Callapa, J.; Lobstein, A.; Anton, R.; J. Ethnopharmacol. 2001, 78, 193; Bourdy, G.; Oporto, P.; Gimenez, A.; Deharo, E.; J. Ethnopharmacol. 2004, 93, 269.
4. Arndt, R. R.; Brown, S. H.; Ling, N. C.; Roller, P.; Djerassi, C.; Ferreira-Filho, J. M.; Gilbert, B.; Miranda, E. C.; Flores, S. E.; Phytochemistry 1967, 6, 1653.
5. Brown Jr., K. S.; Sanchez, W. E.; Figueiredo, A. A.; Ferreira-Filho, J. M.; J. Am. Chem. Soc. 1966, 88, 4984; Berden, G.; Meerts, W. L.; Jalviste, E.; J. Chem. Phys. 1995, 103, 9596.
6. Manske, R. H. F.; Rodrigo, R.; The Alkaloids, Academic Press: New York, 1965, vol. 8.
7. Murari, M.; Baumann, W. J.; J. Am. Chem. Soc. 1981, 103, 1238.
8. Gilbert, B.; Antonaccio, L. D.; Djerassi, C.; J. Am. Chem. Soc. 1962, 84, 4702; Gilbert, B.; Brissolese, J. A.; Finch, N.; Taylor, W. I.; Budzikiewicz, H.; Wilson, J. M.; Djerassi, C.; J. Am. Chem. Soc. 1963, 85, 1523; Litschel, E.; Tomcsik, J.; Experientia 1963, 19, 585; Dastoor, N. J.; Gorman, A. A.; Schmid, H.; Helv. Chim. Acta 1967, 50, 213; Roberto, G. M. T.; Ahond, A.; Poupat, C.; Potier, P.; Jousselin, A.; Jacquemin, H.; J. Nat. Prod. 1983, 46, 694.
9. Gaussian 03, Revision B.04: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen,W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc., Pittsburgh PA, 2003.
10. Dewar, M. J. S.; Zoebish, E. G.; Healy, E. F.; Stewart, J. J. P.; J. Am. Chem. Soc. 1985, 107, 902.
11. Parr, R. G.; Yang, W.; Density Functional Theory of Atoms and Molecules, Oxford: New York, 1989.
12. Becke, A. D.; Phys. Rev. A 1988, 38, 3098; Lee, C.; Yang, W.; Parr, R. G.; Phys. Rev. B 1993, 37, 785.
13. Ditchfield, R.; Hehre, W. J.; Pople, J. A.; J. Chem. Phys. 1971, 54, 724; Hehre, W. J.; Ditchfield, R.; Pople, J. A.; J. Chem. Phys. 1972, 56, 2257; Hariharan, P. C.; Pople, J. A.; Theor. Chim. Acta 1973, 28, 213; Hariharan, P. C.; Pople, J. A.; Mol. Phys. 1974, 27, 209; Gordon, M. S.; Chem. Phys. Lett. 1980, 76, 163.
14. Ditchfield, R.; Hehre, W. J.; Pople, J. A.; J. Chem. Phys. 1971, 54, 724; Hehre, W. J.; Ditchfield, R.; Pople, J. A.; J. Chem. Phys. 1972, 56, 2257; Cossi, M.; Barone, V.; Camimi, R.; Tomasi, J.; Chem. Phys. Lett. 1996, 255, 327; Barone, V.; Cossi, M.; Tomasi, J.; J. Chem. Phys. 1997, 107, 3210.
Received: April 27, 2006
Published on the web: August 22, 2006
Supplementary Information
Figure S1 - click here to enlarge
Figure S2 - click here to enlarge
Figure S3 - click here to enlarge
Figure S4 - click here to enlarge
Figure S5 - click here to enlarge
Figure S6 - click here to enlarge
Figure S8 - click here to enlarge
Figure S9 - click here to enlarge
Figure S10 - click here to enlarge
Figure S11 - click here to enlarge
Figure S12 - click here to enlarge
Figure S13 - click here to enlarge
Figure S14 - click here to enlarge
Figure S15 - click here to enlarge
Figure S16 - click here to enlarge
Figure S17 - click here to enlarge
Figure S18 - click here to enlarge
References
- 1. Rocha, A. I. R.; Acta Amaz 1982, 12, 381;
- Roberto, G. M. T.; Ahond, A.; Poupat, C.; Potier, P.; Jousselin, A.; Jacquemin, H.; J. Nat. Prod. 1983, 46, 694;
- Nicholas, A.; Baijnath, A. A.; Bot. Rev. 1994, 60, 440.
- 2. Ferreira, P. C.; Marini-Bettolo, G. B.; Schumtz, J.; Experientia 1959, 15, 179;
- Ondetti, M. A.; Deulofeu, V.; Tetrahedron Lett 1959, 1;
- Warnhoff, E. W.; J. Am. Chem. Soc. 1959, 81, 4433;
- Ondetti, M. A.; Deulofeu, V.; Tetrahedron Lett 1960, 18;
- Ondetti, M. A.; Deulofeu, V.; Tetrahedron Lett 1961, 160;
- Wenkert, E.; J. Am. Chem. Soc. 1962, 84, 98;
- Ohashi, M.; Joule, J. A.; Djerassi, C.; Tetrahedron Lett 1964, 3899;
- Joule, J. A.; Djerassi, C.; J. Chem. Soc. 1964, 2777;
- Brown, Jr., K. S.; Phytochemistry 1976, 15, 1093;
- Allen, J. R. F.; Holmstedt, B. R.; Phytochemistry 1980, 19, 1573;
- Garcia, M. R. R.; Bolzani, V. S.; Serur, L. M.; Matos, F. J. A.; Gottlieb, O. R.; Biochem. Syst. Ecol. 1987, 15, 187;
- Nunes, D. S.; Koike, L.; Taveira, J. J.; Reis, F. A. M.; Phytochemistry 1992, 31, 2507;
- Mitaine, A. C.; Mesbah, K.; Richard, B.; Petermann, C.; Arrazola, S.; Moretti, C.; Hanrot, M. Z.; Oliver, L. L. M.; Planta Med. 1996, 62, 458;
- Oliveira, F. Q.; Junqueira, R. G.; Stehmann, J. R.; Brandão, M. G. L.; Rev. Bras. Plant. Med 2003, 5, 23.
- 3. Brandão, M. G. L.; Grandi, T. S. M.; Rocha, E. M. M.; Sawyer, D. R.; Krettli, A. U.; J. Ethnopharmacol 1992, 36, 175;
- Ribeiro, J. E. L. S.; Hopkins, M. J. G.; Vicentini, A.; Sothers, C. A.; Costa, M. A. S.; Brito, J. M.; Souza, M. A. D.; Martins, L. H. P.; Lohmann, L. G.; Assunção, P. A. C. L.; Pereira, E. C.; Silva, C. F.; Mesquita, M. R.; Procópio, L. C.; Guia de Identificação das Plantas Vasculares de uma Floresta de Terra-Firme na Amazônia Central, Midas Printing: Manaus, 1999, p. 568;
- Weniger, B.; Robledo, S.; Arango, G. J.; Deharo, E.; Aragon, R.; Muñoz, V.; Callapa, J.; Lobstein, A.; Anton, R.; J. Ethnopharmacol 2001, 78, 193;
- Bourdy, G.; Oporto, P.; Gimenez, A.; Deharo, E.; J. Ethnopharmacol. 2004, 93, 269.
- 4. Arndt, R. R.; Brown, S. H.; Ling, N. C.; Roller, P.; Djerassi, C.; Ferreira-Filho, J. M.; Gilbert, B.; Miranda, E. C.; Flores, S. E.; Phytochemistry 1967, 6, 1653.
- 5. Brown Jr., K. S.; Sanchez, W. E.; Figueiredo, A. A.; Ferreira-Filho, J. M.; J. Am. Chem. Soc 1966, 88, 4984;
- Berden, G.; Meerts, W. L.; Jalviste, E.; J. Chem. Phys. 1995, 103, 9596.
- 6. Manske, R. H. F.; Rodrigo, R.; The Alkaloids, Academic Press: New York, 1965, vol. 8.
- 7. Murari, M.; Baumann, W. J.; J. Am. Chem. Soc. 1981, 103, 1238.
- 8. Gilbert, B.; Antonaccio, L. D.; Djerassi, C.; J. Am. Chem. Soc. 1962, 84, 4702;
- Gilbert, B.; Brissolese, J. A.; Finch, N.; Taylor, W. I.; Budzikiewicz, H.; Wilson, J. M.; Djerassi, C.; J. Am. Chem. Soc. 1963, 85, 1523;
- Litschel, E.; Tomcsik, J.; Experientia 1963, 19, 585;
- Dastoor, N. J.; Gorman, A. A.; Schmid, H.; Helv. Chim. Acta 1967, 50, 213;
- Roberto, G. M. T.; Ahond, A.; Poupat, C.; Potier, P.; Jousselin, A.; Jacquemin, H.; J. Nat. Prod. 1983, 46, 694.
- 9. Gaussian 03, Revision B.04: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen,W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc., Pittsburgh PA, 2003.
- 10. Dewar, M. J. S.; Zoebish, E. G.; Healy, E. F.; Stewart, J. J. P.; J. Am. Chem. Soc. 1985, 107, 902.
- 11. Parr, R. G.; Yang, W.; Density Functional Theory of Atoms and Molecules, Oxford: New York, 1989.
- 12. Becke, A. D.; Phys. Rev. A 1988, 38, 3098;
- Lee, C.; Yang, W.; Parr, R. G.; Phys. Rev. B 1993, 37, 785.
- 13. Ditchfield, R.; Hehre, W. J.; Pople, J. A.; J. Chem. Phys. 1971, 54, 724;
- Hehre, W. J.; Ditchfield, R.; Pople, J. A.; J. Chem. Phys. 1972, 56, 2257;
- Hariharan, P. C.; Pople, J. A.; Theor. Chim. Acta 1973, 28, 213;
- Hariharan, P. C.; Pople, J. A.; Mol. Phys. 1974, 27, 209;
- Gordon, M. S.; Chem. Phys. Lett. 1980, 76, 163.
- 14. Ditchfield, R.; Hehre, W. J.; Pople, J. A.; J. Chem. Phys. 1971, 54, 724;
- Hehre, W. J.; Ditchfield, R.; Pople, J. A.; J. Chem. Phys. 1972, 56, 2257;
- Cossi, M.; Barone, V.; Camimi, R.; Tomasi, J.; Chem. Phys. Lett. 1996, 255, 327;
- Barone, V.; Cossi, M.; Tomasi, J.; J. Chem. Phys. 1997, 107, 3210.
Publication Dates
-
Publication in this collection
29 Jan 2007 -
Date of issue
Dec 2006
History
-
Accepted
22 Aug 2006 -
Received
27 Apr 2006