Acessibilidade / Reportar erro

Appel Reaction of Carboxylic Acids with Tribromoisocyanuric Acid/Triphenylphosphine: a Mild and Acid-Free Preparation of Esters and Amides

Abstract

A facile and efficient method for esterification and amidation of carboxylic acids under neutral conditions has been developed. Esters and amides can be prepared by reacting a carboxylic acid (1 mmol) with tribromoisocyanuric acid (0.37 mmol) and triphenylphosphine (1 mmol) in dichloromethane at room temperature, followed by addition of an alcohol or an amine, respectively.

Keywords:
amides; esters; tribromoisocyanuric acid; acylation; triphenylphosphine


Introduction

Esters and amides are important intermediates in the chemical and pharmaceutical industries. Besides, some of them are bioactive compounds.11 Otera, J.; Nishikido, J.; Esterification: Methods, Reactions, and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2003; Negwer, M.; Scharnow, H.-G.; Organic-Chemical Drugs and Their Synonyms, 8th ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2001; Pattabiraman, V. R.; Bode, J. W.; Nature (London, U. K.) 2011, 480, 471. In general, their preparations from the corresponding carboxylic acids are well-known transformations and numerous methods have been reported.22 Larock, R. C.; Comprehensive Organic Transformations, a Guide to Functional Group Preparation, 2nd ed.; John Wiley & Sons: New York, 1999; Trost, B. M.; Comprehensive Organic Synthesis: Selectivity, Strategy and Efficiency in Modern Organic Synthesis, vol. 6; Pergamon Press: Oxford, 1991. However, the coupling reactions of carboxylic acids with nucleophiles require activation of the carboxyl group by its conversion into the most reactive acyl halide.22 Larock, R. C.; Comprehensive Organic Transformations, a Guide to Functional Group Preparation, 2nd ed.; John Wiley & Sons: New York, 1999; Trost, B. M.; Comprehensive Organic Synthesis: Selectivity, Strategy and Efficiency in Modern Organic Synthesis, vol. 6; Pergamon Press: Oxford, 1991.

On the other hand, acid halides are traditionally prepared from carboxylic acids and several common reagents such as thionyl halides, oxalyl halides or phosphorus (oxy)halides.33 Ansell, M. F. In The Chemistry of Acyl Halides; Patai, S.; ed.; Interscience: London, 1972, ch. 2; McMaster, L.; Ahmann, F. F.; J. Am. Chem. Soc. 1928, 50, 145; Chen, H.; Xu, X.; Liu, L.; Tang, G.; Zhao, Y.; RSC Adv. 2013, 3, 16247. However, despite their success, there are still some remaining problems using these reagents as they cannot be applied to acid-sensitive substrates due to the high temperature conditions required and the formation of strong harmful corrosive acids by-produced during the process. Furthermore, if the amount of the reagent used is insufficient, acid anhydrides are obtained instead of acyl halides.44 Adams, R.; Ulich, L. H.; J. Am. Chem. Soc. 1920, 42, 599. Therefore, convenient protocols for the preparation of acid halides under mild conditions is being subject of intensive research.55 Bahrami, K.; Khodaei, M. M.; Targhan, H.; Arabi, M. S.; Tetrahedron Lett. 2013, 54, 5064. In this context, the Appel reaction66 de Andrade, V. S. C.; de Mattos, M. C. S.; Curr. Org. Synth. 2015, 12, 309. of carboxylic acids with carbon tetrachloride,77 Lee, J. B.; J. Am. Chem. Soc. 1966, 88, 3340; Tömösközi, I.; Gruber, L.; Radics, L.; Tetrahedron Lett. 1975, 16, 2473. trichloroacetonitrile88 Jang, D. O.; Park, D. J.; Kim, J.; Tetrahedron Lett. 1999, 40, 5323. or trichloroacetamide99 Chaysripongkul, S.; Pluempanupat, W.; Jang, D. O.; Chavasiri, W.; Bull. Korean Chem. Soc. 2009, 30, 2066. (among others) in the presence of triphenylphosphine (PPh3) have been efficiently used for the preparation of acyl chlorides with high efficiency. Despite being the driving force in Appel-type reactions, the formation of the triphenylphosphine oxide by-product can result in an inconvenient purification process; therefore the development of new methods that avoid or minimize the triphenylphosphine oxide by-product in Appel reactions is subject of intensive research.1010 For selected examples, see: Tang, X.; An, J.; Denton, R. M.; Tetrahedron Lett. 2014, 55, 799; Kosal, A. D.; van Kalkeren, H. A.; Blom, A. L.; Rutjes, F. P. J. T.; Huijbregts, M. A.; Green Chem. 2013, 15, 1255; Byren, P. A.; Rajendran, K. V.; Muldoon, J.; Guilheany, D. G.; Org. Biomol. Chem. 2012, 10, 3531; Wilson, E. E.; Ashfeld, B. L.; Angew. Chem., Int. Ed. 2012, 51, 12036; Rao, A. N.; Ganesan, K.; Shinde, C. K.; Synth. Commun. 2012, 42, 2299; O'Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkele, S. R.; Przeworski, K. C.; Chass, G. A.; Angew. Chem., Int. Ed. 2009, 48, 6863.

Trihaloisocyanuric acids [1,3,5-trihalo-1,3,5-triazine-2,4,6-(1H,3H,5H)-triones] (Figure 1) are safe, stable and easily handled solids used as electrophilic halogenating reagents.1111 Mendonça, G. F.; de Mattos, M. C. S.; Curr. Org. Synth. 2013, 10, 820. Although diverse trihaloisocyanuric acids are known,1212 Gottardi, W.; Monatsh. Chem. 1967, 98 , 507; Gottardi, W.; Monatsh. Chem. 1970, 101, 655; Ribeiro, R. S.; Esteves, P. M.; de Mattos, M. C. S.; Tetrahedron Lett. 2007, 48, 8747; de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; Synlett 2007, 11, 1687; Ribeiro, R. S.; Esteves, P. M.; de Mattos, M. C. S.; J. Braz. Chem. Soc. 2012, 23, 228. the most widely used is the inexpensive and commercially available trichloroisocyanuric acid (TCCA; Figure 1, X = Cl). While not yet commercially available, tribromoisocyanuric acid (TBCA; Figure 1, X = Br) can be easily prepared from inexpensive materials (cyanuric acid, KBr and oxone).1313 de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; Synlett 2006, 10, 1515.

Figure 1
Trihaloisocyanuric acids.

In a pioneering paper, Hiegel et al.1414 Hiegel, G. A.; Ramírez, J.; Barr, R. K.; Synth. Commun. 1999, 29, 1415. reported the conversion of phenylacetic acid into the acyl chloride using trichloroisocyanuric acid along with triphenylphosphine and subsequent addition of dry methanol produced methyl phenylacetate in 95% yield. Later, the trichloroisocyanuric acid/triphenylphosphine system was used to convert several carboxylic acids into amides, esters and acyl azides, by reactions with amines, alcohols1515 Rodrigues, R. C.; Barros, I. M. A.; Lima, E. L. S.; Tetrahedron Lett. 2005, 46 , 5945. and sodium azide,1616 Akhlaginia, B.; Rouhi-Saadabad, H.; Can. J. Chem. 2013, 91, 181. respectively.

Recently, we showed an efficient Appel conversion of alcohols into the corresponding alkyl bromides using tribromoisocyanuric acid/triphenylphosphine system,1717 de Andrade, V. S. C.; de Mattos, M. C. S.; J. Braz. Chem. Soc. 2014, 25, 975. being a bromophosphonium salt (1), formed by reaction of triphenylphosphine with TBCA, the key reactive species for such transformation (Scheme 1).1717 de Andrade, V. S. C.; de Mattos, M. C. S.; J. Braz. Chem. Soc. 2014, 25, 975.,1818 Appel, R.; Angew. Chem., Int. Ed. 1975, 14 , 801.

Scheme 1

In continuation of our studies on the application of tribromoisocyanuric acid in organic synthesis,1919 de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; Curr. Green Chem. 2014, 1, 94. herein we report the preparation of esters and amides by reaction of carboxylic acids with alcohols and amines, respectively, in the presence of the tribromoisocyanuric acid/triphenylphosphine system.

Results and Discussion

The reactions were carried out at room temperature by stirring together the carboxylic acid (1 mmol), tribromoisocyanuric acid (0.37 mmol) and triphenylphosphine (1 mmol) in dichloromethane. The progress of the reaction was followed by gas chromatography with mass spectrometer (GC-MS) and after complete substrate conversion to the acyl bromide (confirmed by MS), an alcohol (1 mmol) or an amine (excess) was added to the reaction media. The reactions gave, respectively, esters and amides (along with triphenylphosphine oxide and cyanuric acid), that were isolated by column chromatography and characterized by their melting points (amides) and spectroscopic techniques. In general, the reactions proceeded smoothly and gave products in moderate to excellent yields, showing that the method is quite general and suitable for the conversion of carboxylic acids into their corresponding esters or amides. Tables 1 and 2 show the results.

Table 1
Esterification of carboxylic acids promoted by tribromoisocyanuric acid (TBCA)/triphenylphosphine
Table 2
Amidation of carboxylic acids promoted by tribromoisocyanuric acid (TBCA)/triphenylphosphine

Interestingly, although tribromoisocyanuric acid is known to be a powerful alcohol oxidant2020 Crespo, L. T. C.; de Mattos, M. C. S.; Esteves, P. M.; Quim. Nova 2013, 36, 320. and electrophilic brominating reagent for alkenes2121 Tozetti, S. D. F.; de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; J. Braz. Chem. Soc. 2007, 18 , 675; Crespo, L. T. C.; Ribeiro, R. S.; de Mattos, M. C. S.; Esteves, P. M.; Synthesis 2010, 14, 2379. and arenes,2222 de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; Synthesis 2006, 13, 221; de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; Tetrahedron Lett. 2009, 50, 3001; de Almeida, L. S.; de Mattos, M. C. S.; Esteves, P. M.; Synlett 2013, 24, 603. no brominated or oxidation products were detected by the analytical techniques employed in the crude reaction, indicating a fast formation of bromotriphenylphosphonium salt from the reaction of TBCA with triphenylphosphine.

Based on the above results, a plausible scheme for this transformation (Scheme 2) proceeds through the bromophosphonium salt (1), formed by bromination of triphenylphosphine by TBCA, that is further converted into the oxyphosphonium intermediate (2). Bromide anion attacks on the intermediate 2 gives the acyl bromide and triphenylphosphine oxide. Simple nucleophilic addition of the alcohol or the amine to the acyl bromide led to the ester or amide along with isocyanuric acid.

Scheme 2

A comparison between our methodology and similar ones previously published (trichloroacetamide/PPh3,99 Chaysripongkul, S.; Pluempanupat, W.; Jang, D. O.; Chavasiri, W.; Bull. Korean Chem. Soc. 2009, 30, 2066. trichloroacetonitrile/PPh3,2323 Jang, D. O.; Park, D. J.; Kim, J.; Tetrahedron Lett. 1999, 40, 5323. ethyl tribromoacetate/PPh32424 Kang, D. H.; Joo, T. Y.; Lee, E. H.; Chaysripongkul, S.; Chavasiri, W.; Jang, D. O.; Tetrahedron Lett. 2006, 47, 5693. or hexabromoacetone/PPh3)2525 Menezes, F. G.; Kolling, R.; Bertoluzzi, A. J.; Gallardo. H.; Zucco, C.; Tetrahedron Lett. 2009, 50, 2559. for the preparation of N-cyclohexylbenzamide indicated similar yields (Table 3). However, the advantages of TBCA compared to other reagents used in such transformations is its stability, easy manipulation and preparation and high atom economy,2626 Trost, B. M.; Science (Washington, DC, U. S.) 1991, 254, 1471. i.e., percentage of mass transferred to triphenylphosphine to generate the halophosphonium salt (1), the reactive species. Besides, the cyanuric acid by-product formed can be reused to produce more TBCA through a green process (Scheme 3).2121 Tozetti, S. D. F.; de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; J. Braz. Chem. Soc. 2007, 18 , 675; Crespo, L. T. C.; Ribeiro, R. S.; de Mattos, M. C. S.; Esteves, P. M.; Synthesis 2010, 14, 2379.

Table 3
Preparation of N-cyclohexylbenzamide

Scheme 3

Conclusions

In summary, we have developed a new and convenient route for the preparation of esters and amides from carboxylic acids under neutral conditions. The reaction is easily reproducible, the conditions are mild and the reagents are easily available.

Experimental

General information

All chemicals and solvents were used as received. Tribromoisocyanuric acid was prepared as previously described.1313 de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; Synlett 2006, 10, 1515. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AC-200 or AC-300 spectrometers (Bruker, Billerica, MA, USA) at 200 or 300 MHz (1H) and 50 or 75 (13C) using tetramethylsilane (TMS) as internal standard. Gas chromatography were performed on a HP 5890 Series II gas chromatograph (Hewlett-Packard, Palo Alto, CA, USA) with flame ionization detector (FID) using a 30 m (length), 0.25 mm (inner diameter), and 25 µm (phase thickness) RTX-5 capillary column (Restek Corporation, Bellefonte, PA, USA) and H2 (flow rate 50 cm s-1) as carrier gas (split 1:10). GC-MS analyses were performed on a Shimadzu GCMS-QP2010S gas chromatograph (Shimadzu, Kyoto, Japan) with electron impact (70 eV) by using a 30 m DB-5 silica capillary column with 0.25 mm inner diameter and 0.25 mm phase thickness. Melting points were determined on a Laboratory Device Mel-Temp II (Laboratory Devices, USA) and are corrected.

General procedure for esterification of carboxylic acids promoted by TBCA/triphenylphosphine

To a stirred solution of TBCA (0.37 mmol) and triphenylphosphine (1 mmol) in CH2Cl2 (6 cm3) was added the carboxylic acid (1 mmol) at room temperature. The progress of the reaction was monitored by GC-MS (time1 in Table 1) and, then, alcohol (1 mmol) was added. After time2 (Table 1), cyanuric acid was filtered off and the liquid was evaporated on a rotatory evaporator under reduced pressure. The producs were purified by column chromatography (silica gel 70-230 mesh) using diethyl ether/pentane as eluent.

Isopropyl benzoate2727 Kim, B. R.; Sung, G. H.; Lee, S.-G.; Yoon, Y. J.; Tetrahedron 2013, 69, 3234.

Colorless liquid; 1H NMR (200 MHz, CDCl3) δ 1.35 (d, 6H, J 6.3), 5.16-5.36 (hept, 1H, J 6.2), 7.38-7.52 (m, 3H), 8.05 (m, 2H); 13C NMR (50 MHz, CDCl3) δ 22.0, 68.4, 128.3, 129.6, 131.0, 132.8, 166.2; MS (70 eV) m/z 164 (M+), 123, 105 (100%), 77, 59, 51, 43.

Benzyl benzoate2828 Li, L.; Sheng, H.; Xu, F.; Shen, Q.; Chin. J. Chem. 2009, 27, 1127.

Colorless liquid; 1H NMR (300 MHz, CDCl3) δ 5.40 (s, 2H), 7.37-7.50 (m, 7H), 7.56-7.61 (m, 1H), 8.10-8.14 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 66.9, 128.3, 128.4, 128.6, 128.8, 129.9, 130.3, 133.2, 136.2, 166.6; MS (70 eV) m/z 212 (M+), 194, 105 (100%), 91, 77, 65, 51.

Isopropyl 4-methoxybenzoate2929 Wu, X.-F.; Darcel, C.; Eur. J. Org. Chem. 2009, 8, 1144.

Yellowish liquid; 1H RMN (300 MHz, CDCl3) δ 1.35 (d, 6H, J 6.2), 3.83 (s, 3H), 5.16-5.28 (hept, 1H, J 6.2), 6.90 (d, 2H, J 8.9), 7.98 (d, 2H, J 9.0); 13C NMR (75 MHz, CDCl3) δ 22.2, 55.6, 68.1, 113.7, 123.6, 131.7, 163.4, 166.1; MS (70 eV) m/z 194 (M+), 179, 152, 135 (100%), 92, 77, 64, 43.

Menthyl 4-methoxybenzoate3030 Akiyama, F.; Tokura, N.; Bull. Chem. Soc. Jpn. 1966, 39, 131.

Yellowish oil; 1H NMR (300 MHz, CDCl3) δ 0.80 (d, 3H, J 6.9), 0.91-0.94 (m, 7H), 1,03-1.16 (m, 2H), 1.49-1.59 (m, 2H), 1.70-1.75 (m, 2H), 1.94-2.01 (m, 1H), 2.10-2,14 (m, 1H), 3.86 (s, 3H), 4.86-4.95 (m, 1 H), 6.92 (d, 2H, J 9.0), 8.01 (d, 2H, J 8.8); 13C NMR (75 MHz, CDCl3) δ 16.8, 21.0, 22.2, 23.9, 26.7, 31.6, 34.6, 41.3, 47.5, 55.6, 74.7, 113.7, 123.5, 131.74, 163.4, 166.1; MS (70 eV) m/z 290 (M+), 152, 135 (100%), 123, 95, 81, 55, 41.

Cyclohexyl 4-methoxybenzoate3131 Kleinpeter, E.; Bölke, U.; Frank, A.; Tetrahedron 2008, 64, 10014.

Yellowish oil; 1H NMR (300 MHz, CDCl3) δ 1.31-1.63 (m, 6H), 1.76-1.83 (m, 2H), 1.91-1,95 (m, 2H), 3.87 (s, 3H), 4.96-5.04 (m, 1H), 6.91 (d, 2H, J 9.0), 7.99 (d, 2H, J 9.0); 13C NMR (75 MHz, CDCl3) δ 23.9, 25.7, 31.9, 55.6, 72.9, 113.7, 123.7, 131.7, 163.4, 166.0; MS (70 eV) m/z 234 (M+), 152, 135 (100%), 107, 92, 77, 67, 55, 41.

Isopropyl cinnamate3232 Jia, X.-S.; Wang, H.-L.; Huang, Q.; Kong, L.-L.; Zhang, W.-H.; J. Chem. Res. 2006, 2, 135.

Yellowish liquid; 1H NMR (300 MHz, CDCl3) δ 1.32 (d, 6H, J 6.7), 5.09-5.22 (hept, 1H, J 6.2), 6.43 (d, 1H, J 16.0), 7.35-7.39 (m, 3H), 7.49-7.54 (m, 2H), 7.68 (d, 1H, J 16.0); 13C NMR (75 MHz, CDCl3) δ 22.1, 67.9, 119.0, 128.1, 129.0, 130.3, 134.7, 144.4, 166.6; MS (70 eV) m/z 190 (M+), 147, 131 (100%), 103, 77, 51, 43.

Pentyl 4-nitrobenzoate3333 Xie, F.; Yan, F.; Chen, M.; Zhang, M.; RSC Adv. 2014, 4, 29502.

Colorless liquid; 1H NMR (300 MHz, CD3CN) δ 0.92-0.97 (m, 3H), 1.37-1.48 (m, 4H), 1.74-1.83 (m, 2H), 4.35 (t, 2H, J 6.6), 8.19 (d, 2H, J 9.0), 8.29 (d, 2H, J 9.0); 13C NMR (75 MHz, CD3CN) δ 12.8, 21.6, 27.4, 27.5, 65.3, 123.1, 130.0, 136.5, 150.1, 164.2; MS (70 eV) m/z 238 (M+), 168, 150, 120, 104, 70 (100%), 55, 42.

Pentyl octanoate3434 Giang, L.; Xinzong, L.; Eli, W.; New J. Chem. 2007, 31, 348.

Colorless liquid;11 Otera, J.; Nishikido, J.; Esterification: Methods, Reactions, and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2003; Negwer, M.; Scharnow, H.-G.; Organic-Chemical Drugs and Their Synonyms, 8th ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2001; Pattabiraman, V. R.; Bode, J. W.; Nature (London, U. K.) 2011, 480, 471.H NMR (300 MHz, CD3CN) δ 0.88-0.95 (m, 6H), 1.31-1.37 (m, 12H), 1.57-1.64 ppm (m, 4H), 2.28 (t, 2H, t, J 7.3), 4.04 (t, 2H, J 6.6 Hz); 13C NMR (75 MHz, CD3CN) δ 14.4, 14.5, 23.2, 23.5, 26.0, 29.0, 29.3, 29,9, 29.9, 32.6, 35.0, 65.0, 174.5; MS (70 eV) m/z 214 (M+), 145, 127, 70 (100%), 57, 55, 43.

General procedure for amidation of carboxylic acids promoted by TBCA/triphenylphosphine

To a stirred solution of TBCA (0.37 mmol) and triphenylphosphine (1 mmol) in CH2Cl2 (6 cm3) was added the carboxylic acid (1 mmol) at room temperature. The progress of the reaction was monitored by GC-MS (time1 in Table 2) and, then, the amine (25-75 mmol) was added. After the time2 (Table 2), cyanuric acid was filtered off, and the liquid was evaporated on a rotatory evaporator under reduced pressure. The producs were purified by column chromatography (silica gel 70-230 mesh) using diethyl ether/pentane as eluent.

N-Isopropyl-benzamide

Yellowish solid; m.p. 94-96 ºC (lit. 95 ºC);3535 Rahman, O.; Kihlberg, T.; Lngstroem, B.; J. Org. Chem. 2003, 68, 3558.) 1H NMR (200 MHz, CDCl3) δ 1.24 (d, 6H, J 6.5), 4.18-4.35 (sext, 1H, J 6.6), 6.27 (s, 1 H), 7.37-7.45 (m, 3 H), 7.74-7.77 (m, 2 H); 13C NMR (50 MHz, CDCl3) δ 22.9, 42.0, 127.0, 128.6, 131.3, 135.1, 166.9; MS (70 eV) m/z 163 (M+), 148, 105 (100%), 77, 51.

N-Cyclohexyl-benzamide

White solid; m.p. 138-140 ºC (lit. 139-141 ºC);3636 Jo, Y.; Ju, J.; Choe, J.; Song, K. H.; Lee, S.; J. Org. Chem. 2009, 74, 6358.) 1H NMR (300 MHz, CDCl3) δ 1.18-2.05 (m, 10H), 3.92-4.04 (m, 1H), 6.06 (s, 1H), 7.38-7.49 (m, 3H), 7.74-7.78 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 25.1, 25.8, 33.4, 48.9, 127.0, 128.7, 131.4, 135.3, 166.8.; MS (70 eV) m/z 203 (M+), 123, 122, 105 (100%), 77, 51.

N-Cyclohexyl-4-methoxybenzamide

White solid; m.p. 153-155 ºC (lit. 153-154 ºC);3737 Pelletier, G.; Bechara, W. S.; Charette, A. B.; J. Am. Chem. Soc. 2010, 132, 12817.) 1H NMR (300 MHz, CDCl3) δ 1.16-1.29 (m, 3H), 1.35-1.50 (m, 2H), 1.62-1.79 (m, 3H), 2.02-2.06 (m, 2H), 3.84 (s, 1H), 3.91-4.03 (m, 1H), 5.93 (s, 1H), 6.91 (d, 2H, J 8.9), 7.72 (d, 2H, J 8.8); 13C NMR (75 MHz, CDCl3) δ 25.1, 25.8, 33.5, 48.8, 55.6, 113.9, 127.6, 128.8, 162.2, 166.3; MS (70 eV) m/z 233 (M+), 232 (2,49), 152, 151, 135 (100%), 107, 92, 79, 77.

N-Isopropyl-4-methoxybenzamide

White solid; m.p. 112-114 ºC (lit. 123ºC);3535 Rahman, O.; Kihlberg, T.; Lngstroem, B.; J. Org. Chem. 2003, 68, 3558.) 1H NMR (300 MHz, CDCl3) δ 1.25 (d, 6H, J 6.3), 3.83 (s, 3H), 4.21-4.33 (m, 1H), 6.00 (s, 1H), 6.89 (d, 2H, J 8.9), 7.73 (d, 2H, J 8.9); 13C NMR (75 MHz, CDCl3) δ 23.0, 41.9, 55.5, 113.8, 127.3, 128.8, 162.1, 166.4; MS (70 eV) m/z 193 (M+), 135 (100%), 107, 104, 92, 77.

N-Benzyl-4-methoxybenzamide

White solid; m.p. 120-122 ºC (lit. 124-126 ºC);3838 Fairfull-Smith, K. E.; Jenkins, I. D.; Loughlin, W. A.; Org. Biomol. Chem. 2004, 2, 1979.) 1H NMR (300 MHz, CD3CN) δ 2.42 (s, 1H), 3.83 (s, 3H), 4.53 (d, 2H, J 6.1), 6.97 (d, 2H, J 8.9), 7.23-7.35 (m, 5H), 7.49 (s, 1H), 7.81 (d, 2H, J 8.9); 13C NMR (75 MHz, CD3CN) δ 44.3, 56.5, 115.0, 128.3, 128.7, 129.8, 130.3, 141.2, 163.6, 167.9; MS (70 eV) m/z 241 (M+), 135 (100%), 107, 92, 77, 64, 51.

N-Isopropyl-cinnamamide

Yellowish solid; m.p. 94-96 ºC (lit. 101-103 ºC);3939 Huang, Z.; Wen, L.; Huang, X.; Synth. Commun. 1990, 20, 2579.) 1H NMR (300 MHz, CDCl3) δ 1.22 (d, 6H, J 6.6), 4.24 (sext, 1H, J 6.5), 5.94 (s, 1H), 6.43 (d, 1H, J 15.6), 7.31-7.33 (m, 3H), 7.46-7.49 (m, 2H), 7.62 (d, 1H, J 15.3); 13C NMR (75 MHz, CDCl3) δ 23.0, 41.8, 121.4, 128.0, 129.0, 129.7, 135.2, 140.9, 165.4; MS (70 eV) m/z 189 (M+), 174, 161, 146, 131 (100%), 118, 112, 103, 91, 87, 77, 63, 58, 51, 43.

N-(Cyclohexylcarbonyl)-morpholine4040 Glynn, D.; Bernier, D.; Woodward, S.; Tetrahedron Lett. 2008, 49, 5687.

Yellowish oil; 1H NMR (300 MHz, CDCl3) δ 1.21-1.82 (m, 10 H), 2.37-2.47 (m, 1 H), 3.55-3.68 (m, 8 H); 13C NMR (75 MHz, CDCl3) δ 26.0, 29.5, 40.4, 42.1, 46.1, 67.1, 174.9; MS (70 eV) m/z 197 (M+), 142, 129, 83 (100%), 70, 55, 41.

N-Butyl-4-nitrobenzamide

Yellowish solid; m.p. 102-104 ºC (lit. 104-104.5 ºC);4141 Connors, K. A.; Bender, M. L.; J. Org. Chem. 1961, 26, 2498.) 1H NMR (300 MHz, CDCl3) δ 0.92-0.97 (t, 3H, J 7.3), 1.40 (sext, 2H, J 7.2), 1.61 (quint, 2H, J 7.5), 3.45 (q, 2H, J 7.2), 6.60 (s, 1 H), 7.92 (d, 2H, J 9.0), 8.24 (d, 2H, J 9.0); 13C NMR (75 MHz, CDCl3) δ 13.2, 19.6, 31.1, 39.7, 123.2, 127.6, 140.0, 149.0, 165.1; MS (70 eV) m/z 222 (M+), 193, 180, 150 (100%), 120, 104, 92, 76, 50, 41.

N-Butyl-octanamide4242 Kunishima, M.; Kikuchi, K.; Kawai, Y.; Hioki, K.; Angew. Chem., Int. Ed. 2012, 51, 2080.

1H NMR (300 MHz, CDCl3) δ 0.83-0.92 (m, 6H), 1.26-1.36 (m, 10 H), 1.41-1.49 (m, 2 H), 1.57-1.62 (m, 2H), 2.14 (t, 2H, J 7.4), 3.22 (q, 2H, J 7.2), 5.72 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 13.2, 13.5, 19.6, 22.1, 25.4, 28.5, 28.8, 31.2, 36.4, 38.7, 172.9; MS (70 eV) m/z 199 (M+), 170, 156, 142, 128, 115 (100%), 100, 86, 73, 57, 44, 41.

Supplementary Information

1H NMR, 13C NMR and MS spectra of synthesized compounds are available free of charge at http://jbcs.sbq.org.br.

https://minio.scielo.br/documentstore/1678-4790/x9b9zVFgZBwkcR9TQjR6qWt/0a4d5983584afb186980c3030153913a6a69a981.pdf

Acknowledgments

We thank CNPq and FAPERJ for the finacial support.

References

  • 1
    Otera, J.; Nishikido, J.; Esterification: Methods, Reactions, and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2003; Negwer, M.; Scharnow, H.-G.; Organic-Chemical Drugs and Their Synonyms, 8th ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2001; Pattabiraman, V. R.; Bode, J. W.; Nature (London, U. K.) 2011, 480, 471.
  • 2
    Larock, R. C.; Comprehensive Organic Transformations, a Guide to Functional Group Preparation, 2nd ed.; John Wiley & Sons: New York, 1999; Trost, B. M.; Comprehensive Organic Synthesis: Selectivity, Strategy and Efficiency in Modern Organic Synthesis, vol. 6; Pergamon Press: Oxford, 1991.
  • 3
    Ansell, M. F. In The Chemistry of Acyl Halides; Patai, S.; ed.; Interscience: London, 1972, ch. 2; McMaster, L.; Ahmann, F. F.; J. Am. Chem. Soc 1928, 50, 145; Chen, H.; Xu, X.; Liu, L.; Tang, G.; Zhao, Y.; RSC Adv. 2013, 3, 16247.
  • 4
    Adams, R.; Ulich, L. H.; J. Am. Chem. Soc 1920, 42, 599.
  • 5
    Bahrami, K.; Khodaei, M. M.; Targhan, H.; Arabi, M. S.; Tetrahedron Lett 2013, 54, 5064.
  • 6
    de Andrade, V. S. C.; de Mattos, M. C. S.; Curr. Org. Synth 2015, 12, 309.
  • 7
    Lee, J. B.; J. Am. Chem. Soc 1966, 88, 3340; Tömösközi, I.; Gruber, L.; Radics, L.; Tetrahedron Lett. 1975, 16, 2473.
  • 8
    Jang, D. O.; Park, D. J.; Kim, J.; Tetrahedron Lett 1999, 40, 5323.
  • 9
    Chaysripongkul, S.; Pluempanupat, W.; Jang, D. O.; Chavasiri, W.; Bull. Korean Chem. Soc 2009, 30, 2066.
  • 10
    For selected examples, see: Tang, X.; An, J.; Denton, R. M.; Tetrahedron Lett. 2014, 55, 799; Kosal, A. D.; van Kalkeren, H. A.; Blom, A. L.; Rutjes, F. P. J. T.; Huijbregts, M. A.; Green Chem. 2013, 15, 1255; Byren, P. A.; Rajendran, K. V.; Muldoon, J.; Guilheany, D. G.; Org. Biomol. Chem. 2012, 10, 3531; Wilson, E. E.; Ashfeld, B. L.; Angew. Chem., Int. Ed. 2012, 51, 12036; Rao, A. N.; Ganesan, K.; Shinde, C. K.; Synth. Commun. 2012, 42, 2299; O'Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkele, S. R.; Przeworski, K. C.; Chass, G. A.; Angew. Chem., Int. Ed. 2009, 48, 6863.
  • 11
    Mendonça, G. F.; de Mattos, M. C. S.; Curr. Org. Synth 2013, 10, 820.
  • 12
    Gottardi, W.; Monatsh. Chem. 1967, 98 , 507; Gottardi, W.; Monatsh. Chem. 1970, 101, 655; Ribeiro, R. S.; Esteves, P. M.; de Mattos, M. C. S.; Tetrahedron Lett. 2007, 48, 8747; de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; Synlett 2007, 11, 1687; Ribeiro, R. S.; Esteves, P. M.; de Mattos, M. C. S.; J. Braz. Chem. Soc. 2012, 23, 228.
  • 13
    de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; Synlett 2006, 10, 1515.
  • 14
    Hiegel, G. A.; Ramírez, J.; Barr, R. K.; Synth. Commun 1999, 29, 1415.
  • 15
    Rodrigues, R. C.; Barros, I. M. A.; Lima, E. L. S.; Tetrahedron Lett. 2005, 46 , 5945.
  • 16
    Akhlaginia, B.; Rouhi-Saadabad, H.; Can. J. Chem. 2013, 91, 181.
  • 17
    de Andrade, V. S. C.; de Mattos, M. C. S.; J. Braz. Chem. Soc 2014, 25, 975.
  • 18
    Appel, R.; Angew. Chem., Int. Ed. 1975, 14 , 801.
  • 19
    de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; Curr. Green Chem. 2014, 1, 94.
  • 20
    Crespo, L. T. C.; de Mattos, M. C. S.; Esteves, P. M.; Quim. Nova 2013, 36, 320.
  • 21
    Tozetti, S. D. F.; de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; J. Braz. Chem. Soc. 2007, 18 , 675; Crespo, L. T. C.; Ribeiro, R. S.; de Mattos, M. C. S.; Esteves, P. M.; Synthesis 2010, 14, 2379.
  • 22
    de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; Synthesis 2006, 13, 221; de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.; Tetrahedron Lett. 2009, 50, 3001; de Almeida, L. S.; de Mattos, M. C. S.; Esteves, P. M.; Synlett 2013, 24, 603.
  • 23
    Jang, D. O.; Park, D. J.; Kim, J.; Tetrahedron Lett. 1999, 40, 5323.
  • 24
    Kang, D. H.; Joo, T. Y.; Lee, E. H.; Chaysripongkul, S.; Chavasiri, W.; Jang, D. O.; Tetrahedron Lett. 2006, 47, 5693.
  • 25
    Menezes, F. G.; Kolling, R.; Bertoluzzi, A. J.; Gallardo. H.; Zucco, C.; Tetrahedron Lett. 2009, 50, 2559.
  • 26
    Trost, B. M.; Science (Washington, DC, U. S.) 1991, 254, 1471.
  • 27
    Kim, B. R.; Sung, G. H.; Lee, S.-G.; Yoon, Y. J.; Tetrahedron 2013, 69, 3234.
  • 28
    Li, L.; Sheng, H.; Xu, F.; Shen, Q.; Chin. J. Chem 2009, 27, 1127.
  • 29
    Wu, X.-F.; Darcel, C.; Eur. J. Org. Chem 2009, 8, 1144.
  • 30
    Akiyama, F.; Tokura, N.; Bull. Chem. Soc. Jpn 1966, 39, 131.
  • 31
    Kleinpeter, E.; Bölke, U.; Frank, A.; Tetrahedron 2008, 64, 10014.
  • 32
    Jia, X.-S.; Wang, H.-L.; Huang, Q.; Kong, L.-L.; Zhang, W.-H.; J. Chem. Res 2006, 2, 135.
  • 33
    Xie, F.; Yan, F.; Chen, M.; Zhang, M.; RSC Adv. 2014, 4, 29502.
  • 34
    Giang, L.; Xinzong, L.; Eli, W.; New J. Chem. 2007, 31, 348.
  • 35
    Rahman, O.; Kihlberg, T.; Lngstroem, B.; J. Org. Chem 2003, 68, 3558.
  • 36
    Jo, Y.; Ju, J.; Choe, J.; Song, K. H.; Lee, S.; J. Org. Chem 2009, 74, 6358.
  • 37
    Pelletier, G.; Bechara, W. S.; Charette, A. B.; J. Am. Chem. Soc 2010, 132, 12817.
  • 38
    Fairfull-Smith, K. E.; Jenkins, I. D.; Loughlin, W. A.; Org. Biomol. Chem. 2004, 2, 1979.
  • 39
    Huang, Z.; Wen, L.; Huang, X.; Synth. Commun 1990, 20, 2579.
  • 40
    Glynn, D.; Bernier, D.; Woodward, S.; Tetrahedron Lett 2008, 49, 5687.
  • 41
    Connors, K. A.; Bender, M. L.; J. Org. Chem 1961, 26, 2498.
  • 42
    Kunishima, M.; Kikuchi, K.; Kawai, Y.; Hioki, K.; Angew. Chem., Int. Ed. 2012, 51, 2080.

Publication Dates

  • Publication in this collection
    June 2016

History

  • Received
    21 Oct 2015
  • Accepted
    15 Jan 2016
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br