Acessibilidade / Reportar erro

Blood parameters and hepatic histopathology of broilers fed rations supplemented with essential oils

ABSTRACT

This study aimed to evaluate the hematological profile, hepatic function, and histopathology of mixed-sex broilers fed rations supplemented with microencapsulated essential oils from Cymbopogon flexuosus (lemon grass) and Lippia rotundifolia (chá-de-pedestre). One hundred and fifty Cobb chicks were housed in cages from 1 to 42 days of age in a completely randomized design, with six replicates with five chickens in each of five treatments (150 total chicks): basal diet without antibiotic growth promoter (negative control), diet with enramicina and salinomycin (positive control), diet with lemon grass essential oil, diet with L. rotundifolia essential oil, and diet with a mixture of lemon grass and L. rotundifolia essential oils. Mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) were significantly lower in untreated broilers (negative control group). Gender was not associated with erythrogram values, but aspartate aminotransferase activity (AST) was higher in females. Gamma-glutamyl transferase (GGT) was higher in chicks in the group that received rations with lemon grass oil. Broilers that received L. rotundifolia oil developed more hepatic lesions, although no effect of sex was observed related to the lesion score. Biliary hyperplasia and fibroplasias were observed in all groups, with higher histopathology scores in broilers that received diets containing L. rotundifolia oil. Mixed-sex broilers fed rations supplemented with lemon grass and L. rotundifolia essential oils have normal complete blood counts and unspecific hepatic lesions and are characterized by lipidosis, hyperplasia of the bile ducts, and fibroplasia.

Keywords:
animal production; bird; bird nutrition; essential oils; hematology; liver

Introduction

Antibiotics in small dosages added to the avian diet as growth promoters result in better utilization of nutrients by the birds and higher growth rates and feed conversion efficiency. In addition, antibiotics act on the intestinal health of chickens. However, this practice has contributed to the emergence of resistant strains of microorganisms (Attia et al., 2017aAttia, Y. A.; Bakhashwain, A. A. and Bertu, N. K. 2017a. Thyme oil (Thyme vulgaris L.) as a natural growth promoter for broiler chickens reared under hot climate. Italian Journal of Animal Science 16:275-282. https://doi.org/10.1080/1828051X.2016.1245594
https://doi.org/10.1080/1828051X.2016.12...
). Thus, some countries have banned the use of antibiotics as additives in animal feed to minimize the transmission and spread of resistant bacteria through the food chain (Attia et al., 2018Attia, Y. A.; Bakhashwain, A. A. and Bertu, N. K. 2018. Utilisation of thyme powder (Thyme vulgaris L.) as a growth promoter alternative to antibiotics for broiler chickens raised in a hot climate. European Poultry Science 82. https://doi.org/10.1399/eps.2018.238
https://doi.org/10.1399/eps.2018.238...
).

In contrast, the use of organic acids, enzymes, pre- and probiotics, and essential oils may result in higher performance and better intestinal health without the inconvenience of antibiotic resistance (Dhama et al., 2015Dhama, K.; Latheef, S. K.; Mani, S.; Samad, H. A.; Karthik, K.; Tiwari, R.; Khan, R. U.; Alagawany, M.; Farag, M. R.; Alam, G. M.; Laudadio, V. and Tufarelli, V. 2015. Multiple beneficial applications and modes of action of herbs in poultry health and production - A review. International Journal of Pharmacology 11:152-176. https://doi.org/10.3923/ijp.2015.152.176
https://doi.org/10.3923/ijp.2015.152.176...
; Zeng et al., 2015Zeng, Z.; Zhang, S.; Wang, H. and Piao, X. 2015. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. Journal of Animal Science and Biotechnology 6:7. https://doi.org/10.1186/s40104-015-0004-5
https://doi.org/10.1186/s40104-015-0004-...
; Cho et al., 2014Cho, J. H.; Kim, H. J. and Kim, I. H. 2014. Effects of phytogenic feed additive on growth performance, digestibility, blood metabolites, intestinal microbiota, meat color and relative organ weight after oral challenge with Clostridium perfringens in broilers. Livestock Science 160:82-88. https://doi.org/10.1016/j.livsci.2013.11.006
https://doi.org/10.1016/j.livsci.2013.11...
; Krishan and Narang, 2014Krishan, G. and Narang, A. 2014. Use of essential oils in poultry nutrition: A new approach. Journal of Advanced Veterinary and Animal Research 1:156-162. https://doi.org/10.5455/javar.2014.a36
https://doi.org/10.5455/javar.2014.a36...
). Variable results have been obtained using oils for antimicrobial purposes, such as rosemary (Traesel et al., 2011Traesel, C. K.; Lopes, S. T. A.; Wolkmer, P.; Schmidt, C.; Santurio, J. M. and Alves, S. H. 2011. Óleos essenciais como substituintes de antibióticos promotores de crescimento em frangos de corte: perfil de soroproteínas e peroxidação lipídica. Ciência Rural 41:278-284. https://doi.org/10.1590/S0103-84782011000200016
https://doi.org/10.1590/S0103-8478201100...
), thyme (Saleh et al., 2014Saleh, N.; Allam T.; El-latif, A. A. and Ghazy, E. 2014. The effects of dietary supplementation of different levels of Thyme (Thymus vulgaris) and Ginger (Zingiber officinale) essential oils on performance, hematological, biochemical and immunological parameters of broiler chickens. Global Veterinária 12:736-744.; Toghyani et al., 2011Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G. and Eghbalsaied, S. 2011. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical and haematological parameters in broiler chicks. Livestock Science 138:167-173. https://doi.org/10.1016/j.livsci.2010.12.018
https://doi.org/10.1016/j.livsci.2010.12...
; Toghyani et al., 2010Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G. and Mohammadrezaei, M. 2010. Growth performance, serum biochemistry and blood hematology of broiler chicks fed different levels of black seed (Nigella sativa) and peppermint (Mentha piperita). Livestock Science 129:173-178. https://doi.org/10.1016/j.livsci.2010.01.021
https://doi.org/10.1016/j.livsci.2010.01...
; Tollba et al., 2010Tollba, A. A. H.; Shabaan, S. A. M. and Abdel-Mageed, M. A. A. 2010. Effects of using aromatic herbal extract and blended with organic acids on productive and physiological performance of poultry. Egyptian Poultry Science 30:229-248.; Attia et al., 2017bAttia, Y. A.; Al-Harthi, M. A. and Hassan, S. S. 2017b. Turmeric (Curcuma longa Linn.) as a phytogenic growth promoter alternative for antibiotic and comparable to mannan oligosaccharides for broiler chicks. Revista Mexicana de Ciencias Pecuarias 8:11-21. https://doi.org/10.22319/rmcp.v8i1.4309
https://doi.org/10.22319/rmcp.v8i1.4309...
), and ginger (Mehr et al., 2014Mehr, M. A.; Hassanabadi, A.; Nassiri Moghaddam, H. and Kermanshahi, H. 2014. Supplementation of clove essential oils and probiotic to the broiler's diet on performance, carcass traits and blood components. Iranian Journal of Applied Animal Science 4:117-122.) oils. However, the possible toxic effects and/or changes in metabolism caused by essential oils still generate doubts regarding their safety.

Cymbopogon flexuosus (lemon grass) and Lippia rotundifolia (chá-de-pedestre) essential oils can be used as alternative performance enhancers due to their in vitro antimicrobial action, and they can promote diet stability (Assis et al., 2017Assis, Y. P. A. S.; Almeida, A. C.; Nogueira, W. C. L.; Souza, C. N.; Gonçalves, S. F.; Silva, F. E. G.; Santos, V. K. F. R. and Martins, E. R. 2017. Antibacterial activity and stability of microencapsulated lemon grass essential oil in feeds for broiler chickens. Revista Brasileira de Saúde e Produção Animal 18:587-593. https://doi.org/10.1590/s1519-99402017000400009
https://doi.org/10.1590/s1519-9940201700...
; Azevedo et al., 2016Azevedo, I. L.; Almeida, A. C.; Martins, E. R.; Nogueira, W. C. L.; Faria Filho, D. E.; Oliveira, S. P.; Prates, J. P. B. and Souza, C. N. 2016. Eficácia in vitro do óleo essencial de capim-limão (Cymbopogon flexuosus steud. wats.) frente a bactérias entéricas de origem avícola. Acta Veterinaria Brasilica 10:25-31.; Souza et al., 2015Souza, D. S.; Almeida, A. C.; Andrade, V. A.; Marcelo, N. A.; Azevedo, I. L.; Martins, E. R. and Figueiredo, L. S. 2015. Atividade antimicrobiana do óleo essencial de Lippia origanoides e Lippia rotundifolia frente à enterobactérias isoladas de aves. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia 67:940-944. https://doi.org/10.1590/1678-4162-7580
https://doi.org/10.1590/1678-4162-7580...
). Cymbopogon flexuosus, also known as grass balm, is native to Asia (May et al., 2008May, A.; Bovi, O. A.; Maia, N. B.; Moraes, A. R. A.; Pinheiro, M. Q. and Mario, M. 2008. Influência do intervalo entre cortes sobre a produção de biomassa de duas espécies de capim limão. Horticultura Brasileira 26:379-382. https://doi.org/10.1590/S0102-05362008000300017
https://doi.org/10.1590/S0102-0536200800...
). The major components present in lemon grass oil are myrcene, geraniol, and citral (Simões et al., 2010Simões, C. M. O.; Schenkel, E. P.; Gosmann, G.; Mello, J. C. P.; Mentz, L. A. and Petrovick. P. R. (Orgs). 2010. Farmacognosia: da planta ao medicamento. 6th ed. Editora da UFRGS, Porto Alegre; Editora da UFSC, Florianópolis.), with the latter being the most important. Lippia rotundifolia is popularly known in Brazil as chá-de-pedestre. Its main components are β-myrcene, farnesol, limonene, and myrcenal (Leitão et al., 2008Leitão, S. G.; Oliveira, D. R.; Sülsen, V.; Martino, V.; Barbosa, Y. G.; Bizzo, H. R.; Lopes, D.; Viccini, L. F.; Salimena, F. R. G.; Peixoto, P. H. P. and Leitão, G. G. 2008. Analysis of the chemical composition of the essential oils extracted from Lippia lacunosa Mart. & Schauer and Lippia rotundifolia Cham. (Verbenaceae) by gas chromatography and gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society 19:1388-1393.). Although it is promising as a phytotherapeutic plant, its pharmacological activity is still uncharacterized (Resende et al., 2015Resende, C. F.; Bianchetti, R. E.; Oliveira, A. M. S.; Braga, V. F. and Peixoto, P. H. P. 2015. In vitro propagation and acclimatization of Lippia rotundifolia, an endemic species of Brazilian Campos Rupestres. Revista Ciência Agronômica 46:582-589. https://doi.org/10.5935/1806-6690.20150041
https://doi.org/10.5935/1806-6690.201500...
). Souza et al. (2015)Souza, D. S.; Almeida, A. C.; Andrade, V. A.; Marcelo, N. A.; Azevedo, I. L.; Martins, E. R. and Figueiredo, L. S. 2015. Atividade antimicrobiana do óleo essencial de Lippia origanoides e Lippia rotundifolia frente à enterobactérias isoladas de aves. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia 67:940-944. https://doi.org/10.1590/1678-4162-7580
https://doi.org/10.1590/1678-4162-7580...
demonstrated its antimicrobial activity against S. aureus and E. coli isolated from avian intestines.

Even though previous studies have used medicinal plants as performance enhancers for poultry, the subsequent changes affecting the metabolism of birds have not been fully characterized. Current research aims at evaluating the effect of phylogenics and essential oils on biochemistry and blood components. Available results are promising, indicating no changes in physiological parameters and improvement of the health status of treated birds (Attia et al., 2017bAttia, Y. A.; Al-Harthi, M. A. and Hassan, S. S. 2017b. Turmeric (Curcuma longa Linn.) as a phytogenic growth promoter alternative for antibiotic and comparable to mannan oligosaccharides for broiler chicks. Revista Mexicana de Ciencias Pecuarias 8:11-21. https://doi.org/10.22319/rmcp.v8i1.4309
https://doi.org/10.22319/rmcp.v8i1.4309...
; 2018Attia, Y. A.; Bakhashwain, A. A. and Bertu, N. K. 2018. Utilisation of thyme powder (Thyme vulgaris L.) as a growth promoter alternative to antibiotics for broiler chickens raised in a hot climate. European Poultry Science 82. https://doi.org/10.1399/eps.2018.238
https://doi.org/10.1399/eps.2018.238...
; Bortoluzzi et al., 2018Bortoluzzi, C.; Rothrock, M. J.; Vieira, B. S.; Mallo, J. J.; Puyalto, M.; Hofacre, C. and Applegate, T. J. 2018. Supplementation of protected sodium butyrate alone or in combination with essential oils modulated the cecal microbiota of broiler chickens challenged with coccidia and Clostridium perfringens. Frontiers in Sustainable Food Systems 2:72. https://doi.org/10.3389/fsufs.2018.00072
https://doi.org/10.3389/fsufs.2018.00072...
; Chowdhury et al., 2018Chowdhury, S.; Mandal, G. P.; Patra, A. K.; Kumar, P.; Samanta, I.; Pradhan, S. and Samanta, A. K. 2018. Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Animal Feed Science and Technology 236:39-47. https://doi.org/10.1016/j.anifeedsci.2017.12.003
https://doi.org/10.1016/j.anifeedsci.201...
; Mokhtari et al., 2018Mokhtari, S.; Rahati, M.; Seidavi, A.; Haq, Q. M. I.; Kadim, I.; Laudadio, V. and Tufarelli, V. 2018. Effects of feed supplementation with lavender (Lavandula angustifolia) essence on growth performance, carcass traits, blood constituents and caecal microbiota of broiler chickens. European Poultry Science 82. https://doi.org/10.1399/eps.2018.249
https://doi.org/10.1399/eps.2018.249...
).

Thus, this study aimed to evaluate blood parameters and hepatic histopathology of mixed broilers fed rations supplemented with microencapsulated essential oils.

Material and Methods

The present study was conducted in Montes Claros, MG, Brazil (16°41′00″ S, 43°50′00″ W). All procedures were in accordance with ethical standards and were approved by the Ethics Committee on Animal Use under case number 102/2013. The adopted procedures followed Azevedo et al. (2017)Azevedo, I. L.; Martins, E. R.; Almeida, A. C.; Nogueira, W. C. L; Faria Filho, D. E.; Santos, V. K. F. R. and Lara, L. J. C. 2017. Use of Lippia rotundifolia and Cymbopogon flexuosus essential oils, individually or in combination, in broiler diets. Revista Brasileira de Zootecnia 46:13-19. https://doi.org/10.1590/s1806-92902017000100003
https://doi.org/10.1590/s1806-9290201700...
.

One hundred and fifty one-day-old mixed sex Cobb 500® chicks were housed in 30 cages (60×35×100 cm) containing drinkers and feeders. The experiment was conducted in a completely randomized 2×5 (sexes × treatments) factorial design with three replicates of 10 animals per treatment (five males and five females). The treatments included the following: negative control, rations without antimicrobials or anticoccidials; positive control, rations supplemented with 10 ppm of enramycinand 42 ppm of salinomycin; C. flexuosus essential oil, rations with 120 mg of essential oil per kg of live weight; L. rotundifolia essential oil, rations with 120 mg of essential oil per kg of live weight; and association, rations with a mixture of two essential oils (60 mg of each essential oil). Dosage was based on previously demonstrated in vitro antimicrobial activity by the oils using the disc-diffusion method, minimum inhibitory concentration, and minimum bactericidal concentration as described by Azevedo et al. (2016)Azevedo, I. L.; Almeida, A. C.; Martins, E. R.; Nogueira, W. C. L.; Faria Filho, D. E.; Oliveira, S. P.; Prates, J. P. B. and Souza, C. N. 2016. Eficácia in vitro do óleo essencial de capim-limão (Cymbopogon flexuosus steud. wats.) frente a bactérias entéricas de origem avícola. Acta Veterinaria Brasilica 10:25-31. and Souza et al. (2015)Souza, D. S.; Almeida, A. C.; Andrade, V. A.; Marcelo, N. A.; Azevedo, I. L.; Martins, E. R. and Figueiredo, L. S. 2015. Atividade antimicrobiana do óleo essencial de Lippia origanoides e Lippia rotundifolia frente à enterobactérias isoladas de aves. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia 67:940-944. https://doi.org/10.1590/1678-4162-7580
https://doi.org/10.1590/1678-4162-7580...
for C. flexuosus essential oil and L. rotundifolia essential oil, respectively.

Nutritional planning was divided into three phases: initial, from 1 to 21 days; growth, from 22 to 33 days; and finishing, from 34 to 42 days. Rations were provided ad libitum during all experimental periods in ground form following the nutritional levels recommended by Rostagno et al. (2011)Rostagno, H. S.; Albino, L. F. T.; Donzele, J. L.; Gomes, P. C.; Oliveira, R. F.; Lopes, D. C.; Ferreira, A. S.; Barreto, S. L. T. and Euclides, R. F. 2011. Tabelas brasileiras para aves e suínos: Composição de alimentos e exigências nutricionais. 3.ed. Viçosa, MG. and presented by (Azevedo et al., 2017Azevedo, I. L.; Martins, E. R.; Almeida, A. C.; Nogueira, W. C. L; Faria Filho, D. E.; Santos, V. K. F. R. and Lara, L. J. C. 2017. Use of Lippia rotundifolia and Cymbopogon flexuosus essential oils, individually or in combination, in broiler diets. Revista Brasileira de Zootecnia 46:13-19. https://doi.org/10.1590/s1806-92902017000100003
https://doi.org/10.1590/s1806-9290201700...
). The major compound of C. flexuosus essential oils was citral (77.42%), while that of L. rotundifolia essential oils was β-myrcene (15.52%) (Azevedo et al., 2017Azevedo, I. L.; Martins, E. R.; Almeida, A. C.; Nogueira, W. C. L; Faria Filho, D. E.; Santos, V. K. F. R. and Lara, L. J. C. 2017. Use of Lippia rotundifolia and Cymbopogon flexuosus essential oils, individually or in combination, in broiler diets. Revista Brasileira de Zootecnia 46:13-19. https://doi.org/10.1590/s1806-92902017000100003
https://doi.org/10.1590/s1806-9290201700...
). Essential oils were converted into microcapsules by the coacervation method with edible polymers. Compounds were identified by gas chromatography-mass spectrometry analysis, which ensured the stability of the rations after microencapsulation as described by Azevedo et al. (2017)Azevedo, I. L.; Martins, E. R.; Almeida, A. C.; Nogueira, W. C. L; Faria Filho, D. E.; Santos, V. K. F. R. and Lara, L. J. C. 2017. Use of Lippia rotundifolia and Cymbopogon flexuosus essential oils, individually or in combination, in broiler diets. Revista Brasileira de Zootecnia 46:13-19. https://doi.org/10.1590/s1806-92902017000100003
https://doi.org/10.1590/s1806-9290201700...
.

At 43 days of age, two birds of each experimental treatment were selected (one male and one female); selection included birds weighing up to 10% above or below the average weight. After fasting for 8 h, blood samples were collected for complete blood count analysis and serum biochemistry. Blood samples (4 mL) from the cutaneous ulnar vein were obtained according to recommendations of the Pan American Health Organization/World Health Organization (PAHO/WHO) (Manual…, 2010) and transferred to tubes to perform complete blood count and serum biochemistry. Hematological profiles were assessed by flow cytometry. Triglycerides were measured by end point colorimetry, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) by the ultraviolet kinetic technique, gamma-glutamyl transferase (GGT) by the kinetic colorimetric method, and glucose by kinetic methodology.

For histopathological analysis, sections of the liver were collected and fixed by immersion in 10% buffered formalin for 24h, followed by dehydration in increasing concentrations of ethanol, diaphonization in xylol, and embedding in paraffin. Sections of 5 μm were stained with hematoxylin and eosin (H&E), for histopathological analysis under optical microscope coupled to a camera, under magnification of 10X and 40X. Lesions were assessed according to intensity and given a score: 0 = no damage, 1 = mild damage, 2 = moderate damage, and 3 = severe damage (Andrade et al., 2014Andrade, V. A.; Almeida, A. C.; Souza, D. S.; Colen, K. G. F.; Macêdo, A. A.; Martins, E. R.; Fonseca, F. S. A. and Santos, R. L. 2014. Antimicrobial activity and acute and chronic toxicity of the essential oil of Lippia origanoides. Pesquisa Veterinária Brasileira 34:1153-1161. https://doi.org/10.1590/S0100-736X2014001200002
https://doi.org/10.1590/S0100-736X201400...
). Histopathological scores are described in Table 1.

Table 1
Criteria for histopathological scores considering lipidosis, fibroplasia and bile duct hyperplasia

Data were analyzed by analysis of variance in R Statistical software (R Core Team, 2011R Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: <https://www.r-project.org/>. Accessed: June 12, 2018.
https://www.r-project.org/...
) with sex and diet as the main effect and pen as an experimental unit. When there were significant interaction effects (P<0.05), averages were compared with Tukey's test. The statistical model used was:

Y ijk = μ + α i + β j + ( α β ) ij + ε ijk ,

in which Yijk = set of observations of the dependent variable corresponding to the sex i, adding essential oil j and repetition k; µ = set of observations; αi = effect of the sex; βj = effect of addition of essential oils in the diet; (αβ)ij = effect of interaction between sex i and addition of essential oils in the order j; and εijk = experimental error concerning the observation of the effect of sex i, adding essential oils in the diet j and repetition k.

Histopathological score data were non-parametric; therefore, a Kruskal-Wallis test was used to compare the means of each group using the program GraphPad Prism version 5.0.

Results

During the period in which the broilers were housed, no clinical or behavioral changes were observed, indicating normal behavior. In this study, we defined as standard normality reference the results of the analyses of the positive control group and reference standards values for the species.

Mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) were higher in the treatments than in the negative control (P<0.05; Table 2). The other erythrogram parameters were similar between treatments (P>0.05) and were not influenced by gender. Mean heterophil (Table 3) values were lower in the treatments compared with the negative control.

Table 2
Erythrogram of mixed-sex broilers fed rations supplemented with essential oils
Table 3
Leukogram of mixed-sex broilers fed rations supplemented with essential oils

Gender influenced the enzyme activity of AST (P<0.05) with increased activity in females (Table 4). Gamma-glutamyl transferase was higher in the group that received rations with lemon grass oil (P<0.05). Triglyceride levels were not influenced by the treatments (P>0.05). There was no difference in the mean total protein, albumin, globulin, serum albumin:globulin ratio, total cholesterol, or glucose levels between treatments and the positive control (P>0.05) (Table 4). However, a significant difference was observed between the sexes regarding albumin (P<0.05), with males exhibiting a greater concentration than females.

Table 4
Liver enzymes activity and serum biochemistry of mixed-sex broilers fed rations supplemented with essential oils

In relation to the histopathological analysis (Figure 1), lesions were observed in chickens of all treatments, although with different scores. Discreet lipidosis was observed in animals in the negative control. The birds in the other treatments received scores that ranged from 2-3 for lipidosis, hyperplasia of the bile ducts, and fibroplasia. Broilers that received chá-de-pedestre oil in the diet exhibited higher damage scores in comparison with those in other groups (P<0.05). No effect of gender was observed on lesion scores (P>0.05). The occurrence of lesions characterized by hyperplasia of the bile ducts (Figure 2A) and fibroplasia (Figure 2B) was found in birds of all treatments, except the negative control, and broilers that received rations containing chá-de-pedestre oil had the highest scores.

Figure 1
Score of liver lesions of mixed-sex broilers fed rations supplemented with essential oils.

1 Treatments: negative control: negative control diet without additives; positive control: positive control diet with antimicrobial and anticoccidial; C. flexuosus: control diet with essential oil of C. flexuosus; L. rotundifolia: control diet with essential oil of L. rotundifolia; association: control diet association between the essential oils of C. flexuosus and L. rotundifolia.

Kruskal-Wallis Test; * indicates (P<0.0162).


Figure 2
Lesions in the liver of mixed-sex broilers fed rations supplemented with essential oil of L. roduntifolia).

A - Bile ducts hyperplasia and inflammatory infiltrate; B - Fibroplasia, hyperplasia of the bile ducts and inflammatory infiltrate.

Hematoxylin-eosin staining (H&E); Bar = 100 µm.


Discussion

Productivity parameters of experimental batches in this study were within the range considered normal for this commercial lineage as previously described by Azevedo et al. (2017)Azevedo, I. L.; Martins, E. R.; Almeida, A. C.; Nogueira, W. C. L; Faria Filho, D. E.; Santos, V. K. F. R. and Lara, L. J. C. 2017. Use of Lippia rotundifolia and Cymbopogon flexuosus essential oils, individually or in combination, in broiler diets. Revista Brasileira de Zootecnia 46:13-19. https://doi.org/10.1590/s1806-92902017000100003
https://doi.org/10.1590/s1806-9290201700...
, because the survival was 100% throughout the experimental period and experimental animals remained healthy. Studies with other phytogenic and essential oils added to the diet are in good agreement with our results. The beneficial effects have been associated with the modulating activity of the metabolic pathways of the cecal microbiota, by stimulating the immune system, and improving intestinal digestibility (Attia et al., 2017bAttia, Y. A.; Al-Harthi, M. A. and Hassan, S. S. 2017b. Turmeric (Curcuma longa Linn.) as a phytogenic growth promoter alternative for antibiotic and comparable to mannan oligosaccharides for broiler chicks. Revista Mexicana de Ciencias Pecuarias 8:11-21. https://doi.org/10.22319/rmcp.v8i1.4309
https://doi.org/10.22319/rmcp.v8i1.4309...
; 2018Attia, Y. A.; Bakhashwain, A. A. and Bertu, N. K. 2018. Utilisation of thyme powder (Thyme vulgaris L.) as a growth promoter alternative to antibiotics for broiler chickens raised in a hot climate. European Poultry Science 82. https://doi.org/10.1399/eps.2018.238
https://doi.org/10.1399/eps.2018.238...
; Bortoluzzi et al., 2018Bortoluzzi, C.; Rothrock, M. J.; Vieira, B. S.; Mallo, J. J.; Puyalto, M.; Hofacre, C. and Applegate, T. J. 2018. Supplementation of protected sodium butyrate alone or in combination with essential oils modulated the cecal microbiota of broiler chickens challenged with coccidia and Clostridium perfringens. Frontiers in Sustainable Food Systems 2:72. https://doi.org/10.3389/fsufs.2018.00072
https://doi.org/10.3389/fsufs.2018.00072...
; Chowdhury et al., 2018Chowdhury, S.; Mandal, G. P.; Patra, A. K.; Kumar, P.; Samanta, I.; Pradhan, S. and Samanta, A. K. 2018. Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Animal Feed Science and Technology 236:39-47. https://doi.org/10.1016/j.anifeedsci.2017.12.003
https://doi.org/10.1016/j.anifeedsci.201...
; Mokhtari et al., 2018Mokhtari, S.; Rahati, M.; Seidavi, A.; Haq, Q. M. I.; Kadim, I.; Laudadio, V. and Tufarelli, V. 2018. Effects of feed supplementation with lavender (Lavandula angustifolia) essence on growth performance, carcass traits, blood constituents and caecal microbiota of broiler chickens. European Poultry Science 82. https://doi.org/10.1399/eps.2018.249
https://doi.org/10.1399/eps.2018.249...
).

The hematological parameters results obtained in this research may also be associated with the health of birds and corroborate those of studies conducted with Thymus vulgaris (Toghyani et al., 2010Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G. and Mohammadrezaei, M. 2010. Growth performance, serum biochemistry and blood hematology of broiler chicks fed different levels of black seed (Nigella sativa) and peppermint (Mentha piperita). Livestock Science 129:173-178. https://doi.org/10.1016/j.livsci.2010.01.021
https://doi.org/10.1016/j.livsci.2010.01...
; Ali, 2014Ali, A. H. H. 2014. Productive performance and immune response of broiler chicks as affected by dietary thyme leaves powder. Egyptian Poultry Science Journal 34:71-84. https://doi.org/10.21608/epsj.2014.5307
https://doi.org/10.21608/epsj.2014.5307...
; Saleh et al., 2014Saleh, N.; Allam T.; El-latif, A. A. and Ghazy, E. 2014. The effects of dietary supplementation of different levels of Thyme (Thymus vulgaris) and Ginger (Zingiber officinale) essential oils on performance, hematological, biochemical and immunological parameters of broiler chickens. Global Veterinária 12:736-744.) and physiological criteria (Attia et al., 2017bAttia, Y. A.; Al-Harthi, M. A. and Hassan, S. S. 2017b. Turmeric (Curcuma longa Linn.) as a phytogenic growth promoter alternative for antibiotic and comparable to mannan oligosaccharides for broiler chicks. Revista Mexicana de Ciencias Pecuarias 8:11-21. https://doi.org/10.22319/rmcp.v8i1.4309
https://doi.org/10.22319/rmcp.v8i1.4309...
; 2018Attia, Y. A.; Bakhashwain, A. A. and Bertu, N. K. 2018. Utilisation of thyme powder (Thyme vulgaris L.) as a growth promoter alternative to antibiotics for broiler chickens raised in a hot climate. European Poultry Science 82. https://doi.org/10.1399/eps.2018.238
https://doi.org/10.1399/eps.2018.238...
).

The mean heterophil values (Table 3) and mean total protein, albumin, globulin, serum albumin:globulin ratio values (Table 4) indicated that the birds remained within normal ranges during the experiment. Attia et al. (2017bAttia, Y. A.; Al-Harthi, M. A. and Hassan, S. S. 2017b. Turmeric (Curcuma longa Linn.) as a phytogenic growth promoter alternative for antibiotic and comparable to mannan oligosaccharides for broiler chicks. Revista Mexicana de Ciencias Pecuarias 8:11-21. https://doi.org/10.22319/rmcp.v8i1.4309
https://doi.org/10.22319/rmcp.v8i1.4309...
), Attia et al. (2018)Attia, Y. A.; Bakhashwain, A. A. and Bertu, N. K. 2018. Utilisation of thyme powder (Thyme vulgaris L.) as a growth promoter alternative to antibiotics for broiler chickens raised in a hot climate. European Poultry Science 82. https://doi.org/10.1399/eps.2018.238
https://doi.org/10.1399/eps.2018.238...
, Mokhtari et al. (2018)Mokhtari, S.; Rahati, M.; Seidavi, A.; Haq, Q. M. I.; Kadim, I.; Laudadio, V. and Tufarelli, V. 2018. Effects of feed supplementation with lavender (Lavandula angustifolia) essence on growth performance, carcass traits, blood constituents and caecal microbiota of broiler chickens. European Poultry Science 82. https://doi.org/10.1399/eps.2018.249
https://doi.org/10.1399/eps.2018.249...
, and Traesel et al. (2011)Traesel, C. K.; Lopes, S. T. A.; Wolkmer, P.; Schmidt, C.; Santurio, J. M. and Alves, S. H. 2011. Óleos essenciais como substituintes de antibióticos promotores de crescimento em frangos de corte: perfil de soroproteínas e peroxidação lipídica. Ciência Rural 41:278-284. https://doi.org/10.1590/S0103-84782011000200016
https://doi.org/10.1590/S0103-8478201100...
observed similar results with other phytogenics and essential oils, suggesting an improvement in general health. The possible action of essential oils on the avian immune system is still unknown. However, immunomodulating activity has been described for other essential oils in different experimental models (Brenes and Roura, 2010Brenes, A. and Roura, E. 2010. Essential oils in poultry nutrition: Main effects and modes of action. Animal Feed Science and Technology 158:1-14. https://doi.org/10.1016/j.anifeedsci.2010.03.007
https://doi.org/10.1016/j.anifeedsci.201...
; Dhama et al., 2015Dhama, K.; Latheef, S. K.; Mani, S.; Samad, H. A.; Karthik, K.; Tiwari, R.; Khan, R. U.; Alagawany, M.; Farag, M. R.; Alam, G. M.; Laudadio, V. and Tufarelli, V. 2015. Multiple beneficial applications and modes of action of herbs in poultry health and production - A review. International Journal of Pharmacology 11:152-176. https://doi.org/10.3923/ijp.2015.152.176
https://doi.org/10.3923/ijp.2015.152.176...
). Essential oils acting as immune stimulants have been demonstrated by the use of thyme oil and ginseng in broiler diets (Toghyani et al., 2010Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G. and Mohammadrezaei, M. 2010. Growth performance, serum biochemistry and blood hematology of broiler chicks fed different levels of black seed (Nigella sativa) and peppermint (Mentha piperita). Livestock Science 129:173-178. https://doi.org/10.1016/j.livsci.2010.01.021
https://doi.org/10.1016/j.livsci.2010.01...
; Toghyani et al., 2011Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G. and Eghbalsaied, S. 2011. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical and haematological parameters in broiler chicks. Livestock Science 138:167-173. https://doi.org/10.1016/j.livsci.2010.12.018
https://doi.org/10.1016/j.livsci.2010.12...
; Saleh et al., 2014Saleh, N.; Allam T.; El-latif, A. A. and Ghazy, E. 2014. The effects of dietary supplementation of different levels of Thyme (Thymus vulgaris) and Ginger (Zingiber officinale) essential oils on performance, hematological, biochemical and immunological parameters of broiler chickens. Global Veterinária 12:736-744.; Attia et al., 2017bAttia, Y. A.; Al-Harthi, M. A. and Hassan, S. S. 2017b. Turmeric (Curcuma longa Linn.) as a phytogenic growth promoter alternative for antibiotic and comparable to mannan oligosaccharides for broiler chicks. Revista Mexicana de Ciencias Pecuarias 8:11-21. https://doi.org/10.22319/rmcp.v8i1.4309
https://doi.org/10.22319/rmcp.v8i1.4309...
; 2018Attia, Y. A.; Bakhashwain, A. A. and Bertu, N. K. 2018. Utilisation of thyme powder (Thyme vulgaris L.) as a growth promoter alternative to antibiotics for broiler chickens raised in a hot climate. European Poultry Science 82. https://doi.org/10.1399/eps.2018.238
https://doi.org/10.1399/eps.2018.238...
). According to these authors, thyme oil and ginseng may stimulate innate immunity, increasing the phagocytic activity of heterophils.

Gender influencing AST levels has not been described in studies using phytogenic or essential oils in birds. High AST levels may be related to hepatocyte membrane damage and lesions in bile ducts. However, generation of AST from other tissues, such as muscles, must be considered (Tennant and Center, 2008Tennant, B. C. and Center, S. A. 2008. Hepatic function. p.379-412. In: Clinical biochemistry of domestic animals. 6th ed. Kaneko, J.; Harvey, J. and Bruss, M., eds. Academic Press.; Grunkemeyer, 2010Grunkemeyer, V. L. 2010. Advanced diagnostic approaches and current management of avian hepatic disorders. Veterinary Clinics of North America: Exotic Animal Practice 13:413-427. https://doi.org/10.1016/j.cvex.2010.05.005
https://doi.org/10.1016/j.cvex.2010.05.0...
; Attia et al., 2017aAttia, Y. A.; Bakhashwain, A. A. and Bertu, N. K. 2017a. Thyme oil (Thyme vulgaris L.) as a natural growth promoter for broiler chickens reared under hot climate. Italian Journal of Animal Science 16:275-282. https://doi.org/10.1080/1828051X.2016.1245594
https://doi.org/10.1080/1828051X.2016.12...
). High environment temperatures may have affected these results. Notably, broilers and laying hens can suffer liver damage from unfavorable environmental conditions (Attia et al., 2017aAttia, Y. A.; Bakhashwain, A. A. and Bertu, N. K. 2017a. Thyme oil (Thyme vulgaris L.) as a natural growth promoter for broiler chickens reared under hot climate. Italian Journal of Animal Science 16:275-282. https://doi.org/10.1080/1828051X.2016.1245594
https://doi.org/10.1080/1828051X.2016.12...
).

Conversely, the highest levels of GGT observed in birds of the diet group with lemon grass essential oil (Table 4) may be associated with liver lesions. Gamma-glutamyl transferase is a primary marker for hepatobiliary diseases and can be indicative of intra-hepatic and extra-hepatic cholelithiasis (Tennant and Center, 2008Tennant, B. C. and Center, S. A. 2008. Hepatic function. p.379-412. In: Clinical biochemistry of domestic animals. 6th ed. Kaneko, J.; Harvey, J. and Bruss, M., eds. Academic Press.; Grunkemeyer, 2010Grunkemeyer, V. L. 2010. Advanced diagnostic approaches and current management of avian hepatic disorders. Veterinary Clinics of North America: Exotic Animal Practice 13:413-427. https://doi.org/10.1016/j.cvex.2010.05.005
https://doi.org/10.1016/j.cvex.2010.05.0...
). The effect of essential oils on the hepatic function of broilers is variable. Cinnamon, oregano, pepper, thyme (Toghyani et al., 2011Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G. and Eghbalsaied, S. 2011. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical and haematological parameters in broiler chicks. Livestock Science 138:167-173. https://doi.org/10.1016/j.livsci.2010.12.018
https://doi.org/10.1016/j.livsci.2010.12...
; Attia et al., 2017bAttia, Y. A.; Al-Harthi, M. A. and Hassan, S. S. 2017b. Turmeric (Curcuma longa Linn.) as a phytogenic growth promoter alternative for antibiotic and comparable to mannan oligosaccharides for broiler chicks. Revista Mexicana de Ciencias Pecuarias 8:11-21. https://doi.org/10.22319/rmcp.v8i1.4309
https://doi.org/10.22319/rmcp.v8i1.4309...
; 2018Attia, Y. A.; Bakhashwain, A. A. and Bertu, N. K. 2018. Utilisation of thyme powder (Thyme vulgaris L.) as a growth promoter alternative to antibiotics for broiler chickens raised in a hot climate. European Poultry Science 82. https://doi.org/10.1399/eps.2018.238
https://doi.org/10.1399/eps.2018.238...
), and ginseng (Catalan et al., 2013Catalan, A. A. S.; Avila, V. S.; Lopes, L. L.; Montagner, P.; Vargas, G. D.; Xavier, E. G. and Roll, V. F. B. 2013. Perfil metabólico, hematológico e comportamental de poedeiras suplementadas com Panax ginseng. Archivos de Zootecnia 62:89-100. https://doi.org/10.4321/S0004-05922013000100010
https://doi.org/10.4321/S0004-0592201300...
) oils do not influence hepatic biochemical components, such as serum protein, albumin, triglyceride, and AST. However, considering the conditions of this study, GGT levels (Table 4) may indicate hepatic damage in broilers, which may be associated with hepatic fibroplasia and hyperplasia of the bile ducts observed in groups that received rations with essential oils (Figure 1).

Biochemical profile results from a study on the association between hepatic lesions and alterations of hepatic enzymes such as GGT may indicate a loss in the synthesis capacity of the liver or hepatocellular damage, which reflects the ability of the liver to employ proper metabolism of lipids, proteins, and carbohydrates (Grunkemeyer, 2010Grunkemeyer, V. L. 2010. Advanced diagnostic approaches and current management of avian hepatic disorders. Veterinary Clinics of North America: Exotic Animal Practice 13:413-427. https://doi.org/10.1016/j.cvex.2010.05.005
https://doi.org/10.1016/j.cvex.2010.05.0...
). The author also notes that GGT changes are nonspecific and may be observed in association with various liver changes.

The results obtained in the present study are similar to those of studies with clove essential oils (Mehr et al., 2014Mehr, M. A.; Hassanabadi, A.; Nassiri Moghaddam, H. and Kermanshahi, H. 2014. Supplementation of clove essential oils and probiotic to the broiler's diet on performance, carcass traits and blood components. Iranian Journal of Applied Animal Science 4:117-122.) and thyme (Toghyani et al., 2010Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G. and Mohammadrezaei, M. 2010. Growth performance, serum biochemistry and blood hematology of broiler chicks fed different levels of black seed (Nigella sativa) and peppermint (Mentha piperita). Livestock Science 129:173-178. https://doi.org/10.1016/j.livsci.2010.01.021
https://doi.org/10.1016/j.livsci.2010.01...
). This pattern may be indicative of a balance between intestinal absorption, synthesis, and secretion in hepatocytes and absorption in adipose tissue (Lumeij, 2008Lumeij, J. T. 2008. Avian clinical biochemistry. p.839-872. In: Clinical biochemistry of domestic animals. 6th ed. Kaneko, J.; Harvey, J. and Bruss, M., eds. Academic Press.).

Lipidosis, as observed in this study, should not be interpreted as a possible effect of essential oils, since it was also observed in broilers that received diets without these oils. However, in other studies, a difference in the degree of lipidosis has been observed, depending on the origin of oils used in the diets (Tufarelli et al., 2015Tufarelli, V.; Bozzo, G.; Perillo, A. and Laudadio, V. 2015. Effects of feeding different lipid sources on hepatic histopathology features and growth traits of broiler chickens. Acta Histochemica 117:780-783. https://doi.org/10.1016/j.acthis.2015.08.001
https://doi.org/10.1016/j.acthis.2015.08...
), even when this difference has been reversible, depending on the extent of lipidosis (Blevins et al., 2010Blevins, S.; Siegel, P. B.; Blodgett, D. J.; Ehrich, M.; Saunders, G. K. and Lewis, R. M. 2010. Effects of silymarin on gossypol toxicosis in divergent lines of chickens. Poultry Science 89:1878-1886. https://doi.org/10.3382/ps.2010-00768
https://doi.org/10.3382/ps.2010-00768...
). According to Schmidt et al. (2003)Schmidt, R. E.; Reavil, D. R. I. and Phalen, N. D. 2003. Liver. In: Pathology of pet and aviary birds. Schmidt, R. E.; Reavil, D. R. I. and Phalen, N. D., eds. Iowa State Press, Ames, Iowa., lipidosis is frequent in broilers and may be associated with diet, mycotoxins, or the metabolism of hepatic enzymes; however, in this study, only the broilers in the treatment containing lemon grass oil exhibited higher levels of GGT.

In broilers, hyperplasia and fibroplasia of the bile ducts are classified as nonspecific lesions and are associated with changes in hepatic metabolism that occur systematically after lesion of the liver parenchyma. These lesions are of various origins, and most of the time, they are not observed as clinical manifestations prior to death, making it difficult to determine the exact causes (Hochleithner et al., 2005Hochleithner, M.; Hochleithner, C. and Harrison, L. D. 2005. Evaluating and treating the liver. p.441-450. In: Clinical Avian Medicine - Volume 1. Harrison, G.; Lightfoot, T., eds. Spix Publishing, Palm Beach.).

Previous studies on the toxicity of C. flexuosus and L. rotundifolia specifically were not found in the literature. However, plants of the same genus have been shown not to be toxic. Costa et al. (2011)Costa, C. A. R. A.; Bidinotto, L. T.; Takahira, R. K.; Salvadori, D. M. F.; Barbisan, L. F. and Costa, M. 2011. Cholesterol reduction and lack of genotoxic or toxic effects in mice after repeated 21-day oral intake of lemongrass (Cymbopogon citratus) essential oil. Food and Chemical Toxicology 49:2268-2272. https://doi.org/10.1016/j.fct.2011.06.025
https://doi.org/10.1016/j.fct.2011.06.02...
analyzed oral toxicity and genotoxicity in Cymbopogon citratus at a dose of 3,500 mg/kg in mice and found it not to be toxic, and Andrade et al. (2014)Andrade, V. A.; Almeida, A. C.; Souza, D. S.; Colen, K. G. F.; Macêdo, A. A.; Martins, E. R.; Fonseca, F. S. A. and Santos, R. L. 2014. Antimicrobial activity and acute and chronic toxicity of the essential oil of Lippia origanoides. Pesquisa Veterinária Brasileira 34:1153-1161. https://doi.org/10.1590/S0100-736X2014001200002
https://doi.org/10.1590/S0100-736X201400...
tested the effects of Lippia origanoides at a dosage of 120 μL/mL, and, likewise, it did not induce acute oral toxicity or subchronic signs in rats.

Despite being used in veterinary and human medicine, there is little information about the absorption of essential oil compounds after oral administration (Kohlert et al., 2000Kohlert, C.; Van Rensen, I.; März, R.; Schindler, G.; Graefe, E. U. and Veit, M. 2000. Bioavailability and pharmacokinetics of natural volatile terpenes in animal and humans. Planta Medica 66:495-505. https://doi.org/10.1055/s-2000-8616
https://doi.org/10.1055/s-2000-8616...
). Few studies have focused on the toxicity of essential oils; however, it has been confirmed that they have toxic effects on eukaryotic cells with variable effects. Raut and Karuppayil (2014)Raut, J. S. and Karuppayil, S. M. 2014. A status review on the medicinal properties of essential oils. Industrial Crops and Products 1:250-264. https://doi.org/10.1016/j.indcrop.2014.05.055
https://doi.org/10.1016/j.indcrop.2014.0...
showed the safety of essential oils at low concentrations. However, studies that assess the toxic concentrations for each oil are still needed.

Conclusions

Mixed-sex broilers fed rations supplemented with C. flexuosus and L. rotundifolia essential oils had normal complete blood counts and unspecific hepatic lesions characterized by lipidosis, hyperplasia of the bile ducts, and fibroplasia.

Acknowledgments

The authors are grateful to the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) (Finance Code 001). RLS is recipient of a fellowship from CNPq (Brazil).

References

  • Ali, A. H. H. 2014. Productive performance and immune response of broiler chicks as affected by dietary thyme leaves powder. Egyptian Poultry Science Journal 34:71-84. https://doi.org/10.21608/epsj.2014.5307
    » https://doi.org/10.21608/epsj.2014.5307
  • Andrade, V. A.; Almeida, A. C.; Souza, D. S.; Colen, K. G. F.; Macêdo, A. A.; Martins, E. R.; Fonseca, F. S. A. and Santos, R. L. 2014. Antimicrobial activity and acute and chronic toxicity of the essential oil of Lippia origanoides Pesquisa Veterinária Brasileira 34:1153-1161. https://doi.org/10.1590/S0100-736X2014001200002
    » https://doi.org/10.1590/S0100-736X2014001200002
  • Attia, Y. A.; Bakhashwain, A. A. and Bertu, N. K. 2017a. Thyme oil (Thyme vulgaris L.) as a natural growth promoter for broiler chickens reared under hot climate. Italian Journal of Animal Science 16:275-282. https://doi.org/10.1080/1828051X.2016.1245594
    » https://doi.org/10.1080/1828051X.2016.1245594
  • Attia, Y. A.; Al-Harthi, M. A. and Hassan, S. S. 2017b. Turmeric (Curcuma longa Linn.) as a phytogenic growth promoter alternative for antibiotic and comparable to mannan oligosaccharides for broiler chicks. Revista Mexicana de Ciencias Pecuarias 8:11-21. https://doi.org/10.22319/rmcp.v8i1.4309
    » https://doi.org/10.22319/rmcp.v8i1.4309
  • Attia, Y. A.; Bakhashwain, A. A. and Bertu, N. K. 2018. Utilisation of thyme powder (Thyme vulgaris L.) as a growth promoter alternative to antibiotics for broiler chickens raised in a hot climate. European Poultry Science 82. https://doi.org/10.1399/eps.2018.238
    » https://doi.org/10.1399/eps.2018.238
  • Azevedo, I. L.; Almeida, A. C.; Martins, E. R.; Nogueira, W. C. L.; Faria Filho, D. E.; Oliveira, S. P.; Prates, J. P. B. and Souza, C. N. 2016. Eficácia in vitro do óleo essencial de capim-limão (Cymbopogon flexuosus steud. wats.) frente a bactérias entéricas de origem avícola. Acta Veterinaria Brasilica 10:25-31.
  • Azevedo, I. L.; Martins, E. R.; Almeida, A. C.; Nogueira, W. C. L; Faria Filho, D. E.; Santos, V. K. F. R. and Lara, L. J. C. 2017. Use of Lippia rotundifolia and Cymbopogon flexuosus essential oils, individually or in combination, in broiler diets. Revista Brasileira de Zootecnia 46:13-19. https://doi.org/10.1590/s1806-92902017000100003
    » https://doi.org/10.1590/s1806-92902017000100003
  • Assis, Y. P. A. S.; Almeida, A. C.; Nogueira, W. C. L.; Souza, C. N.; Gonçalves, S. F.; Silva, F. E. G.; Santos, V. K. F. R. and Martins, E. R. 2017. Antibacterial activity and stability of microencapsulated lemon grass essential oil in feeds for broiler chickens. Revista Brasileira de Saúde e Produção Animal 18:587-593. https://doi.org/10.1590/s1519-99402017000400009
    » https://doi.org/10.1590/s1519-99402017000400009
  • Blevins, S.; Siegel, P. B.; Blodgett, D. J.; Ehrich, M.; Saunders, G. K. and Lewis, R. M. 2010. Effects of silymarin on gossypol toxicosis in divergent lines of chickens. Poultry Science 89:1878-1886. https://doi.org/10.3382/ps.2010-00768
    » https://doi.org/10.3382/ps.2010-00768
  • Bortoluzzi, C.; Rothrock, M. J.; Vieira, B. S.; Mallo, J. J.; Puyalto, M.; Hofacre, C. and Applegate, T. J. 2018. Supplementation of protected sodium butyrate alone or in combination with essential oils modulated the cecal microbiota of broiler chickens challenged with coccidia and Clostridium perfringens Frontiers in Sustainable Food Systems 2:72. https://doi.org/10.3389/fsufs.2018.00072
    » https://doi.org/10.3389/fsufs.2018.00072
  • Brenes, A. and Roura, E. 2010. Essential oils in poultry nutrition: Main effects and modes of action. Animal Feed Science and Technology 158:1-14. https://doi.org/10.1016/j.anifeedsci.2010.03.007
    » https://doi.org/10.1016/j.anifeedsci.2010.03.007
  • Catalan, A. A. S.; Avila, V. S.; Lopes, L. L.; Montagner, P.; Vargas, G. D.; Xavier, E. G. and Roll, V. F. B. 2013. Perfil metabólico, hematológico e comportamental de poedeiras suplementadas com Panax ginseng Archivos de Zootecnia 62:89-100. https://doi.org/10.4321/S0004-05922013000100010
    » https://doi.org/10.4321/S0004-05922013000100010
  • Cho, J. H.; Kim, H. J. and Kim, I. H. 2014. Effects of phytogenic feed additive on growth performance, digestibility, blood metabolites, intestinal microbiota, meat color and relative organ weight after oral challenge with Clostridium perfringens in broilers. Livestock Science 160:82-88. https://doi.org/10.1016/j.livsci.2013.11.006
    » https://doi.org/10.1016/j.livsci.2013.11.006
  • Chowdhury, S.; Mandal, G. P.; Patra, A. K.; Kumar, P.; Samanta, I.; Pradhan, S. and Samanta, A. K. 2018. Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Animal Feed Science and Technology 236:39-47. https://doi.org/10.1016/j.anifeedsci.2017.12.003
    » https://doi.org/10.1016/j.anifeedsci.2017.12.003
  • Costa, C. A. R. A.; Bidinotto, L. T.; Takahira, R. K.; Salvadori, D. M. F.; Barbisan, L. F. and Costa, M. 2011. Cholesterol reduction and lack of genotoxic or toxic effects in mice after repeated 21-day oral intake of lemongrass (Cymbopogon citratus) essential oil. Food and Chemical Toxicology 49:2268-2272. https://doi.org/10.1016/j.fct.2011.06.025
    » https://doi.org/10.1016/j.fct.2011.06.025
  • Dhama, K.; Latheef, S. K.; Mani, S.; Samad, H. A.; Karthik, K.; Tiwari, R.; Khan, R. U.; Alagawany, M.; Farag, M. R.; Alam, G. M.; Laudadio, V. and Tufarelli, V. 2015. Multiple beneficial applications and modes of action of herbs in poultry health and production - A review. International Journal of Pharmacology 11:152-176. https://doi.org/10.3923/ijp.2015.152.176
    » https://doi.org/10.3923/ijp.2015.152.176
  • Grunkemeyer, V. L. 2010. Advanced diagnostic approaches and current management of avian hepatic disorders. Veterinary Clinics of North America: Exotic Animal Practice 13:413-427. https://doi.org/10.1016/j.cvex.2010.05.005
    » https://doi.org/10.1016/j.cvex.2010.05.005
  • Hochleithner, M.; Hochleithner, C. and Harrison, L. D. 2005. Evaluating and treating the liver. p.441-450. In: Clinical Avian Medicine - Volume 1. Harrison, G.; Lightfoot, T., eds. Spix Publishing, Palm Beach.
  • Krishan, G. and Narang, A. 2014. Use of essential oils in poultry nutrition: A new approach. Journal of Advanced Veterinary and Animal Research 1:156-162. https://doi.org/10.5455/javar.2014.a36
    » https://doi.org/10.5455/javar.2014.a36
  • Kohlert, C.; Van Rensen, I.; März, R.; Schindler, G.; Graefe, E. U. and Veit, M. 2000. Bioavailability and pharmacokinetics of natural volatile terpenes in animal and humans. Planta Medica 66:495-505. https://doi.org/10.1055/s-2000-8616
    » https://doi.org/10.1055/s-2000-8616
  • Leitão, S. G.; Oliveira, D. R.; Sülsen, V.; Martino, V.; Barbosa, Y. G.; Bizzo, H. R.; Lopes, D.; Viccini, L. F.; Salimena, F. R. G.; Peixoto, P. H. P. and Leitão, G. G. 2008. Analysis of the chemical composition of the essential oils extracted from Lippia lacunosa Mart. & Schauer and Lippia rotundifolia Cham. (Verbenaceae) by gas chromatography and gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society 19:1388-1393.
  • Lumeij, J. T. 2008. Avian clinical biochemistry. p.839-872. In: Clinical biochemistry of domestic animals. 6th ed. Kaneko, J.; Harvey, J. and Bruss, M., eds. Academic Press.
  • May, A.; Bovi, O. A.; Maia, N. B.; Moraes, A. R. A.; Pinheiro, M. Q. and Mario, M. 2008. Influência do intervalo entre cortes sobre a produção de biomassa de duas espécies de capim limão. Horticultura Brasileira 26:379-382. https://doi.org/10.1590/S0102-05362008000300017
    » https://doi.org/10.1590/S0102-05362008000300017
  • Mehr, M. A.; Hassanabadi, A.; Nassiri Moghaddam, H. and Kermanshahi, H. 2014. Supplementation of clove essential oils and probiotic to the broiler's diet on performance, carcass traits and blood components. Iranian Journal of Applied Animal Science 4:117-122.
  • Manual veterinário de colheita e envio de amostras: Aves. 2010. OPAS/OMS, Rio de Janeiro.
  • Mokhtari, S.; Rahati, M.; Seidavi, A.; Haq, Q. M. I.; Kadim, I.; Laudadio, V. and Tufarelli, V. 2018. Effects of feed supplementation with lavender (Lavandula angustifolia) essence on growth performance, carcass traits, blood constituents and caecal microbiota of broiler chickens. European Poultry Science 82. https://doi.org/10.1399/eps.2018.249
    » https://doi.org/10.1399/eps.2018.249
  • R Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: <https://www.r-project.org/>. Accessed: June 12, 2018.
    » https://www.r-project.org/
  • Raut, J. S. and Karuppayil, S. M. 2014. A status review on the medicinal properties of essential oils. Industrial Crops and Products 1:250-264. https://doi.org/10.1016/j.indcrop.2014.05.055
    » https://doi.org/10.1016/j.indcrop.2014.05.055
  • Resende, C. F.; Bianchetti, R. E.; Oliveira, A. M. S.; Braga, V. F. and Peixoto, P. H. P. 2015. In vitro propagation and acclimatization of Lippia rotundifolia, an endemic species of Brazilian Campos Rupestres. Revista Ciência Agronômica 46:582-589. https://doi.org/10.5935/1806-6690.20150041
    » https://doi.org/10.5935/1806-6690.20150041
  • Rostagno, H. S.; Albino, L. F. T.; Donzele, J. L.; Gomes, P. C.; Oliveira, R. F.; Lopes, D. C.; Ferreira, A. S.; Barreto, S. L. T. and Euclides, R. F. 2011. Tabelas brasileiras para aves e suínos: Composição de alimentos e exigências nutricionais. 3.ed. Viçosa, MG.
  • Saleh, N.; Allam T.; El-latif, A. A. and Ghazy, E. 2014. The effects of dietary supplementation of different levels of Thyme (Thymus vulgaris) and Ginger (Zingiber officinale) essential oils on performance, hematological, biochemical and immunological parameters of broiler chickens. Global Veterinária 12:736-744.
  • Schmidt, R. E.; Reavil, D. R. I. and Phalen, N. D. 2003. Liver. In: Pathology of pet and aviary birds. Schmidt, R. E.; Reavil, D. R. I. and Phalen, N. D., eds. Iowa State Press, Ames, Iowa.
  • Simões, C. M. O.; Schenkel, E. P.; Gosmann, G.; Mello, J. C. P.; Mentz, L. A. and Petrovick. P. R. (Orgs). 2010. Farmacognosia: da planta ao medicamento. 6th ed. Editora da UFRGS, Porto Alegre; Editora da UFSC, Florianópolis.
  • Souza, D. S.; Almeida, A. C.; Andrade, V. A.; Marcelo, N. A.; Azevedo, I. L.; Martins, E. R. and Figueiredo, L. S. 2015. Atividade antimicrobiana do óleo essencial de Lippia origanoides e Lippia rotundifolia frente à enterobactérias isoladas de aves. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia 67:940-944. https://doi.org/10.1590/1678-4162-7580
    » https://doi.org/10.1590/1678-4162-7580
  • Tennant, B. C. and Center, S. A. 2008. Hepatic function. p.379-412. In: Clinical biochemistry of domestic animals. 6th ed. Kaneko, J.; Harvey, J. and Bruss, M., eds. Academic Press.
  • Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G. and Eghbalsaied, S. 2011. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical and haematological parameters in broiler chicks. Livestock Science 138:167-173. https://doi.org/10.1016/j.livsci.2010.12.018
    » https://doi.org/10.1016/j.livsci.2010.12.018
  • Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G. and Mohammadrezaei, M. 2010. Growth performance, serum biochemistry and blood hematology of broiler chicks fed different levels of black seed (Nigella sativa) and peppermint (Mentha piperita). Livestock Science 129:173-178. https://doi.org/10.1016/j.livsci.2010.01.021
    » https://doi.org/10.1016/j.livsci.2010.01.021
  • Tollba, A. A. H.; Shabaan, S. A. M. and Abdel-Mageed, M. A. A. 2010. Effects of using aromatic herbal extract and blended with organic acids on productive and physiological performance of poultry. Egyptian Poultry Science 30:229-248.
  • Traesel, C. K.; Lopes, S. T. A.; Wolkmer, P.; Schmidt, C.; Santurio, J. M. and Alves, S. H. 2011. Óleos essenciais como substituintes de antibióticos promotores de crescimento em frangos de corte: perfil de soroproteínas e peroxidação lipídica. Ciência Rural 41:278-284. https://doi.org/10.1590/S0103-84782011000200016
    » https://doi.org/10.1590/S0103-84782011000200016
  • Tufarelli, V.; Bozzo, G.; Perillo, A. and Laudadio, V. 2015. Effects of feeding different lipid sources on hepatic histopathology features and growth traits of broiler chickens. Acta Histochemica 117:780-783. https://doi.org/10.1016/j.acthis.2015.08.001
    » https://doi.org/10.1016/j.acthis.2015.08.001
  • Zeng, Z.; Zhang, S.; Wang, H. and Piao, X. 2015. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. Journal of Animal Science and Biotechnology 6:7. https://doi.org/10.1186/s40104-015-0004-5
    » https://doi.org/10.1186/s40104-015-0004-5

Publication Dates

  • Publication in this collection
    12 Sept 2019
  • Date of issue
    2019

History

  • Received
    26 Dec 2018
  • Accepted
    03 May 2019
Sociedade Brasileira de Zootecnia Universidade Federal de Viçosa / Departamento de Zootecnia, 36570-900 Viçosa MG Brazil, Tel.: +55 31 3612-4602, +55 31 3612-4612 - Viçosa - MG - Brazil
E-mail: rbz@sbz.org.br