Abstract
Pasturelands are characterized as grasslands utilized for cattle raising and consist of natural or exotic vegetation, predominantly grasses. In the context of sustainable production, the biodiversity of insects within grazing environments holds significant value. Dung beetles play a crucial role in sustaining pasturelands as the burial of feces by these beetles fosters ecological services indispensable for maintaining a robust and healthy environment. Given that different dung beetle species contribute to distinct environmental benefits, a comprehensive understanding of the species present in pasturelands, their origins, and the ecological services they provide is imperative. This study endeavors to compile comprehensive information on dung beetle species native to South America, emphasizing taxonomic precision and a confirmed affinity for cattle dung. Our findings are derived from a synthesis of literature and observational data, incorporating location information obtained from taxonomic revisions and specimen labels of specimens housed at CEMT. In South America, a total of 57 dung beetle species are documented that inhabit grazing areas and actively feed on cattle manure. These areas span diverse biomes encompassing native and/or introduced grasslands, which may include deforested sections within forest biomes such as Chaco, Pantanal, Cerrado, Caatinga, Pampa, Atlantic Forest, Amazon Forest, Paramo, Puna, Llanos, and Patagonia. The preponderance of species identified fall within the paracoprid category, recognized as particularly vital for the sustainability of pasturelands. Despite their acknowledged importance, a noticeable knowledge gap impedes the effective conservation of these species. This gap is a focal point of discussion in this study, addressing the challenges and opportunities for enhancing conservation efforts. The species documented in this research exhibit notable economic and environmental relevance in the context of sustainable livestock production, emphasizing the urgency and significance of initiatives that prioritize their conservation.
Keywords
Scarabaeinae; livestock; grasslands; conservation
Resumo
Pastagens são áreas formadas por vegetação nativa ou exótica, principalmente gramíneas, e são utilizadas na pecuária. A diversidade de insetos em áreas de pastagens é muito valiosa, especialmente quando consideramos os métodos de produção sustentável. Besouros rola-bostas são importantes para a sustentabilidade em pastagens porque o enterrio de esterco promove benefícios essenciais para a manutenção do ambiente pastoril. Espécies diferentes exercem diferentes serviços ecossistêmicos, logo é necessário saber quais espécies estão presentes em áreas de pastoreio para saber quais são os benefícios que elas podem proporcionar. Aqui reunimos todas as informações disponíveis para as espécies taxonomicamente bem definidas de rola-bostas nativos da América do Sul e que são conhecidas por utilizar fezes bovinas como recurso para alimentação e nidificação. Usamos dados encontrados na literatura, em observações de campo e em etiquetas de espécimes depositados na CEMT. São registradas 57 espécies de rola-bostas nativos da América do Sul que se alimentam e nidificam em fezes bovinas, e estas estão distribuídas nos seguintes biomas: Chaco, Pantanal, Cerrado, Caatinga, Pampa, áreas abertas da Mata Atlântica e da Floresta Amazônia, Paramo, Puna, Llanos e Patagônia. A maioria das espécies são de paracoprídeos e estes são considerados os mais importantes para as áreas de pastagem. No entanto, existe uma grande lacuna de conhecimento em história natural, o que dificulta a efetividade da conservação dessas espécies. Todas as espécies listadas neste trabalho têm potencial relevância econômica e ambiental na pecuária sustentável e, portanto, o estudo e conservação delas devem ser priorizadas.
Palavras-chave
Scarabaeinae; pecuária; áreas abertas; conservação
Introduction
Pasturelands characterized by grasses and used for cattle raising are a significant component of South American landscapes. These grasslands exhibit diverse ecological characteristics, ranging from tropical to temperate climates. While tropical grasslands dominate regions such as the Cerrado, Chaco, Pantanal, Llanos, and Caatinga, temperate or temperate-like grasslands are prevalent in the Pampas, Patagonia, Paramo, and Puna (the latter two being high altitude grasslands) (Dixon et al. 2014DIXON, A.P., FABER-LANGENDOEN, D., JOSSE, C., MORRISON, J., & LOUCKS, C.J. 2014. Distribution mapping of world grassland types. J. Biogeogr. 41: 2003–2019. https://doi.org/10.1111/jbi.12381.
https://doi.org/10.1111/jbi.12381...
). The term “derived savannas” refer to areas that were once forests but were deforested for crop cultivation or livestock management. Despite this transformation, natural grasslands remain highly attractive to farmers due to their flat terrain and cost-effective deforestation methods. However, the widespread conversion of natural grasslands into croplands or extensive planted pastures raise significant conservation concerns (Overbeck et al. 2015OVERBECK, G.E., VÉLEZ-MARTIN, E., SCARANO, F.R., LEWINSOHN, T.M., FONSECA, C.R., et al. 2015. Conservation in Brazil needs to include non-forest ecosystems. Diversity Distrib. 21: 1455–1460. https://doi.org/10.1111/ddi.12380.
https://doi.org/10.1111/ddi.12380...
, Oliveira et al. 2017OLIVEIRA, T.E., DE FREITAS, D.S., GIANEZINI, M., RUVIARO, C.F., ZAGO, D., MÉRCIO, T.Z., DIAS, E.A., DO NASCIMENTO LAMPERT, V. & BARCELLOS, J.O.J. 2017. Agricultural land use change in the Brazilian Pampa Biome: The reduction of natural grasslands. Land Use Policy. 63: 394–400.).
Insect biodiversity in grazing environments is highly valuable, especially when sustainable production is considered crucial. Bioindicators, which include several animal groups (such as dung beetles, birds, mammals, and butterflies) play a vital role in evaluating environmental quality. Our focus here is on dung beetles (Coleoptera, Scarabaeinae), known for their sensitivity to grazing intensity, land conversion, and abandonment (Tonelli et al. 2019TONELLI, M., VERDÚ, J.R. & ZUNINO, M. 2019. Grazing abandonment and dung beetle assemblage composition: Reproductive behaviour has something to say. Ecol. Indic. 96(1): 361–367. https://doi.org/10.1016/j.ecolind.2018.09.010.
https://doi.org/10.1016/j.ecolind.2018.0...
). Dung beetles offer economically efficient means of assessing pasturelands, whether they are natural or disturbed habitats, thanks to cost-effective standardized protocols for evaluating dung beetle richness, abundance, and community structure (Halffter & Favila 1993HALFFTER, G. & FAVILA, M.E. 1993. The Scarabaeinae (Insecta: Coleoptera) an Animal Group for Analysing, Inventorying and Monitoring Biodiversity in Tropical Rainforest and Modified Landscapes. Biology International. 27: 15–21., Gardner et al. 2008GARDNER, T.A., BARLOW, J., ARAÚJO, I.S., ÁVILA-PIRES, T.C., BONALDO, A.B, COSTA, J.E., ESPOSITO, M.C., FERREIRA, L.V., HAWES, J., HERNANDEZ, M.I.M., et al. 2008. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11(2): 139–150. https://doi.org/10.1111/j.1461-0248.2007.01133.x.
https://doi.org/10.1111/j.1461-0248.2007...
, Tonelli et al. 2019TONELLI, M., VERDÚ, J.R. & ZUNINO, M. 2019. Grazing abandonment and dung beetle assemblage composition: Reproductive behaviour has something to say. Ecol. Indic. 96(1): 361–367. https://doi.org/10.1016/j.ecolind.2018.09.010.
https://doi.org/10.1016/j.ecolind.2018.0...
).
Dung beetles play a pivotal role in ensuring sustainability within pasturelands through the burial of feces, thereby fostering bioturbation. This process enhances aeration, humidity, and the redistribution of organic matter and microorganisms across varying depths, consequently increasing the nutritional value of grasses (Bornemissza & Williams 1970BORNEMISSZA, G.F. & WILLIAMS C.H. 1970. An effect of dung beetle activity on plant yield. Pedobiologia, 10: 1–7., Bang et al. 2005BANG, H.S., LEE, J.-H., KWON, O.S., NA, Y.E., JANG, Y.S. & KIM, W.H. 2005. Effects of paracoprid dung beetles (Coleoptera: Scarabaeidae) on the growth of pasture herbage and on the underlying soil. Appl. Soil Ecol. 29: 165–171., Farias & Hernández 2017FARIAS, P.M. & HERNÁNDEZ, M.I.M. 2017. Dung beetles associated with agroecosystems of southern Brazil: Relationship with soil properties. Revista Brasileira de Ciência do Solo. 41(0): e0160248. https://doi.org/10.1590/18069657rbcs20160248.
https://doi.org/10.1590/18069657rbcs2016...
, Barragán et al. 2022BARRAGÁN, F., DOUTERLUNGNE, D., RAMÍREZ-HERNÁNDEZ, A., GELVIZ-GELVEZ, S.M., MIRANDA, A.V.G. & ORTÍZ, J.P.R. 2022. The rolling dung master: An ecosystem engineer beetle mobilizing soil nutrients to enhance plant growth across a grassland management intensity gradient in drylands. J. Arid Environ. 197: 104673, https://doi.org/10.1016/j.jaridenv.2021.104673.
https://doi.org/10.1016/j.jaridenv.2021....
). Furthermore, dung beetles contribute significantly to parasitic control, targeting flies and nematodes (Bornemissza 1960BORNEMISSZA, G.F. 1960. Could dung eating insects improve our pastures? J. Aust. I. Agr. Sci. 26: 54–56., 1970BORNEMISSZA, G.F. 1970. Insectary studies on the control of dung breeding flies by the activity of the dung beetle, Onthophagus gazella F. (Coleoptera: Scarabaeinae). Aust. J. Entomol. 9: 31–41., Nichols et al. 2008NICHOLS, E., SPECTOR, S., LOUZADA, J., LARSEN, T., AMEZQUITA, S., FAVILA, M.E & THE SCARABAEINAE RESEARCH NETWORK. 2008. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141: 1461–1474., Sands & Wall 2016SANDS, B. & WALL, R. 2016. Dung beetles reduce livestock gastrointestinal parasite availability on pasture. J. Appl. Ecol. 54: 1180–1189.). Noteworthy environmental benefits include a reduction in greenhouse gas emissions with a decrease of 7% in dung pads and 12% in pasture ecosystems (Slade et al. 2016SLADE, E., RIUTTA, T., ROSLIN, T. & TUOMISTO, H.L. 2016. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Scientific Reports. 6: 18140. https://doi.org/10.1038/srep18140.
https://doi.org/10.1038/srep18140...
). This is predominantly due to mitigating methane (CH4) emissions, a gas that typically forms under anaerobic conditions, since dung beetle activities facilitate oxygenation within pads, therefore diminishing methanogenesis (Slade et al. 2016SLADE, E., RIUTTA, T., ROSLIN, T. & TUOMISTO, H.L. 2016. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Scientific Reports. 6: 18140. https://doi.org/10.1038/srep18140.
https://doi.org/10.1038/srep18140...
).
The functional classification of dung beetles into three types reflects their distinct approaches to managing and storing food and nest resources: telecoprids (rollers), paracoprids (tunnellers), and endocoprids (dwellers) (Halffter & Matthews 1966HALFFTER, G. & MATTHEWS, E.G. 1966. The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Folia Entomologica Mexicana. 12: 1–312.) (Figure 1). There is a fourth guild called “kleptocoprids” (Halffter & Matthews 1966HALFFTER, G. & MATTHEWS, E.G. 1966. The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Folia Entomologica Mexicana. 12: 1–312.), but precise information is lacking on how deep or how far they nest, or even if it is within their host nest, thus we use this class apart from the three main functional types. Although these functional types are common in grasslands, they exhibit disparities in terms of soil preferences and when they are active (Halffter & Edmonds 1982HALFFTER, G. & EDMONDS, W.D. 1982. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. Instituto de Ecologia, Mexico City, Mexico.). According to Farias & Hernández (2017)FARIAS, P.M. & HERNÁNDEZ, M.I.M. 2017. Dung beetles associated with agroecosystems of southern Brazil: Relationship with soil properties. Revista Brasileira de Ciência do Solo. 41(0): e0160248. https://doi.org/10.1590/18069657rbcs20160248.
https://doi.org/10.1590/18069657rbcs2016...
, paracoprids exhibit a positive association with soil organic matter components and quantity, while telecoprids typically favor specific soil textures, particularly sandy soil. Endocoprids, on the other hand, exhibit no particular preference for soil components, nesting either within the dung pad or at the interface between soil and dung. Notably, they tend to be active during drier periods of the day, strategically avoiding competition with tunnellers and rollers, which thrive in more humid conditions (Halffter & Edmonds 1982HALFFTER, G. & EDMONDS, W.D. 1982. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. Instituto de Ecologia, Mexico City, Mexico.).
Diverse body sizes and distinct food preferences among dung beetle species yield varied environmental benefits. Hence high species diversity within pastures correlates with many advantages. These benefits encompass diverse levels of bioturbation, characterized by shallow, medium, or deep burrows, nests, and galleries containing one, two, or multiple chambers. Furthermore, disparate rates of feces disaggregation and the integration of organic matter into the soil occur across various horizontal levels (Flechtmann et al. 1995aFLECHTMANN, C.A.H., RODRIGUES, S.R. & COUTO, H.T.Z. 1995a. Controle biológico da mosca-dos chifres (Haematobia irritansirritans) em Selvíria, Mato Grosso do Sul. 2. Ação de insetos fimícolas em massas fecais no campo. Rev. Bras. Entomol. 39(2): 237–247., Bornemissza 1960BORNEMISSZA, G.F. 1960. Could dung eating insects improve our pastures? J. Aust. I. Agr. Sci. 26: 54–56., Halffter & Edmonds 1982HALFFTER, G. & EDMONDS, W.D. 1982. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. Instituto de Ecologia, Mexico City, Mexico.).
In the Brazilian context, 76 dung beetle species are documented in grazing areas (Tissiani et al. 2017TISSIANI, A.S.O., VAZ-DE-MELLO, F.Z. & CAMPELO-JÚNIOR, J.H. 2017. Dung beetles of Brazilian pastures and key to genera identication (Coleoptera: Scarabaeidae). Pesquisa Agropecuária Brasileira. 52(6): 401–418. https://doi.org/10.1590/S0100-204X2017000600004.
https://doi.org/10.1590/S0100-204X201700...
). However, a reassessment of this list is imperative due to discrepancies observed in feeding habits or habitat preferences of some reported species, particularly in open conditions. Additionally, several taxonomic revisions have been published since the publication of this list. Although recent efforts have comprehensively reviewed published information on the ecological functions of dung beetles in South American pasturelands (Arellano et al. 2023ARELLANO, L., NORIEGA, J.A., ORTEGA-MARTÍNEZ, I.J., RIVERA, J.D., CORREA, C.M.A., GÓMEZ- CIFUENTES, A., RAMÍREZ-HERNÁNDEZ, A., & BARRAGÁN, F. 2023. Dung beetles (Coleoptera: Scarabaeidae) in grazing lands of the Neotropics: A review of patterns and research trends of taxonomic and functional diversity, and functions. Front. Ecol. Evol. 11:1084009. https://doi.org/10.3389/fevo.2023.1084009.
https://doi.org/10.3389/fevo.2023.108400...
), the need for a comprehensive taxonomic list remains. This study aims to compile a taxonomically well-defined list of dung beetle species native to South America, focusing on those known to feed on cattle dung. Such endeavor not only contributes to a clearer understanding of biodiversity but also highlights the potential economic and environmental relevance of these species within pastureland ecosystems (Losey & Vaughan 2006LOSEY, J.E. & VAUGHAN, M. 2006. The economic value of ecological services provided by insects. Bioscience. 56: 311–323., Beynon et al. 2015BEYNON, S.A., WAINWRIGHT, W.A. & CHRISTIE, M. 2015. The application of an ecosystem services framework to estimate the economic value of dung beetles to the UK cattle industry. Ecol. Entomol. 40: 124–135. https://doi.org/10.1111/een.12240.
https://doi.org/10.1111/een.12240...
).
Material and Methods
We compiled a list of dung beetle species exhibiting coprophagous behavior, specifically those associated with cattle dung in pastures. This compilation is grounded in bibliographic sources and observational data. Our methodology involved an exhaustive bibliographic search focused on dung beetle species within South American pasturelands. To accomplish this, we employed a systematic review across two prominent academic databases: Web of Science for comprehensive bibliographic coverage and SciELO for papers presented in Portuguese and Spanish. The search query was: “(dung beetle* OR Scarabaeinae*) and (pastures* OR grasslands*) and (cattle dung) and (South America* OR Argentina* OR Brazil* OR Bolivia* OR Chile* OR Colombia* OR Ecuador* OR French Guiana* OR Guyana* OR Paraguay* OR Uruguay* OR Peru* OR Venezuela*)”. All articles meeting the predetermined criteria and published until 2022 were included, with books and technical reports also considered, even if not explicitly listed in the systematic search. Our focus was on papers presenting lists of dung beetle species collected from native or exotic pasturelands within the South American territory.
To address historical nomenclature challenges, wherein certain Geotrupidae and Aphodiinae (Scarabaeidae) species have been designated as “dung beetles,” we made a deliberate choice to exclusively concentrate on Scarabaeinae (Coleoptera: Scarabaeidae) species in this study. Geotrupidae species associated with feces are confined to Southern Argentina and Chile (Lobo & González-Chang 2022LOBO, J.M., & GONZÁLEZ-CHANG, M. 2022. Comparing Realized and Potential Distributions of the Species of Taurocerastinae (Coleoptera: Geotrupidae) to Examine the Relevance of Dispersal Limitations and Contemporary Environmental Factors. The Coleopterists Bulletin. 76(4): 595–605.), and Aphodiinae are small dwellers, whose present identification challenges in tropical regions of the continent. Additionally, our focus was refined to exclude Scarabaeinae species that, while inhabiting pasturelands, do not commonly engage in coprophagous behavior on cattle dung.
To compile our list, we relied on reported localities derived from taxonomic revisions and specimen labels housed at Coleção Entomológica de Mato Grosso Eurides Furtado (CEMT). This effort yielded 9,558 geographical records, including 5,935 from CEMT, 2,603 from bibliographic sources, and 1,020 yet unpublished records from ongoing taxonomic revisions provided by respective authors (Supplementary Material).
Geospatial maps were generated using a suite of R packages, including “ggsn,” “RColorBrewer,” “raster,” “rgdal,” “sf,” “tidyverse,” “wesanderson,” “ggspatial,” “viridis,” and “scales” (R Core Team 2022R CORE TEAM. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
https://www.R-project.org/...
). We chose not to include a map (or layer) of South American pasturelands because the available data is outdated, however, this product is being actively developed as part of the Global Pasture Watch initiative. The initial maps expected in the second quarter of 2024 [https://www.landcarbonlab.org/news-updates/tag/global+pasture+watch]. High-quality photographic documentation was facilitated using a Leica model m205C (7.8 × –160.0 ×) stereo microscope equipped with an MC190 HD image capture system.
Results
During our comprehensive search, we identified 43 articles containing reports on dung beetle species collected on cattle dung in South American pasturelands. It is pertinent to note that dung beetle species observed in cattle dung in forests or within forested areas were excluded from our consideration. The resultant list comprises 57 species documented in South American pasturelands actively feeding on cattle dung (Table 1). Notably, in Brazil, where the largest pasturelands in the Neotropical region are found, a total of 48 dung beetle species engaging in the consumption of cattle manure have been recorded in grazing areas. These occurrences span various biomes with native and/or introduced grasses, including Chaco, Cerrado, Caatinga, Pampa, Atlantic Forest, and Amazon Forest, as detailed in Table 1 and Figures 2–11. Furthermore, our findings extend beyond Brazil, encompassing nine species in other South American countries that exhibit coprophagous behavior on cattle dung. These countries host unique biomes not found within Brazil. Specifically, these biomes include Paramo (Colombia and Peru), Puna (Peru to Argentina), Llanos (Venezuela and Colombia), and Patagonia (Chile and Argentina) (Figures 2–11). This comprehensive listing provides a nuanced understanding of the distribution and feeding habits of dung beetle species across diverse South American ecosystems.
Geographical distribution and dorsal view of specimens for each species. (A) Agamopus unguicularis. (B) Agamopus viridis. (C) Ateuchus striatulus and (D) Ateuchus vividus (Photos: Mario Cupello). (E) Canthon septemmaculatus histrio. (F) Tetraechma liturata. Scale: 1 mm.
Geographical distribution and dorsal view of specimens for each species. (A) Canthon ornatus bipunctatus. (B) Canthon ornatus ornatus. (C) Canthon ornatus thoracicus. (D) Canthon rutilans cyanescens. (E) Canthon rutilans rutilans. (F) Canthon septemmaculatus linearis. Scale: 1 mm.
Geographical distribution and dorsal view of specimens for each species. (A) Diabroctis mimas. (B) Dichotomius bos. (C) Dichotomius cotopaxi. (D) Dichotomius crinicollis. (E) Dichotomius cuprinus. (F) Dichotomius fimbriatus. Scale: 1 mm.
Geographical distribution and dorsal view of specimens for each species. (A) Dichotomius geminatus. (B) Dichotomius glaucus. (C) Dichotomius longiceps. (D) Dichotomius lycas. (E) Dichotomius monstrosus. (F) Dichotomius nisus. Scale: 1 mm.
Geographical distribution and dorsal view of specimens for each species. (A) Dichotomius opacipennis. (B) Dichotomius opacus. (C) Dichotomius rugatus. (D) Dichotomius semiaeneus. (E) Dichotomius semisquamosus. (F) Digitonthophagus gazella. Scale: 1 mm.
Geographical distribution and dorsal view of specimens for each species. (A) Eurysternus caribaeus. (B) Eurysternus deplanatus. (C) Eurysternus jessopi. (D) Eurysternus nigrovirens. (E) Eurysternus parallelus. (F) Genieridium bidens (Photo: Edrielly Carvalho). Scale: 1 mm.
Geographical distribution and dorsal view of specimens for each species. (A) Gromphas lacordairei. (B) Homocopris achamas. (C) Ontherus appendiculatus. (D) Ontherus dentatus. (E) Ontherus sulcator. (F) Onthophagus bidentatus. Scale: 1 mm.
Geographical distribution and dorsal view of specimens for each species. (A) Onthophagus buculus. (B) Onthophagus hircus. (C) Onthophagus ptox. (D) Onthophagus ranunculus. (E) Oruscatus davus. (F) Oruscatus opalescens. Scale: 1 mm.
Geographical distribution and dorsal view of specimens for each species. (A) Oxysternon palemo. (B) Phanaeus kirbyi. (C) Phanaeus palaeno. (D) Sulcophanaeus menelas. (E) Trichillum adjunctum. (F) Trichillum externepunctatum. Scale: 1 mm.
Geographical distribution and dorsal view of specimens for each species. (A) Uroxys coarctatus. (B) Uroxys latesulcatus. (C) Uroxys rugatus. Scale: 1 mm.
Discussion
In the context of climate variables, distribution of dung beetles is predominantly shaped by temperature and precipitation dynamics (Halffter & Edmonds 1982HALFFTER, G. & EDMONDS, W.D. 1982. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. Instituto de Ecologia, Mexico City, Mexico.). Nevertheless, at finer spatial scales, factors such as landscape configuration, soil composition, vegetation structure, and habitat heterogeneity emerge as primary influencers on dung beetle communities (Sowig 1995SOWIG, P. 1995. Habitat selection and offspring survival rate in three paracoprid dung beetles: the influence of soil type and soil moisture. Ecography. 18: 147–154., Almeida & Louzada 2009ALMEIDA, S.S.P., & LOUZADA, J.N.C. 2009. Estrutura da comunidade de Scarabaeinae (Scarabaeidae: Coleoptera) em fitofisionomias do Cerrado e sua importância para a conservação. Neotrop. Entomol. 38: 32–43., Louzada et al. 2010LOUZADA, J., LIMA, A.P., MATAVELLI, R., ZAMBALDI, L. & BARLOW, J. 2010. Community structure of dung beetles in Amazonian savannas: role of fire disturbance, vegetation and landscape structure. Landscape Ecol. 25: 631–641., Silva et al. 2010DA SILVA, R. J., DINIZ, S., & VAZ-DE-MELLO, F. Z. 2010. Heterogeneidade do habitat, riqueza e estrutura da assembléia de besouros rola-bostas (Scarabaeidae: Scarabaeinae) em áreas de cerrado na Chapada dos Parecis, MT. Neotropical Entomology. 39: 934–940. https://doi.org/10.1590/S1519-566X2010000600014.
https://doi.org/10.1590/S1519-566X201000...
, Almeida et al. 2011ALMEIDA, S., LOUZADA, J., SPERBER, C. & BARLOW, J. 2011. Subtle land-use change and tropical biodiversity: Dung beetle communities in Cerrado grasslands and exotic pastures. Biotropica. 43: 704–710. https://doi.org/10.1111/j.1744-7429.2011.00751.x.
https://doi.org/10.1111/j.1744-7429.2011...
). Species inhabiting cattle pastures are generally exposed to higher temperatures, lower humidity, and higher soil compaction compared to those in forests (Soto et al. 2019SOTO, C.S., GIOMBINI, M.I., GIMÉNEZ GÓMEZ, V.C. et al. 2019. Phenotypic differentiation in a resilient dung beetle species induced by forest conversion into cattle pastures. Evol. Ecol. 33: 385–402. https://doi.org/10.1007/s10682-019-09987-y.
https://doi.org/10.1007/s10682-019-09987...
). Species adapted to natural grasslands may be more resilient to these variables, and, indeed, we find that the most common dung beetle species in pastures are native to the Cerrado, Caatinga, or other natural South American grasslands (Almeida & Louzada 2009ALMEIDA, S.S.P., & LOUZADA, J.N.C. 2009. Estrutura da comunidade de Scarabaeinae (Scarabaeidae: Coleoptera) em fitofisionomias do Cerrado e sua importância para a conservação. Neotrop. Entomol. 38: 32–43., Louzada & Carvalho e Silva 2009LOUZADA, J.N. & CARVALHO E SILVA, P.R. 2009. Utilisation of introduced Brazilian pastures ecosystems by native dung beetles: diversity patterns and resource use. Insect Conserv. Diver. 2(1): 45–52., Louzada et al. 2010LOUZADA, J., LIMA, A.P., MATAVELLI, R., ZAMBALDI, L. & BARLOW, J. 2010. Community structure of dung beetles in Amazonian savannas: role of fire disturbance, vegetation and landscape structure. Landscape Ecol. 25: 631–641., Silva et al. 2014SILVA, R.J., COLETTI, F., COSTA, D.A. & VAZ-DE-MELLO, F.Z. 2014. Rola-bostas (Coleoptera: Scarabaeidae: Scarabaeinae) de florestas e pastagens no sudoeste da Amazônia brasileira: Levantamento de espécies e guildas alimentares. Acta Amazonica (44): 345–352. https://doi.org/10.1590/1809-4392201304472.
https://doi.org/10.1590/1809-43922013044...
).
Southwestern Amazonian pasturelands were colonized by dung beetle species from the Cerrado and other adjacent dryer habitats; these habitats typically serve as the primary source of native species for introduced grasslands (Silva et al. 2014SILVA, R.J., COLETTI, F., COSTA, D.A. & VAZ-DE-MELLO, F.Z. 2014. Rola-bostas (Coleoptera: Scarabaeidae: Scarabaeinae) de florestas e pastagens no sudoeste da Amazônia brasileira: Levantamento de espécies e guildas alimentares. Acta Amazonica (44): 345–352. https://doi.org/10.1590/1809-4392201304472.
https://doi.org/10.1590/1809-43922013044...
). Northern Amazon pasturelands exhibit a dung beetle fauna similar to that found in intra-Amazonian savannas and Llanos (Matavelli & Louzada 2008MATAVELLI, R.A. & LOUZADA, J.N.C. 2008. Invasão de áreas de savana intra-amazônicas por Digitonthophagus gazella (Fabricius, 1787) (Insecta: Coleoptera: Scarabaeidae). Acta Amazonica. 38: 153–158.). However, as certain species are found in Cerrado areas south of the Amazon, we hypothesize that these populations may have dispersed along with large groups of cattle transported during the northern expansion of grasslands (and consequently, of cattle) from the Cerrado areas.
A comparable pattern is observed in pastures located in Atlantic Forest areas, where dung beetle fauna is allochthonous (see Louzada & Carvalho e Silva 2009LOUZADA, J.N. & CARVALHO E SILVA, P.R. 2009. Utilisation of introduced Brazilian pastures ecosystems by native dung beetles: diversity patterns and resource use. Insect Conserv. Diver. 2(1): 45–52.). Based on our understanding, it is expected that species adapted to forests would not endure in dry environments, and this indeed occurs in pasturelands established in areas where there was once a closed canopy. In Northeastern Brazil, the species found in pastures also inhabit Cerrado and/or Caatinga areas. However, for the Central and Southern regions of Brazil, the dung beetle fauna found in pasturelands is similar to that in Cerrado and/or Pampa regions.
The species composition between pasturelands and forests differs, and presence of surrounding forests does not increase dung beetle richness in pastures (Silva et al. 2014SILVA, R.J., COLETTI, F., COSTA, D.A. & VAZ-DE-MELLO, F.Z. 2014. Rola-bostas (Coleoptera: Scarabaeidae: Scarabaeinae) de florestas e pastagens no sudoeste da Amazônia brasileira: Levantamento de espécies e guildas alimentares. Acta Amazonica (44): 345–352. https://doi.org/10.1590/1809-4392201304472.
https://doi.org/10.1590/1809-43922013044...
). Feeding guilds of dung beetles in forests consist of 40% specialists and 60% generalists, while in pastures, 75% of dung beetle species are specialists (coprophagous), and 25% are generalists (Silva et al. 2014SILVA, R.J., COLETTI, F., COSTA, D.A. & VAZ-DE-MELLO, F.Z. 2014. Rola-bostas (Coleoptera: Scarabaeidae: Scarabaeinae) de florestas e pastagens no sudoeste da Amazônia brasileira: Levantamento de espécies e guildas alimentares. Acta Amazonica (44): 345–352. https://doi.org/10.1590/1809-4392201304472.
https://doi.org/10.1590/1809-43922013044...
). It has been suggested that the development and dominance of coprophagous behavior began in savannas, potentially influenced by herds of large herbivorous mammals (Halffter & Matthews 1966HALFFTER, G. & MATTHEWS, E.G. 1966. The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Folia Entomologica Mexicana. 12: 1–312.). An intriguing fact is that the greatest diversity of coprophagous dung beetles in Africa is found in savannas, while in South America, where megafauna became extinct during the Pleistocene, dung beetles in savannas also exhibit frugivorous and necrophagous behaviors (Halffter & Matthews 1966HALFFTER, G. & MATTHEWS, E.G. 1966. The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Folia Entomologica Mexicana. 12: 1–312.).
In the context of large dung pats and their remarkable diversity, it is frequently observed that species colonizing a pat exhibit varying sizes, even when the allocation strategy is alike. This diversity in size may account for the coexistence of numerous species (and specimens) within a dung pat (Hanski & Cambefort 1991HANSKI, I. & CAMBEFORT, Y. 1991. Dung Beetle Ecology. Princeton University Press, Princeton, New Jersey. 481pp.). The abundance of specimens in a dung pat can each over 1500 individuals, encompassing all three functional types with a predominant representation by small endocoprids (Flechtmann et al. 1995bFLECHTMANN, C.A.H.; RODRIGUES; S.R., SENO, M.C.Z. 1995b. Controle biológico da mosca-dos-chifres (Haematobia irritans irritans) em Selvíria, Mato Grosso do Sul. 1. Metodologia de estudo e seleção de fauna fimícola de insetos. Rev. Bras. Entomol. 39(1): 1–11.). This is reasonable given that paracoprids and telecoprids tend to swiftly disappear after extracting a portion from the source.
Dung removal is directly correlated with the body size of dung beetles, with the largest species excavating the deepest galleries (Gregory et al. 2015GREGORY, N., GÓMEZ, A., OLIVEIRA, T.M.F.D.S. & NICHOLS, E. 2015. Big dung beetles dig deeper: trait- based consequences for faecal parasite transmission. Int. J. Parasitol. 45(2–3): 101–105.). The most extensive tunnel documented, created by the native North American dung beetle Dichotomius carolinus (Linnaeus, 1767), measured 162 cm in length and 55 cm in depth (Lindquist 1933LINDQUIST, A.W. 1933. Amounts of dung buried and soil excavated by certain Coprini (Scarabaeidae). Journal of the Kansas Entomological Society. 6(4): 109–125.). While substantial research on dung beetle’s nesting behavior was compiled by Halffter and Edmonds (1982)HALFFTER, G. & EDMONDS, W.D. 1982. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. Instituto de Ecologia, Mexico City, Mexico. there remains much to uncover. Although different specimens of the same species share nesting patterns, their nests can still vary in depth and length (Lindquist 1933LINDQUIST, A.W. 1933. Amounts of dung buried and soil excavated by certain Coprini (Scarabaeidae). Journal of the Kansas Entomological Society. 6(4): 109–125.). We utilized published data on known species to estimate the potential depth that closely related species might achieve (Table 1). However, we strongly advocate for future research to undertake these measurements on a species-specific basis.
A comparison between the native Dichotomius bos (Blanchard 1845BLANCHARD, C.E. 1845. Insectes de l’Amérique méridionale. Recueillis par Alcide d’Orbigny et décrits par Emile Blanchard et Auguste Brullé (pars, livraisons 79 et 80). Pp: 155–184 in: Voyage dans l’Amérique méridionale (le Brésil, la République orientale de l’Uruguay, la République Argentine, la Patagonie, la République du Chili, la République de Bolivie, la République du Pérou), exécuté pendant les années 1826, 1827, 1828, 1829, 1830, 1831, 1832 et 1833 par Alcide d’Orbigny. Ouvrage dédié au Roi, et publié sous les auspices de M. le Ministre de l’Instruction publique (commencé sous le ministère de M. Guizot). Tome sixième. 2.e Partie: Insectes. P. Bertrand, Paris. 222 pp. + 32 pls.) and the introduced species Digitonthophagus gazella (Fabricius 1787FABRICIUS, J.C. 1787. Mantissa Insectorum Sistens Eorum Species Nuper Detectas Adiectis Characteribus, Genericis, Differentiis, Specificis, Emendationibus, Observationibus. 1. Proft, Hafniae.) highlights that D. bos is more effective than D. gazella in terms of dung removal and nutrient intake from the soil (Galbiati et al. 1995GALBIATI, C., BENSI, C., CONCEIÇÃO, C.H.C., FLORCOVSKI, J.L. & CALAFIORI, M.H. 1995. Estudo comparativo entre besouros do esterco Dichotomius analypticus (Mann., 1829) e Onthophagus gazella (F.), sobre as pastagens, em condições brasileiras. Ecossistema. 20: 109–118.). While D. bos is indeed larger than D. gazella, the more crucial factor is that D. bos is native to South America. Given its larger size and superior efficiency compared to D. gazella, D. bos emerges as a preferable choice for dung beetle conservation in pasturelands. While a high number of native species, along with their abundance, might have a negative impact on the presence and invasion of D. gazella (Matavelli & Louzada 2008MATAVELLI, R.A. & LOUZADA, J.N.C. 2008. Invasão de áreas de savana intra-amazônicas por Digitonthophagus gazella (Fabricius, 1787) (Insecta: Coleoptera: Scarabaeidae). Acta Amazonica. 38: 153–158.), as observed in intra-Amazonian savannas, the same effect was not observed in the Cerrado region (Mesquita-Filho et al. 2018MESQUITA-FILHO, W., FLECHTMANN, C.A., GODOY, W.A., BJORNSTAD, O.N. 2018. The impact of the introduced Digitonthophagus gazella on a native dung beetle community in Brazil during 26 years. Biol. Invasions. 20: 963–979.), probably due to high specialization of D. gazella in broader savanna-like habitats (Matavelli & Louzada 2008MATAVELLI, R.A. & LOUZADA, J.N.C. 2008. Invasão de áreas de savana intra-amazônicas por Digitonthophagus gazella (Fabricius, 1787) (Insecta: Coleoptera: Scarabaeidae). Acta Amazonica. 38: 153–158.).
Even without considering Aphodiinae species in this study, it is essential to emphasize their significance in pasturelands. Although not typically recognized as paracoprids, some Aphodiinae larvae create small cavities in the ground for pupation, a behavior similar to paracoprids (Yamada et al. 2007YAMADA, D., IMURA, O., SHI, K., & SHIBUYA, T. 2007. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassland science. 53(2): 121–129., Tonelli 2022). Even species exclusively identified as endocoprids play a crucial role in pastures disintegrating dung pats from the inside out (Flechtmann et al. 1995aFLECHTMANN, C.A.H., RODRIGUES, S.R. & COUTO, H.T.Z. 1995a. Controle biológico da mosca-dos chifres (Haematobia irritansirritans) em Selvíria, Mato Grosso do Sul. 2. Ação de insetos fimícolas em massas fecais no campo. Rev. Bras. Entomol. 39(2): 237–247.). The knowledge of Aphodiinae in Brazil and most other South American countries is limited, and we emphasize the urgent need for studies on this group.
This work gathers all available information on dung beetle species that feed on cattle dung and inhabit pasturelands in South America, including estimates of burrow capacities and distribution maps. However, it is important to regard this review as a new starting point for dung beetle conservation and its applicability to sustainable livestock production, complementing the works of Martínez & Lumaret (2022)MARTÍNEZ, M.I. & LUMARET, J.P. (Eds.). 2022. Escarabajos estercoleros. Biología reproductiva y su regulación. Edita Asociación española de Entomología. 406 pp. and the ecological functions review by Arellano and colleagues (Arellano et al. 2023ARELLANO, L., NORIEGA, J.A., ORTEGA-MARTÍNEZ, I.J., RIVERA, J.D., CORREA, C.M.A., GÓMEZ- CIFUENTES, A., RAMÍREZ-HERNÁNDEZ, A., & BARRAGÁN, F. 2023. Dung beetles (Coleoptera: Scarabaeidae) in grazing lands of the Neotropics: A review of patterns and research trends of taxonomic and functional diversity, and functions. Front. Ecol. Evol. 11:1084009. https://doi.org/10.3389/fevo.2023.1084009.
https://doi.org/10.3389/fevo.2023.108400...
). The current scenario is concerning, given the vulnerability of dung beetles to parasiticides (Correa et al. 2021), competition with D. gazella, and anticipated climate change impacts (Noriega et al. 2020NORIEGA, J.A., FLOATE, K.D., GÉNIER, F., REID, C.A., KOHLMANN, B., et al. 2020. Global distribution patterns provide evidence of niche shift by the introduced African dung beetle Digitonthophagus gazella. Entomol. Exp. Et Appl. 168: 766–782., Maldaner et al. 2021MALDANER, M.E., SOBRAL-SOUZA, T., PRASNIEWSKI, V.M., VAZ-DE-MELLO, F.Z. 2021. Effects of climate change on the distribution of key native dung beetles in South American grasslands. Agronomy. 11: 2033. https://doi.org/10.3390/agronomy11102033.
https://doi.org/10.3390/agronomy11102033...
). To preserve the ecological functions provided by dung beetles in pasturelands, sustainable practices must become a priority in livestock production, drawing inspiration from successful examples in Mexico and South America (Halffter et al. 2018HALFFTER, G., CRUZ, M., HUERTA, C. (Comps.). 2018. Ganadería sustentable en el Golfo de México. Instituto de Ecología, A.C., México, 432 pp.).
Acknowledgements
We thank the following colleagues for sending data yet to be published: Jorge Arias (all Dichotomius species from Colombia, Ecuador, and Peru); Sheila Cassenote (Dichotomius carbonarius species group); Mario Cupello (Ateuchus, geographical data and photos). We thank Edrielly Carvalho for photographing Genieridium bidens and Thadeu Sobral-Souza for helping with the R script to create distribution maps. We thank Priscila Lemes Azevedo for insightful comments and willingness to discuss new projects with MEM and FZVM. We also thank Murilo Cesar Correa, Ricardo Silva and Julio Louzada for comments and suggestions on the first draft of this manuscript. We also thank two anonymous reviewers and Dr. Maria Hunter for English review. MEM was a PhD student sponsored by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES Finance code 001). FZVM is a CNPq fellow (CNPq 313397/2021-0). VCS thanks to the Post-Doctoral Fellowship Programme from University of Pretoria. This work had been partially sponsored by FAPEMAT/CNPq PRONEM 568005/2014; FAPEMAT 0147956/2017, INCT-INAU/CNPq and Subproject EECBio UFMT/Finep nº 01.12.0359.00.
Data Availability
The datasets generated during and/or analyzed during the current study are available at: https://doi.org/10.48331/scielodata.82AEC8
References
- ALMEIDA, S.S.P., & LOUZADA, J.N.C. 2009. Estrutura da comunidade de Scarabaeinae (Scarabaeidae: Coleoptera) em fitofisionomias do Cerrado e sua importância para a conservação. Neotrop. Entomol. 38: 32–43.
- ALMEIDA, S., LOUZADA, J., SPERBER, C. & BARLOW, J. 2011. Subtle land-use change and tropical biodiversity: Dung beetle communities in Cerrado grasslands and exotic pastures. Biotropica. 43: 704–710. https://doi.org/10.1111/j.1744-7429.2011.00751.x.
» https://doi.org/10.1111/j.1744-7429.2011.00751.x - ARELLANO, L., NORIEGA, J.A., ORTEGA-MARTÍNEZ, I.J., RIVERA, J.D., CORREA, C.M.A., GÓMEZ- CIFUENTES, A., RAMÍREZ-HERNÁNDEZ, A., & BARRAGÁN, F. 2023. Dung beetles (Coleoptera: Scarabaeidae) in grazing lands of the Neotropics: A review of patterns and research trends of taxonomic and functional diversity, and functions. Front. Ecol. Evol. 11:1084009. https://doi.org/10.3389/fevo.2023.1084009.
» https://doi.org/10.3389/fevo.2023.1084009 - ARROW, G.J. 1913. Some new species of Lamellicorn Beetles from Brazil. The Annals and Magazine of Natural History, Including Zoology, Botany and Geology. London 8(11): 456–466.
- BALTHASAR, V. 1938. Neue Gattungen und Arten der südamerikanischen Coprophagen. (4. Beitrag zur Kenntnis der Scarabaeiden der neotropischen Region). Entomologische Blätter. Krefeld 34(4): 210–223.
- BALTHASAR, V.1939. Eine vorstudie zur monographie der gattung Canthon Hffsg. Folia zool. hydrobiol. 9(2): 179–238.
- BANG, H.S., LEE, J.-H., KWON, O.S., NA, Y.E., JANG, Y.S. & KIM, W.H. 2005. Effects of paracoprid dung beetles (Coleoptera: Scarabaeidae) on the growth of pasture herbage and on the underlying soil. Appl. Soil Ecol. 29: 165–171.
- BARRAGÁN, F., DOUTERLUNGNE, D., RAMÍREZ-HERNÁNDEZ, A., GELVIZ-GELVEZ, S.M., MIRANDA, A.V.G. & ORTÍZ, J.P.R. 2022. The rolling dung master: An ecosystem engineer beetle mobilizing soil nutrients to enhance plant growth across a grassland management intensity gradient in drylands. J. Arid Environ. 197: 104673, https://doi.org/10.1016/j.jaridenv.2021.104673.
» https://doi.org/10.1016/j.jaridenv.2021.104673 - BATES, H.W. 1870. On a new genus and some species of Copridae. Transactions of the Entomological Society of London. 1870(II): 173–180.
- BATES, H.W. 1892. Coleoptera. Pp. 7–39 in: Supplementary appendix to travels amongst the Great Andes of the Equator by Edward Whymper with contributions by H.W. Bates. T.G. Bonney. G.A. Boulenger. Peter Cameron. F. Day. W.L. Distant. A.E. Eaton, F.D. Godman. H.S. Gorham. Martin Jacoby. E.J. Miers. A. Sidney Olliff. O. Salvin. David Sharp. T.R.R. Stebbing. Illustrated. John Murray, London. xxii + 147 pp.+ 14 pls.
- BILLBERG, G.J. 1815. Insecta ex ordine Coleoptera descripta. Nova Acta Regiae Societatis Scientiarum Upsaliensis. VII: 271–281.
- BLANCHARD, C.E. 1845. Insectes de l’Amérique méridionale. Recueillis par Alcide d’Orbigny et décrits par Emile Blanchard et Auguste Brullé (pars, livraisons 79 et 80). Pp: 155–184 in: Voyage dans l’Amérique méridionale (le Brésil, la République orientale de l’Uruguay, la République Argentine, la Patagonie, la République du Chili, la République de Bolivie, la République du Pérou), exécuté pendant les années 1826, 1827, 1828, 1829, 1830, 1831, 1832 et 1833 par Alcide d’Orbigny. Ouvrage dédié au Roi, et publié sous les auspices de M. le Ministre de l’Instruction publique (commencé sous le ministère de M. Guizot). Tome sixième. 2.e Partie: Insectes. P. Bertrand, Paris. 222 pp. + 32 pls.
- BEYNON, S.A., WAINWRIGHT, W.A. & CHRISTIE, M. 2015. The application of an ecosystem services framework to estimate the economic value of dung beetles to the UK cattle industry. Ecol. Entomol. 40: 124–135. https://doi.org/10.1111/een.12240.
» https://doi.org/10.1111/een.12240 - BORNEMISSZA, G.F. 1960. Could dung eating insects improve our pastures? J. Aust. I. Agr. Sci. 26: 54–56.
- BORNEMISSZA, G.F. & WILLIAMS C.H. 1970. An effect of dung beetle activity on plant yield. Pedobiologia, 10: 1–7.
- BORNEMISSZA, G.F. 1970. Insectary studies on the control of dung breeding flies by the activity of the dung beetle, Onthophagus gazella F. (Coleoptera: Scarabaeinae). Aust. J. Entomol. 9: 31–41.
- BOUCOMONT, A. 1928. Coprophages d’Amérique du Sud nouveaux ou peu connus. Bulletin de la Société Entomologique de France 12: 186–194.
- BURMEISTER, H.C.C. 1873 [= 1874]. Lamellicornia Argentina. Stettiner entomologische Zeitung. Stettin. 34: 403–417.
- CASTELNAU, M. 1840. Histoire Naturelle des Insectes Coléoptères. Avec une introduction renfermant L’Anatomie et la Physiologie des Animaux Articulés par M Brullé 2: 1–554.
- CHAMORRO, W., PARDO LOCARNO, L.C., CASTILLO-GARCÍA, J. & VAZ-DE-MELLO, F.Z. 2014. Notas sobre la morfología y ecología de Oruscatus opalescens (Coleoptera: Scarabaeidae: Scarabaeinae). Rev. Colomb. Entomol. 40(2): 281–285.
- CORREA, C.M.A. & DA SILVA, P.G. 2022. Environmental drivers of taxonomic and functional diversity of dung beetles across a chronosequence of tropical grasslands with different cattle grazing removal ages. Austral Ecol. 47(5): 928–938. https://doi.org/10.1111/aec.13174.
» https://doi.org/10.1111/aec.13174 - CORREA, C.M.A., AUDINO, L.D., VAZ-DE-MELLO, F.Z. et al. 2022. Diversity and structure of dung beetle (Coleoptera: Scarabaeidae) assemblage in natural grasslands of the Brazilian Pantanal. Int. J. Trop. Insect Sci. 42: 3253–3261. https://doi.org/10.1007/s42690-022-00805-7.
» https://doi.org/10.1007/s42690-022-00805-7 - COSTA-SILVA, V., CARVALHO, E., & VAZ-DE-MELLO, F.Z. 2022. A taxonomic revision of the New World genus Agamopus Bates, 1887 (Coleoptera: Scarabaeinae: Ateuchini). Eur. J. Taxon. 806(1): 64–89. https://doi.org/10.5852/ejt.2022.806.1703.
» https://doi.org/10.5852/ejt.2022.806.1703 - CUPELLO, M. & VAZ-DE-MELLO, F.Z. 2013. Taxonomic revision of the South American dung beetle genus Gromphas Brullé, 1837 (Coleoptera: Scarabaeidae: Scarabaeinae: Phanaeini: Gromphadina). Zootaxa. 3722(4): 439–482.
- CUPELLO, M. 2024. The genus Gromphas Dejean, 1836 (Coleoptera, Scarabaeinae): nomenclature, distribution, and conservation, including a contribution to the debate on electronic publications in zoology. Zoosystema. 46(2): 23–59. https://doi.org/10.5252/zoosystema2024v46a2.
» https://doi.org/10.5252/zoosystema2024v46a2 - CURTIS, J. 1844. Descriptions of the insects collected by Capt. P. P. King, R. N., F. R. S., F. L. S. & c., in the survey of the Straits of Magellan. Proc. Linn. Soc. Lond. 1(21): 196–202.
- DIXON, A.P., FABER-LANGENDOEN, D., JOSSE, C., MORRISON, J., & LOUCKS, C.J. 2014. Distribution mapping of world grassland types. J. Biogeogr. 41: 2003–2019. https://doi.org/10.1111/jbi.12381.
» https://doi.org/10.1111/jbi.12381 - DRAPIEZ, M. 1819. Descriptions de huit espèces d’insectes nouveaux. Annales génerales des Sciences physiques I: 130–138.
- DUNG BEETLE INNOVATIONS LIMITED (DBI). 2023. https://dungbeetles.co.nz/about-beetles/ (accessed on 19 January 2023).
» https://dungbeetles.co.nz/about-beetles/ - EDMONDS, W.D. 1994. Contributions in Science: Revision of Phanaeus MacLeay, a New World genus of Scarabaeine dung beetle (Coleoptera: Scarabaeine, scarabaeinae). Natural History Museum. Los Angeles, US
- EDMONDS, W.D. 2000. Revision of the Neotropical dung beetle genus Sulcophanaeus (Coleoptera: Scarabaeidae: Scarabaeinae). Folia Heyrovskyana. (Supplementum 6): 1–60.
- EDMONDS, W. D., & ZÍDEK, J. 2004. Revision of the Neotropical dung beetle genus Oxysternon (Coleoptera: Scarabaeidae: Scarabaeinae: Phanaeini). Revisión de los abejones estercoleros del género Oxysternon (Coleoptera: Scarabaeidae: Scarabaeinae: Phanaeini). Folia Heyrovskyana. 11: 1–58.
- ERICHSON, W.F. 1847. Conspectus coleopterorum quae in Republica Peruana observata sunt. Archiv für Naturgeschichte. 13(1):67–185.
- FABRICIUS, J.C. 1787. Mantissa Insectorum Sistens Eorum Species Nuper Detectas Adiectis Characteribus, Genericis, Differentiis, Specificis, Emendationibus, Observationibus. 1. Proft, Hafniae.
- FABRICIUS, J.C. 1775. Systema Entomologiae, sistens insectorvm Classes, Ordines, Genera, Species, adiectis Synonymis, Locis, Descriptionibvs, Observationibus. Kortii, Flensburg and Leipzig [“Flensburgi et Lipsiae”]; Havniae [=Copenhagen], p. [32] + 832.
- FARIAS, P.M. & HERNÁNDEZ, M.I.M. 2017. Dung beetles associated with agroecosystems of southern Brazil: Relationship with soil properties. Revista Brasileira de Ciência do Solo. 41(0): e0160248. https://doi.org/10.1590/18069657rbcs20160248.
» https://doi.org/10.1590/18069657rbcs20160248 - FELSCHE, C. 1901. Beschreibungen coprophage Scarabaeiden. Deut. Entomol. Z. 2: 135–155.
- FLECHTMANN, C.A.H., RODRIGUES, S.R. & COUTO, H.T.Z. 1995a. Controle biológico da mosca-dos chifres (Haematobia irritansirritans) em Selvíria, Mato Grosso do Sul. 2. Ação de insetos fimícolas em massas fecais no campo. Rev. Bras. Entomol. 39(2): 237–247.
- FLECHTMANN, C.A.H.; RODRIGUES; S.R., SENO, M.C.Z. 1995b. Controle biológico da mosca-dos-chifres (Haematobia irritans irritans) em Selvíria, Mato Grosso do Sul. 1. Metodologia de estudo e seleção de fauna fimícola de insetos. Rev. Bras. Entomol. 39(1): 1–11.
- GALBIATI, C., BENSI, C., CONCEIÇÃO, C.H.C., FLORCOVSKI, J.L. & CALAFIORI, M.H. 1995. Estudo comparativo entre besouros do esterco Dichotomius analypticus (Mann., 1829) e Onthophagus gazella (F.), sobre as pastagens, em condições brasileiras. Ecossistema. 20: 109–118.
- GARDNER, T.A., BARLOW, J., ARAÚJO, I.S., ÁVILA-PIRES, T.C., BONALDO, A.B, COSTA, J.E., ESPOSITO, M.C., FERREIRA, L.V., HAWES, J., HERNANDEZ, M.I.M., et al. 2008. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11(2): 139–150. https://doi.org/10.1111/j.1461-0248.2007.01133.x.
» https://doi.org/10.1111/j.1461-0248.2007.01133.x - GÉNIER, F. 1996. A revision of the neotropical genus Ontherus Erichson (Coleoptera: Scarabaeidae, Scarabaeinae). The Memoirs of the Entomological Society of Canada. 128(S170): 3–170.
- GÉNIER, F. 2009. Le genre Eurysternus Dalman, 1824 (Scarabaeidae: Scarabaeinae: Oniticellini), Révision taxonomique et clés de détermination illustrées. Sofia: Pensoft. 403 pp.
- GÉNIER, F. & MORETTO, P. 2017. Digitonthophagus Balthasar, 1959: taxonomy, systematics, and morphological phylogeny of the genus revealing an African species complex (Coleoptera: Scarabaeidae: Scarabaeinae). Zootaxa. 4248 (1): 001–110.
- GERMAR, E.F. 1813. Neue Insekten. Magazin del Entomologie. 1(1): 114–133.
- GERMAR, E.F. 1823. Insectorum Species Novae aut Minus Cognitae, Descriptionibus Illustratae. Vol. 1. Halle (Germany): J. C. Hendelii et Filii; 624 pp.
- GREGORY, N., GÓMEZ, A., OLIVEIRA, T.M.F.D.S. & NICHOLS, E. 2015. Big dung beetles dig deeper: trait- based consequences for faecal parasite transmission. Int. J. Parasitol. 45(2–3): 101–105.
- GUÉRIN-MÉNEVILLE, F.E. 1855. Catalogue des Insectes Coléoptères, recueillis par M.Gaetano Osculati pendant son expedition de la région équatoriale, sur les bords du Napo et de l’Amazone. Verhandlungen Des Zoologisch-Botanischen Vereins. Wien. 5: 573–612.
- HALFFTER, G. & FAVILA, M.E. 1993. The Scarabaeinae (Insecta: Coleoptera) an Animal Group for Analysing, Inventorying and Monitoring Biodiversity in Tropical Rainforest and Modified Landscapes. Biology International. 27: 15–21.
- HALFFTER, G. & EDMONDS, W.D. 1982. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. Instituto de Ecologia, Mexico City, Mexico.
- HALFFTER, G. & MATTHEWS, E.G. 1966. The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Folia Entomologica Mexicana. 12: 1–312.
- HALFFTER, G., CRUZ, M., HUERTA, C. (Comps.). 2018. Ganadería sustentable en el Golfo de México. Instituto de Ecología, A.C., México, 432 pp.
- HANSKI, I. & CAMBEFORT, Y. 1991. Dung Beetle Ecology. Princeton University Press, Princeton, New Jersey. 481pp.
- HAROLD, E. 1868a. Monographie der gattung Canthon Berliner entomologische Zeitschrift. 12: 1–144.
- HAROLD, E. 1868b. Diagnosen neuer Coprophagen. Coleopterologische Hefte. 4:79–86.
- HAROLD, E. 1869. Scarabaeidae. In: Gemminger M, Harold E, editors. Catalogus coleopterorum hucusque descriptorum synonymicus et systematicus. Monachii: Sumptu E.H. Gummi, Tomo IV; p. 979–1346.
- HAROLD, E. 1867. Diagnosen neuer Coprophagen. Coleopterologische Hefte. 2: 94–100.
- HAROLD, E. 1875. Neue Coprophagen. Deutsche Entomologische Zeitschrift. 19(1): 209–218.
- HAROLD, E. 1883. Einige neue Coprophagen. Stettiner Entomologische Zeitung. 44: 429–435.HENSEN, M.C., HERNÁNDEZ, M.I., & LOBO, J.M. 2021. Predicted distributions could suggest regional sympatry in spite of local allopatry: The case of the dung beetle Canthon rutilans Castelnau, 1840 (Coleoptera: Scarabaeidae). Entomological Science. 24(2): 143–151.
- HENSEN, M.C., HERNÁNDEZ, M.I., & LOBO, J.M. 2021. Predicted distributions could suggest regional sympatry in spite of local allopatry: The case of the dung beetle Canthon rutilans Castelnau, 1840 (Coleoptera: Scarabaeidae). Entomological Science. 24(2): 143–151.
- JABLONSKY, C.G. & HERBST, J.F.W. 1787–1789. Natursystem aller bekannten in- und ausländischen Insekten, als eine Fortsetzung der von Büffonschen Naturgeschichte. Nach dem System des Ritters von Linné und Fabricius zu bearbeiten angefangen. Der Käfer zwenter Theil. Mit siebzehn illuminirten Kupfertafeln. Joachim Pauli, Berlin. xvi + lxiv + 330 pp.
- LE PELETIER, A.S.F., & SERVILLE, J.G.A. 1828. Scarabé. In Latreille P.A.: Histoire naturelle. Entomologie, ou Histoire naturelle des Crustaces, des Arachnides et des Insectes. Encyclopedie Methodique. Tome dixième. Mme Veuve Agasse, Paris; 832 pp.
- LINDQUIST, A.W. 1933. Amounts of dung buried and soil excavated by certain Coprini (Scarabaeidae). Journal of the Kansas Entomological Society 6(4): 109–125.
- LINNAEUS, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Laurentii Salvii, Holmiae [= Stockholm]. [iv] + 823 pp.
- LOBO, J.M., & GONZÁLEZ-CHANG, M. 2022. Comparing Realized and Potential Distributions of the Species of Taurocerastinae (Coleoptera: Geotrupidae) to Examine the Relevance of Dispersal Limitations and Contemporary Environmental Factors. The Coleopterists Bulletin. 76(4): 595–605.
- LOSEY, J.E. & VAUGHAN, M. 2006. The economic value of ecological services provided by insects. Bioscience. 56: 311–323.
- LOUZADA, J., LIMA, A.P., MATAVELLI, R., ZAMBALDI, L. & BARLOW, J. 2010. Community structure of dung beetles in Amazonian savannas: role of fire disturbance, vegetation and landscape structure. Landscape Ecol. 25: 631–641.
- LOUZADA, J.N. & CARVALHO E SILVA, P.R. 2009. Utilisation of introduced Brazilian pastures ecosystems by native dung beetles: diversity patterns and resource use. Insect Conserv. Diver. 2(1): 45–52.
- LUEDERWALDT, H. 1929. As espécies brasileiras do gênero Pinotus Revista do Museu Paulista. 16: 603- 775/offprint: 1–177.
- LUEDERWALDT, H. 1931. “Tres especies novas de Pinotus, supplementos a Memoria “As especies Brasileiras do genero Pinotus” na “Revista do Museu Paulista” Tomo XVI, 1929, P.603 SS. Revista do Museu Paulista. 17: 353–361.
- LUEDERWALDT, H. 1935. Zur kenntnis der gattung Pinotus Revista de Entomologia. 5(3): 334–342.
- MALDANER, M.E., SOBRAL-SOUZA, T., PRASNIEWSKI, V.M., VAZ-DE-MELLO, F.Z. 2021. Effects of climate change on the distribution of key native dung beetles in South American grasslands. Agronomy. 11: 2033. https://doi.org/10.3390/agronomy11102033.
» https://doi.org/10.3390/agronomy11102033 - MANNERHEIM, C.G. 1828. Description de quarante nouvelles espèces de Scarabeides du Brésil. Nouveaux Mémoires De La Société Impériale Des Naturalistes De Moscou. 1: 29–80.
- MARTÍNEZ, A. 1969. Notas para una monografía del género Trichillum Harold, 1868 (Col. Scarabaeinae-Coprini). Revista de la Sociedad Mexicana de Historia Natural. 28: 119–147.
- MARTÍNEZ, A. 1988. Notas sobre Eurysternus Dalman (Coleoptera, Scarabaeidae). Entomologica Basiliensia. 12: 279–302.
- MARTÍNEZ, M.I. & LUMARET, J.P. (Eds.). 2022. Escarabajos estercoleros. Biología reproductiva y su regulación Edita Asociación española de Entomología. 406 pp.
- MATAVELLI, R.A. & LOUZADA, J.N.C. 2008. Invasão de áreas de savana intra-amazônicas por Digitonthophagus gazella (Fabricius, 1787) (Insecta: Coleoptera: Scarabaeidae). Acta Amazonica. 38: 153–158.
- MATTHEWS, E.G. 1966. A taxonomic and zoogeographic survey of the Scarabaeinae of the Antilles (Coleoptera: Scarabaeidae). Mem. American Entomol. Soc. 21: 1–134.
- MEDINA HERNÁNDEZ, M.I., NIERO, M.M., SCHUMACHER, F. & WUERGES, M. 2020. Feeding and reproductive behavior of the dung beetle Canthon rutilans cyanescens (Coleoptera: Scarabaeinae). Rev. Bras. Entomol. 64.
- MESQUITA-FILHO, W., FLECHTMANN, C.A., GODOY, W.A., BJORNSTAD, O.N. 2018. The impact of the introduced Digitonthophagus gazella on a native dung beetle community in Brazil during 26 years. Biol. Invasions. 20: 963–979.
- NICHOLS, E., SPECTOR, S., LOUZADA, J., LARSEN, T., AMEZQUITA, S., FAVILA, M.E & THE SCARABAEINAE RESEARCH NETWORK. 2008. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141: 1461–1474.
- NORIEGA, J.A., FLOATE, K.D., GÉNIER, F., REID, C.A., KOHLMANN, B., et al. 2020. Global distribution patterns provide evidence of niche shift by the introduced African dung beetle Digitonthophagus gazella Entomol. Exp. Et Appl. 168: 766–782.
- NUNES, L.G.O.A. 2015. Revisão taxonômica das espécies de Canthon Hoffmannsegg do grupo septemmaculatus Latreille (Coleoptera: Scarabaeidae: Scarabaeinae: Deltochilini). MSc thesis, Universidade Federal de Mato Grosso, Cuiabá, 67 pp.
- NUNES, L.G.O.A. & VAZ-DE-MELLO, F.Z. 2022. Taxonomic review of the genus Tetraechma Blanchard, 1842 (Coleoptera: Scarabaeidae: Scarabaeinae: Deltochilini). Insect Syst. Evol. 1(aop), 1–28.
- OKEN, L. 1834. J. Th. Lacordaire, über die Lebensweise der Käfer im mittäglichen America. Viele Käfer namentlich angeführt. Isis von Oken. (11): 1112–1127.
- OLIVEIRA, T.E., DE FREITAS, D.S., GIANEZINI, M., RUVIARO, C.F., ZAGO, D., MÉRCIO, T.Z., DIAS, E.A., DO NASCIMENTO LAMPERT, V. & BARCELLOS, J.O.J. 2017. Agricultural land use change in the Brazilian Pampa Biome: The reduction of natural grasslands. Land Use Policy. 63: 394–400.
- OLIVIER, G.A. 1789. Entomologie, ou histoire naturelle des insectes, avec leurs caractères génériques et spécifiques, leur description, leur synonymie, et leur figure enluminée. Coléoptères. Baudouin. Tome premier. xx + 433 pp.
- OVERBECK, G.E., VÉLEZ-MARTIN, E., SCARANO, F.R., LEWINSOHN, T.M., FONSECA, C.R., et al. 2015. Conservation in Brazil needs to include non-forest ecosystems. Diversity Distrib. 21: 1455–1460. https://doi.org/10.1111/ddi.12380.
» https://doi.org/10.1111/ddi.12380 - PREUDHOMME DE BORRE, F.P.C.A. 1886. Catalogue des Trogides décrits jusque’ à ce jour précédé d’ um synopsis de leurs genres et d’une esquisse de leur distribution géographique. Ann Soc Ent Belg. 30: 56.82.
- PRICE, D.L., & MAY, M.L. 2009. Behavioral ecology of Phanaeus dung beetles (Coleoptera: Scarabaeidae): review and new observations. Acta Zoológica Mexicana. 25(1): 211–238.
- R CORE TEAM. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
» https://www.R-project.org/ - REDTENBACHER, L. 1868. Reise der Österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859 unter den befehlen des Commodore B. von Wüllerstorf-Urbair. Zoologischer Theil. Zweiter Band. Coleopteren. Mit Fünf Tafeln. Karl Gerold’s Sohn, Wien; p. 249.
- ROSSINI, M., VAZ-DE-MELLO, F.Z. & ZUNINO, M. 2018. Toward a comprehensive taxonomic revision of the “hirculus” group of American Onthophagus Latreille, 1802 (Coleoptera, Scarabaeidae, Scarabaeinae). Eur J Taxon. 432: 1–21.
- SANDS, B. & WALL, R. 2016. Dung beetles reduce livestock gastrointestinal parasite availability on pasture. J. Appl. Ecol. 54: 1180–1189.
- SCHMIDT, A. 1920. Beitrag zur Kenntniss der gattungen Canthon Hoffm., Sybax Boh., Aphodius Ill., Simogenius Har., Ataenius Har. Archiv für Naturgeschichte. 86: 114–182.
- SCHMIDT, A. 1922. 1. Bestimmungstabelle der mir bekannten Canthon-Arten. 2. Verbreitungsgebiete der Canthon- Arten. 3. Neubeschreibungen von Canthon, Saprositis, Mendidius, Euparia und Ataenius Archiv für Naturgeschichte, Abteilung A 88 (3): 61–103.
- DA SILVA, R. J., DINIZ, S., & VAZ-DE-MELLO, F. Z. 2010. Heterogeneidade do habitat, riqueza e estrutura da assembléia de besouros rola-bostas (Scarabaeidae: Scarabaeinae) em áreas de cerrado na Chapada dos Parecis, MT. Neotropical Entomology. 39: 934–940. https://doi.org/10.1590/S1519-566X2010000600014.
» https://doi.org/10.1590/S1519-566X2010000600014 - SILVA, R.J., COLETTI, F., COSTA, D.A. & VAZ-DE-MELLO, F.Z. 2014. Rola-bostas (Coleoptera: Scarabaeidae: Scarabaeinae) de florestas e pastagens no sudoeste da Amazônia brasileira: Levantamento de espécies e guildas alimentares. Acta Amazonica (44): 345–352. https://doi.org/10.1590/1809-4392201304472.
» https://doi.org/10.1590/1809-4392201304472 - SLADE, E., RIUTTA, T., ROSLIN, T. & TUOMISTO, H.L. 2016. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Scientific Reports. 6: 18140. https://doi.org/10.1038/srep18140.
» https://doi.org/10.1038/srep18140 - SOTO, C.S., GIOMBINI, M.I., GIMÉNEZ GÓMEZ, V.C. et al. 2019. Phenotypic differentiation in a resilient dung beetle species induced by forest conversion into cattle pastures. Evol. Ecol. 33: 385–402. https://doi.org/10.1007/s10682-019-09987-y.
» https://doi.org/10.1007/s10682-019-09987-y - SOWIG, P. 1995. Habitat selection and offspring survival rate in three paracoprid dung beetles: the influence of soil type and soil moisture. Ecography. 18: 147–154.
- TASCHENBERG, E.L. 1870. Neue Käfer aus Columbien und Ecuador. Zeitschrift Für Die Gesammten Naturwissenschaften. Halle. 35: 177–199.
- TISSIANI, A.S.O., VAZ-DE-MELLO, F.Z. & CAMPELO-JÚNIOR, J.H. 2017. Dung beetles of Brazilian pastures and key to genera identication (Coleoptera: Scarabaeidae). Pesquisa Agropecuária Brasileira. 52(6): 401–418. https://doi.org/10.1590/S0100-204X2017000600004.
» https://doi.org/10.1590/S0100-204X2017000600004 - TISSIANI, A.S.O., SOUSA, W.O., SANTOS, G.G., IDE, S., BATTIROLA, L. & MARQUES, M.I. 2015. Environmental influence on coprophagous Scarabaeidae (Insecta, Coleoptera) assemblages in the Pantanal of Mato Grosso. Braz J Biol. 75:136–142. https://doi.org/10.1590/1519-6984.07514.
» https://doi.org/10.1590/1519-6984.07514 - TONELLI, M., VERDÚ, J.R. & ZUNINO, M. 2019. Grazing abandonment and dung beetle assemblage composition: Reproductive behaviour has something to say. Ecol. Indic. 96(1): 361–367. https://doi.org/10.1016/j.ecolind.2018.09.010.
» https://doi.org/10.1016/j.ecolind.2018.09.010 - GÓMEZ, V.C.G., & TONELLI, M. 2022. The Importance of Body Size Standardization in Functional Diversity Studies of Dung Beetles (Coleoptera: Scarabaeidae: Scarabaeinae). The Coleopterists Bulletin. 76(4): 497–502.
- VALOIS, M., HARADA, L., VAZ-DE-MELLO, F. & SILVA, F. 2018. Synopsis of the genus Diabroctis Gistel, 1857 (Coleoptera: Scarabaeidae: Scarabaeinae) with a new species description. Insect Syst. Evol. 51(3): 347–374.
- VAZ-DE-MELLO, F.Z. 2008. Synopsis of the new subtribe Scatimina (Coleoptera: Scarabaeidae: Ateuchini), with descriptions of twelve new genera and review of Genieridium, new genus. Zootaxa. 1955: 1–75.
- VIGORS, N.A. 1825. Descriptions of some rare, interesting, or hitherto uncharacterized subjects of Zoology. Zoological Journal. 1: 409–418, 526–542.
- ZUNINO, M., & HALFFTER, G. 1997. Sobre Onthophagus Latreille, 1802 americanos (Coleoptera: Scarabaeidae: Scarabaeinae). Elytron, 11, 157–178.
- YAMADA, D., IMURA, O., SHI, K., & SHIBUYA, T. 2007. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassland science 53(2): 121–129.
Edited by
Associate Editor
Publication Dates
-
Publication in this collection
15 Mar 2024 -
Date of issue
2024
History
-
Received
17 Nov 2023 -
Accepted
07 Feb 2024