Acessibilidade / Reportar erro

Spacial distribution and suitability for Panonychus ulmi (Tetranychidae) in Brazil

ABSTRACT.

Predictive studies project the geographic distribution of species and can be used to infer climatic niches. However, only a few studies have been conducted on mites. This approach helps map areas with potential for the occurrence of endemic, threatened, or potentially invasive species. Panonychus ulmi (Tetranychidae) is of global economic importance, commonly associated with apple orchards and grapevines. Potential distribution modeling is used to predict areas with environmental suitability for the distribution of a species and/or group. Considering that predictive models on national or regional scales present better data reliability, the present study aimed to analyze the distribution of P. ulmi in Brazil through bioclimatic inferences. The presence of species, bioclimatic variables, and MaxEnt algorithm were used to define a predictive model. The median performance rate of the model was 0.992, indicating its robustness. The variable that made the greatest contribution to the model was the average temperature of the coldest quarter (Bio11). The predictive model of the ecological niche indicated that the southern region of Brazil is environmentally favorable for the adaptation of this mite. The data obtained helped us understand the geographical distribution of P. ulmi in Brazil, and climatically suitable areas for its occurrence were inferred. We believe that this tool can offer indirect assistance to the agricultural sector, especially the producers of apples and grapes in Brazil regarding the presence of P. ulmi.

Keywords:
European red mite; adventive mite species; apple orchard; biogeography; spatial distribution

Introduction

Globally, Brazil is among the ten largest apple producers, and its southern region stands out for the cultivation and production of this fruit. It is an important source of income for local producers and the regional economy, particularly in the states of Santa Catarina and Rio Grande do Sul (Kist, 2015Kist, B. B. (2015). Anuário Brasileiro da maçã 2015. Santa Cruz do Sul, RS: Editora Gazeta.; Kist et al., 2019Kist, B. B, Vencato, A. Z., Santos, C., Carvalho, C., Reetz, E. R., Poll, H., & Beling, R. R. (2019). Anuário Brasileiro da maçã 2019. Santa Cruz Sul, RS: Editora Gazeta. ). In addition to apple production, the region stands out in viticulture, with the production of grapes, wine, and its derivatives (Mattuela & Mello, 1999Mello, L. M. R., & Mattuela, J. L. (1999). Abordagem prospectiva: da cadeia produtiva da uva e do vinho do Rio Grande do Sul. Revista de Política Agrícola, 8(2),1-11. ). Viticulture is an essential source of income for wine producers and cooperatives in several states of Brazil (Mello, 2008Mello, L. M. R. (2008). Vitivinicultura Brasileira: Panorama 2007. Jornal da Fruta, 16(196), 21-22.; Instituto Brasileiro do Vinho [IBRAVIN], 2019Instituto Brasileiro do Vinho [IBRAVIN]. (2019). Panorama da vitivinicultura brasileira - 46ª Reunião ordinária da câmara setorial da cadeia produtiva da viticultura, vinhos e derivados. Brasília, DF: IBRAVIN Retrieved on Jan. 1, 2021 from 1, 2021 from http://www.agricultura.gov.br/assuntos/camaras-setoriais-tematicas/documentos/camaras-setoriais/viticultura-vinhos-e-derivados/2018/47aro/2-5-comercializacao.pdf
http://www.agricultura.gov.br/assuntos/c...
; Mello, 2019Mello, L. M. R. (2019). Vitivinicultura Brasileira: Panorama 2018. Bento Gonçalves, RS: Embrapa Uva e Vinho. (Comunicado Técnico, 210).).

Among tetranychids, Panonychus ulmi (Koch), known as the European red mite, is economically important in apple orchards and wineyards in Asia, America, Europe, and Oceania (Migeon & Dorkeld, 2020Migeon, A., & Dorkeld, F. (2020). Spider mites web: a comprehensive database for the Tetranychidae. Retrieved on Dec. 18, 2020 from 18, 2020 from http://www.montpellier.inra.fr/CBGP/spmweb
http://www.montpellier.inra.fr/CBGP/spmw...
). The first record of P. ulmi in Brazil was on apple trees of Argentinian origin (Flechtmann, 1967Flechtmann, C. H. W. (1967). Phytoseiidae do Estado de São Paulo (Acarina: Mesostigmata). Anais da Escola Superior de Agricultura Luiz de Queiroz, 24, 247-248. DOI: https://doi.org/10.1590/S0071-12761967000100023
https://doi.org/https://doi.org/10.1590/...
). In 1972, Bleicher (1974Bleicher, E. (1974). Ocorrência do ácaro Panonychus ulmi (Koch, 1836) Tuttle & Baker (1966) no estado de Santa Catarina. O Solo, 66(1), 64. ) reported an infestation of this species in an apple orchard in Fraiburgo (state of Santa Catarina, Brazil). However, the first record of grapevine infestation in Brazil was in the 2005-2006 growing season, causing damage to the Vitis vinifera L. [Vitaceae] cultivar Merlot in Bento Gonçalves (state of Rio Grande do Sul, Brazil) (Ferla & Botton, 2008Ferla, N. J., & Botton, M. (2008). Ocorrência do ácaro vermelho europeu associado à cultura da videira no Rio Grande do Sul, Brasil. Ciência Rural, 38(6),1758-1761. DOI: https://doi.org/10.1590/S0103-84782008000600042
https://doi.org/https://doi.org/10.1590/...
), and the second record was in 2006 in Pirapora (state of Minas Gerais, Brazil) by Mendonça (2009Mendonça, R. S. D. (2009). Estudos taxonômicos de ácaros Tetranychidae no Brasil e filogenia e estrutura genética do ácaro rajado, Tetranychus urticae Koch, inferidas a partir de sequências do DNA ribossômico e mitocondrial. Retrieved on Jan. 10, 2021 from 10, 2021 from https://repositorio.unb.br/handle/10482/4580 .
https://repositorio.unb.br/handle/10482/...
). The late occurrence in grapevines may have occurred due to the geographical proximity of apple and grapevine-growing areas in Rio Grande do Sul State, where apple trees present better reproductive performance. According to Flechtmann (1967), this may have occurred because of the transit of contaminated plant material.

In Brazil, abamectin is often used to control spider mites (Andrei, 2005Andrei, E. (2005). Compêndio de defensivos agrícolas (7. ed.). São Paulo, SP: Editora Andrei.). Biological control can also be applied using predatory mites (Phytoseiidae) (Lindquist, 1996Lindquist, E. E. (1996). External anatomy and notation of structures. In Eriophyoid mites-their biology, natural enemies and control (v. 6, p. 1-30). Amsterdam, NT: Elsevier. ; McMurtry, Moraes, & Sourassou, 2013McMurtry, J. A., De Moraes, G. J., & Sourassou, N. F. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology, 18(4), 297-320. DOI: https://doi.org/10.11158/saa.18.4.1
https://doi.org/https://doi.org/10.11158...
), especially Neoseiulus californicus (McGregor) (Phytoseiidae), a species present on the vines in Rio Grande do Sul that is mainly associated with populations of P. ulmi (eg., Johann & Ferla, 2012Johann, L., & Ferla, N. J. (2012). Mite (Acari) population dynamics in grapevines (Vitis vinifera) in two regions of Rio Grande do Sul, Brazil. International Journal of Acarology , 38(5), 386-393. DOI: https://doi.org/10.1080/01647954.2012.657240
https://doi.org/https://doi.org/10.1080/...
). With favorable environmental conditions and the absence of natural enemies, P. ulmi can cause significant damage to crops (Monteiro, 2002Monteiro, L. B. (2002). Manejo integrado de pragas em macieira no Rio Grande do Sul II. Uso de Neoseiulus californicus para o controle de Panonychus ulmi. Revista Brasileira de Fruticultura, 24(2), 395-405. DOI: https://doi.org/10.1590/S0100-29452002000200024
https://doi.org/https://doi.org/10.1590/...
). This phytophagous mite causes damage by feeding on the cytoplasmic content of plant cells, leading to the loss of chlorophyll in the affected areas, tanning, and reddish spots on the adaxial surface of the leaves. Severe attacks can result in defoliation, and in extreme cases, a reduction in fruit size and even death (Kovaleski & Vendramin, 1993Kovaleski, A., & Vendramim, J. D. (1993). Biologia de Panonychus ulmi (Kock, 1836) (Acari: Tetranychidae) em macieira. Revista de Agricultura, 68(1), 27-41. ; Ferla & Botton, 2008Ferla, N. J., & Botton, M. (2008). Ocorrência do ácaro vermelho europeu associado à cultura da videira no Rio Grande do Sul, Brasil. Ciência Rural, 38(6),1758-1761. DOI: https://doi.org/10.1590/S0103-84782008000600042
https://doi.org/https://doi.org/10.1590/...
; Moraes & Flechtmann, 2008Moraes, G. D., & Flechtmann, C. H. W. (2008). Manual de acarologia. Acarologiabásica e ácaros de plantas cultivadas no Brasil. Ribeirão Preto, SP: Holos Editora.).

Studies predicting the potential geographic distribution of environmental niches of mites are scarce. This methodology could be used to map environmentally suitable areas for the occurrence of these species. Direct or indirect climatic factors can contribute to the distribution patterns of economically important species, thereby generating information for control decisions (Lu, Ma, Chen, Lu, & Xu, 2012Lu, H., Ma, Q., Chen, Q., Lu, F., & Xu, X. (2012). Potential geographic distribution of the cassava green mite Mononychellus tanajoa in Hainan, China. African Journal of Agricultural Research, 7(7), 1206-1213. DOI: https://doi.org 10.5897/AJAR11.1784
https://doi.org/https://doi.org 10.5897/...
; Amaro & Moraes, 2013Amaro, G., & Morais, E. G. F. (2013). Potential geographical distribution of the red palm mite in South America. Experimental and Applied Acarology, 60(30), 343-355. DOI: https://doi.org/10.1007/s10493-012-9651-9
https://doi.org/https://doi.org/10.1007/...
; Meynard, Migeon, & Navajas, 2013Meynard, C. N., Migeon, A., & Navajas, M. (2013). Uncertainties in predicting species distributions under climate change: A case study using Tetranychus evansi (Acari: Tetranychidae), a widespread agricultural pest. PLoS ONE, 8(6), 1-10. DOI: https://doi.org/10.1371/journal.pone.0066445
https://doi.org/https://doi.org/10.1371/...
; Parsa et al., 2015Parsa, S., Hazzi, N. A., Chen, Q., Lu, F., Campo, B. V. H., Yaninek, J. S., & Vásquez-Ordóñez, A. A. (2015). Potential geographic distribution of two invasive cassava green mites. Experimental and Applied Acarology , 65(2), 195-204. DOI: https://doi.org/10.1007/s10493-014-9868-x
https://doi.org/DOI: https://doi.org/10....
; Navia, Hamada, Gondim, & Benito, 2016Navia, D., Hamada, E., Gondim Jr, M. G. C., & Benito, N. P. (2016). Spatial forecasting of red palm mite in Brazil under current and future climate change scenarios. Pesquisa Agropecuária Brasileira, 51(5), 586-598. DOI: https://doi.org/10.1590/S0100-204X2016000500020
https://doi.org/https://doi.org/10.1590/...
; Litskas, Migeon, Navajas, Tixier, & Stavrinides, 2019Litskas, V. D., Migeon, A., Navajas, M., Tixier, M. S., & Stavrinides, M. C. (2019). Impacts of climate change on tomato, a notorious pest and its natural enemy: small scale agriculture at higher risk. Environmental Research Letters, 14(8), 1-10. DOI: https://doi.org/10.1088/1748-9326/ab3313
https://doi.org/https://doi.org/10.1088/...
; Corrêa, Silva, Nascimento, Oliveira, & Ferla, 2021Corrêa, L. L. C., Silva, D. E., Nascimento, J. M., Oliveira, S. V., & Ferla, N. J. (2021). Predictive distribution of Aculus schlechtendali (Acari: Eriophyidae) in southern Brazil. International Journal of Acarology, 47(1), 1-4. DOI: https://doi.org/10.1080/01647954.2020.1870548
https://doi.org/https://doi.org/10.1080/...
). Considering that the distribution of most organisms is associated with environmental conditions at a given location or region (Soberón, 2010Soberón, J. (2010). Niche and area of distribution modeling: A population ecology perspective. Ecography , 33(1), 159-167. DOI: https://doi.org/10.1111/j.1600-0587.2009.06074.x
https://doi.org/https://doi.org/10.1111/...
; Townsend, Begon, & Harper, 2010Townsend, C. R., Begon, M., & Harper, J. L. (2010). Fundamentos em ecologia. Porto Alegre, RS: Artmed Editora. ), this approach can be used to assess the potential distribution of species at the pest level (Parsa et al., 2015Parsa, S., Hazzi, N. A., Chen, Q., Lu, F., Campo, B. V. H., Yaninek, J. S., & Vásquez-Ordóñez, A. A. (2015). Potential geographic distribution of two invasive cassava green mites. Experimental and Applied Acarology , 65(2), 195-204. DOI: https://doi.org/10.1007/s10493-014-9868-x
https://doi.org/DOI: https://doi.org/10....
; Corrêa et al., 2021Corrêa, L. L. C., Silva, D. E., Nascimento, J. M., Oliveira, S. V., & Ferla, N. J. (2021). Predictive distribution of Aculus schlechtendali (Acari: Eriophyidae) in southern Brazil. International Journal of Acarology, 47(1), 1-4. DOI: https://doi.org/10.1080/01647954.2020.1870548
https://doi.org/https://doi.org/10.1080/...
).

Considering that predictive models at national or regional scales present better data reliability, the present study aimed to analyze the potential distribution of P. ulmi in Brazil through bioclimatic inferences, aiming at delimiting areas with viable environmental suitability for the establishment of this species.

Material and methods

Occurrence data

Data on the occurrence of P. ulmi in Brazil was obtained from previous studies by Monteiro, Souza, and Pastori (2006Monteiro, L. B., Souza, A., & Pastori, P. L. (2006). Comparação econômica entre controle biológico e químico para o manejo de ácaro-vermelho em macieira. Revista Brasileira de Fruticultura , 28(3), 514-517. DOI: https://doi.org/10.1590/S0100-29452006000300038
https://doi.org/https://doi.org/10.1590/...
), Ferla and Botton (2008Ferla, N. J., & Botton, M. (2008). Ocorrência do ácaro vermelho europeu associado à cultura da videira no Rio Grande do Sul, Brasil. Ciência Rural, 38(6),1758-1761. DOI: https://doi.org/10.1590/S0103-84782008000600042
https://doi.org/https://doi.org/10.1590/...
), Mendonça (2009Mendonça, R. S. D. (2009). Estudos taxonômicos de ácaros Tetranychidae no Brasil e filogenia e estrutura genética do ácaro rajado, Tetranychus urticae Koch, inferidas a partir de sequências do DNA ribossômico e mitocondrial. Retrieved on Jan. 10, 2021 from 10, 2021 from https://repositorio.unb.br/handle/10482/4580 .
https://repositorio.unb.br/handle/10482/...
), Ferla, Johann, Klock, Majolo, and Botton (2011Ferla, N. J., Johann, L., Klock, C., Majolo, F., & Botton, M. (2011). Phytoseiid mites (Acari: Phytoseiidae) from vineyards in Rio Grande do Sul State, Brazil. Zootaxa, 2976(1), 15-31. DOI: https://doi.org/10.11646/zootaxa.2976.1.2
https://doi.org/https://doi.org/10.11646...
), Johann & Ferla (2012Johann, L., & Ferla, N. J. (2012). Mite (Acari) population dynamics in grapevines (Vitis vinifera) in two regions of Rio Grande do Sul, Brazil. International Journal of Acarology , 38(5), 386-393. DOI: https://doi.org/10.1080/01647954.2012.657240
https://doi.org/https://doi.org/10.1080/...
), and Johann, Horn, Carvalho, and Ferla (2014Johann, L., Horn, T. B., Carvalho, G. S., & Ferla, N. J. (2014). Diversity of mites (Acari) in vineyard agroecosystems (Vitis vinifera) in two viticultural regions of Rio Grande do Sul State, Brazil. Acarologia, 54(2), 137-154. DOI: https://doi.org/10.1051/acarologia/20142122
https://doi.org/https://doi.org/10.1051/...
); the online database SpeciesLink (http://www.splink.org.br/); the online database Spider Mites Web (https://www1.montpellier.inra.fr/CBGP/spmweb/) (Migeon & Dorkeld, 2020Migeon, A., & Dorkeld, F. (2020). Spider mites web: a comprehensive database for the Tetranychidae. Retrieved on Dec. 18, 2020 from 18, 2020 from http://www.montpellier.inra.fr/CBGP/spmweb
http://www.montpellier.inra.fr/CBGP/spmw...
), and information available from the Laboratory of Acarology, University of Vale do Taquari (Univates), Brazil. The data from the Laboratory of Acarology were obtained from research conducted over more than 15 years in southern Brazil. Only one record of P. ulmi per city was considered to eliminate data overlap bias. The records were georeferenced in geographic coordinates according to the collection location and/or center of the municipality in a satellite image of high spatial resolution in Google Earth in the format of decimal degrees, Datum WGS-84, for further analysis.

Data analysis

We obtained the bioclimatic variables (from Bio1 to Bio19) from the WorldClim database (https://www.worldclim.org/), which includes bioclimatic information from 1960 to 2018. The variables available were the average minimum temperature (°C), average maximum temperature (°C), and total precipitation (mm) (Fick & Hijmans, 2017Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. DOI: https://doi.org/10.1002/joc.5086
https://doi.org/https://doi.org/10.1002/...
). The layers were cut according to the geographic space of Brazil using a conversion tool in Quantum GIS for subsequent analysis. Although the potential for the translocation of invasive species is known, distinctions can be made regarding the inferences of geographical barriers with the risk of colonization of new environments. In a more restricted analysis, the risks of errors and misinterpretation of the results are lower in the elaboration of models of geographic distribution (Barve et al., 2011Barve, N., Barve, V., Jiménez‐Valverde, A., Lira‐Noriega, A., Maher, S. P., Peterson, A. T., ... Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling , 222(11), 1810-1819. DOI: https://doi.org/10.1016/j.ecolmodel.2011.02.011
https://doi.org/https://doi.org/10.1016/...
).

To perform environmental suitability analysis for P. ulmi, we used the MaxEnt algorithm (maximum entropy). To perform this analysis, we selected all the bioclimatic variables (Bio1-Bio19) (Phillips, Anderson, & Schapire, 2006Phillips, S. J, Anderson, R. P, & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/https://doi.org/10.1016/...
; Phillips & Dudik, 2008Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography , 31(2), 161-175. DOI: https://doi.org/10.1111/j.0906-7590.2008.5203.x
https://doi.org/https://doi.org/10.1111/...
). We used 80% of the points as training data and 20% as test data (Anderson, Lew, & Peterson, 2003Anderson, R. P., Lew, D., & Peterson, A. T. (2003). Evaluating predictive models of species’ distributions: criteria forselecting optimal models. Ecological Modelling, 162(3), 211-232. DOI: https://doi.org/10.1016/S0304-3800(02)00349-6
https://doi.org/https://doi.org/10.1016/...
). They were selected from ten replicates using a bootstrapping method with standard software functions (Phillips et al., 2006Phillips, S. J, Anderson, R. P, & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/https://doi.org/10.1016/...
; Phillips & Dudik, 2008Phillips, S. J. (2008). Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography , 31(2), 272-278. DOI: https://doi.org/10.1111/j.0906-7590.2008.5378.x
https://doi.org/https://doi.org/10.1111/...
). In this study, the variables that contributed to the development of the predictive model for P. ulmi in the Brazilian territory were Annual Mean Temperature (Bio1), isothermality (Bio3), Temperature Seasonality (Bio4), minimum temperature of the coldest month (Bio6), Mean Temperature of Driest Quarter (Bio9), Mean Temperature of Coldest Quarter (Bio11), Precipitation of Driest Month (Bio14), and Precipitation Seasonality (Bio15). Using these bioclimatic variables, we performed a new round of analysis following the same procedure mentioned above.

Through a model executed using the MaxEnt algorithm (using points of presence and bioclimatic variables), a file (asc) was made available and converted into a predictive map. Final editing was performed using Quantum GIS. The model presents the average rating of the area under the curve (AUC), which provides the performance, where values close to one indicate high performance (Elith et al., 2006Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., ... Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. DOI: https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/https://doi.org/10.1111/...
; Soberón, 2007Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115-1123. DOI: https://doi.org/10.1111/j.1461-0248.2007.01107.x
https://doi.org/https://doi.org/10.1111/...
). The geographical distribution of P. ulmi in Brazilian states involved in the cultivation and production of apples and grapes is shown in Figure 1 (Mattuela & Mello, 1999Mello, L. M. R., & Mattuela, J. L. (1999). Abordagem prospectiva: da cadeia produtiva da uva e do vinho do Rio Grande do Sul. Revista de Política Agrícola, 8(2),1-11. ; Mello, 2008Mello, L. M. R. (2008). Vitivinicultura Brasileira: Panorama 2007. Jornal da Fruta, 16(196), 21-22.; Kist, 2015Kist, B. B. (2015). Anuário Brasileiro da maçã 2015. Santa Cruz do Sul, RS: Editora Gazeta.; IBRAVIN, 2019Instituto Brasileiro do Vinho [IBRAVIN]. (2019). Panorama da vitivinicultura brasileira - 46ª Reunião ordinária da câmara setorial da cadeia produtiva da viticultura, vinhos e derivados. Brasília, DF: IBRAVIN Retrieved on Jan. 1, 2021 from 1, 2021 from http://www.agricultura.gov.br/assuntos/camaras-setoriais-tematicas/documentos/camaras-setoriais/viticultura-vinhos-e-derivados/2018/47aro/2-5-comercializacao.pdf
http://www.agricultura.gov.br/assuntos/c...
; Kist et al., 2019Kist, B. B, Vencato, A. Z., Santos, C., Carvalho, C., Reetz, E. R., Poll, H., & Beling, R. R. (2019). Anuário Brasileiro da maçã 2019. Santa Cruz Sul, RS: Editora Gazeta. ; Mello, 2019Mello, L. M. R. (2019). Vitivinicultura Brasileira: Panorama 2018. Bento Gonçalves, RS: Embrapa Uva e Vinho. (Comunicado Técnico, 210).).

Figure 1
Map indicating the Brazilian regions and states that present commercial cultivation of apples and grapevines.

Results and discussion

According to the data obtained, P. ulmi occurs in 29 municipalities in Brazil and is distributed among the states of Minas Gerais, Paraná, Rio Grande do Sul, Santa Catarina, and São Paulo. The use of the predictive modeling tool through bioclimatic inferences indicated a potential scenario in which the southern region of the Brazilian territory presents greater environmental suitability for this species. However, the model also indicated that the southeastern and central-western regions had potential environmental characteristics suitable for the presence of P. ulmi (Figure 2). Of the bioclimatic variables evaluated, the mean temperature of the coldest quarter (Bio11) was the bioclimatic variable with the highest percentage contribution, indicating greater suitability for its distribution (Table 1). The average predictive performance rate was 0.992. As shown in Figure 1, the southern, southeastern, and northeastern regions present high concentrations of areas under cultures of apples and grapevines in Brazil.

The analysis of bioclimatic inferences indicated climatically suitable areas for the distribution of P. ulmi in the Brazilian territory, where the southern region showed high environmental suitability. Regions with the occurrence of P. ulmi in Brazil are within a temperate to subtropical climate, where annual mean temperatures can vary between 12 and 24°C and annual mean precipitation between 1000 and 2500 mm (Alvares, Stape, Sentelhas, Gonçalves, & Sparovek, 2013Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507
https://doi.org/https://doi.org/10.1127/...
). However, in these regions of Brazil, succinct variations in temperature and precipitation between the four seasons can occur during some periods due to climate change (Mota & Agendes, 1986Mota, F. S. D., & Agendes, M. D. O. (1986). Clima e agricultura no Brasil. Porto Alegre, RS: Sagra.; Nery, 2005Nery, J. T. (2005). Dinâmica climática da região sul do Brasil. Revista Brasileira de Climatologia, 1(1), 61-75. DOI: https://doi.org/10.5380/abclima.v1i1.25233
https://doi.org/https://doi.org/10.5380/...
; Conti, 2011Conti, J. B. (2011). Clima e meio ambiente. São Paulo, SP: Atual Editora.; Alvares et al., 2013Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507
https://doi.org/https://doi.org/10.1127/...
). In the southern region for example, between the states of Paraná, Santa Catarina and Rio Grande do Sul (Mota & Agendes, 1986Mota, F. S. D., & Agendes, M. D. O. (1986). Clima e agricultura no Brasil. Porto Alegre, RS: Sagra.; Nery, 2005Nery, J. T. (2005). Dinâmica climática da região sul do Brasil. Revista Brasileira de Climatologia, 1(1), 61-75. DOI: https://doi.org/10.5380/abclima.v1i1.25233
https://doi.org/https://doi.org/10.5380/...
), where of P. ulmi occurrence is mostly reported (Ferla & Botton, 2008Ferla, N. J., & Botton, M. (2008). Ocorrência do ácaro vermelho europeu associado à cultura da videira no Rio Grande do Sul, Brasil. Ciência Rural, 38(6),1758-1761. DOI: https://doi.org/10.1590/S0103-84782008000600042
https://doi.org/https://doi.org/10.1590/...
; Ferla et al., 2011Ferla, N. J., Johann, L., Klock, C., Majolo, F., & Botton, M. (2011). Phytoseiid mites (Acari: Phytoseiidae) from vineyards in Rio Grande do Sul State, Brazil. Zootaxa, 2976(1), 15-31. DOI: https://doi.org/10.11646/zootaxa.2976.1.2
https://doi.org/https://doi.org/10.11646...
; Johann & Ferla, 2012Johann, L., & Ferla, N. J. (2012). Mite (Acari) population dynamics in grapevines (Vitis vinifera) in two regions of Rio Grande do Sul, Brazil. International Journal of Acarology , 38(5), 386-393. DOI: https://doi.org/10.1080/01647954.2012.657240
https://doi.org/https://doi.org/10.1080/...
; Johann et al., 2014Johann, L., Horn, T. B., Carvalho, G. S., & Ferla, N. J. (2014). Diversity of mites (Acari) in vineyard agroecosystems (Vitis vinifera) in two viticultural regions of Rio Grande do Sul State, Brazil. Acarologia, 54(2), 137-154. DOI: https://doi.org/10.1051/acarologia/20142122
https://doi.org/https://doi.org/10.1051/...
). Winter is the coldest season, and the most representative month is July when the mean daily minimum varied between 6 and 12°C (Nery, 2005Nery, J. T. (2005). Dinâmica climática da região sul do Brasil. Revista Brasileira de Climatologia, 1(1), 61-75. DOI: https://doi.org/10.5380/abclima.v1i1.25233
https://doi.org/https://doi.org/10.5380/...
).

Figure 2
Distribution of environmental suitability for Panonychus ulmi in Brazil indicating points of presence of the species at the borders or in adjacent areas. Warm colors indicate a high probability of environmental suitability for P. ulmi.

Table 1
Predictive variables used in the environmental suitability model for Panonychus ulmi in Brazilian territory and their contributions (%).

This region may reach temperatures close to 0°C during this period, and negative temperature records may occur, which differs from other regions of the Brazilian territory (Mota & Agendes, 1986Mota, F. S. D., & Agendes, M. D. O. (1986). Clima e agricultura no Brasil. Porto Alegre, RS: Sagra.; Conti, 2011Conti, J. B. (2011). Clima e meio ambiente. São Paulo, SP: Atual Editora.; Alvares et al., 2013Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507
https://doi.org/https://doi.org/10.1127/...
). This temperature pattern corroborated the bioclimatic variable (mean temperature of the coldest quarter), which had the greatest contribution in this study to the model of environmental adequacy for P. ulmi. Therefore, we can consider this region favorable for the species, even as a producer of perennial fruits such as apples and grapes. P. ulmi can survive in these places because of its diapause (winter eggs deposited on the branches of the plant and summer eggs on the leaves without interruption) (Cuthbertson & Murchie, 2010Cuthbertson, A. G., & Murchie, A. K. (2010). A brief life history of Panonychus ulmi (red spider mite) in apple orchards. Applied Plant Science Division, DARD, Newforge Lane, Belfast BT9 5PX, UK. Retrieved on Jan. 15, 2021 from 15, 2021 from https://eservices.ruralni.gov.uk/pdfs/crops/Red%20spider%20mite.pdf
https://eservices.ruralni.gov.uk/pdfs/cr...
).

Geographic distribution models have been used to determine patterns of areas with aptitude for the occurrence of several species (Anderson et al., 2003Anderson, R. P., Lew, D., & Peterson, A. T. (2003). Evaluating predictive models of species’ distributions: criteria forselecting optimal models. Ecological Modelling, 162(3), 211-232. DOI: https://doi.org/10.1016/S0304-3800(02)00349-6
https://doi.org/https://doi.org/10.1016/...
; Soberón & Peterson, 2005Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1-10. DOI: https://doi.org/10.17161/bi.v2i0.4
https://doi.org/https://doi.org/10.17161...
; Soberón, 2007Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115-1123. DOI: https://doi.org/10.1111/j.1461-0248.2007.01107.x
https://doi.org/https://doi.org/10.1111/...
; Migeon et al., 2009Migeon, A., Ferragut, F., Escudero-Colomar, L. A., Fiaboe, K., Knapp, M., Moraes, G. J., & Navajas, M. (2009). Modelling the potential distribution of the invasive tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Experimental and Applied Acarology , 48, 199-212. DOI: https://doi.org/10.1007/s10493-008-9229-8
https://doi.org/https://doi.org/10.1007/...
; Soberón, 2010Soberón, J. (2010). Niche and area of distribution modeling: A population ecology perspective. Ecography , 33(1), 159-167. DOI: https://doi.org/10.1111/j.1600-0587.2009.06074.x
https://doi.org/https://doi.org/10.1111/...
; Meynard et al., 2013Meynard, C. N., Migeon, A., & Navajas, M. (2013). Uncertainties in predicting species distributions under climate change: A case study using Tetranychus evansi (Acari: Tetranychidae), a widespread agricultural pest. PLoS ONE, 8(6), 1-10. DOI: https://doi.org/10.1371/journal.pone.0066445
https://doi.org/https://doi.org/10.1371/...
, Parsa et al., 2015Parsa, S., Hazzi, N. A., Chen, Q., Lu, F., Campo, B. V. H., Yaninek, J. S., & Vásquez-Ordóñez, A. A. (2015). Potential geographic distribution of two invasive cassava green mites. Experimental and Applied Acarology , 65(2), 195-204. DOI: https://doi.org/10.1007/s10493-014-9868-x
https://doi.org/DOI: https://doi.org/10....
; Litskas et al., 2019Litskas, V. D., Migeon, A., Navajas, M., Tixier, M. S., & Stavrinides, M. C. (2019). Impacts of climate change on tomato, a notorious pest and its natural enemy: small scale agriculture at higher risk. Environmental Research Letters, 14(8), 1-10. DOI: https://doi.org/10.1088/1748-9326/ab3313
https://doi.org/https://doi.org/10.1088/...
), and to determine whether a location or region is satisfactory for the species under different environmental conditions. Such models do not necessarily state whether a region is currently occupied by the species but are more appropriate for determining the bioclimatic conditions suitable for its occupation (Phillips et al., 2006Phillips, S. J, Anderson, R. P, & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/https://doi.org/10.1016/...
; Phillips, 2008Phillips, S. J. (2008). Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography , 31(2), 272-278. DOI: https://doi.org/10.1111/j.0906-7590.2008.5378.x
https://doi.org/https://doi.org/10.1111/...
; Phillips & Dudik, 2008Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography , 31(2), 161-175. DOI: https://doi.org/10.1111/j.0906-7590.2008.5203.x
https://doi.org/https://doi.org/10.1111/...
; Soberón, 2010Soberón, J. (2010). Niche and area of distribution modeling: A population ecology perspective. Ecography , 33(1), 159-167. DOI: https://doi.org/10.1111/j.1600-0587.2009.06074.x
https://doi.org/https://doi.org/10.1111/...
).

However, for mites of economic importance, climatically suitable areas may promote infestation (Lu et al., 2012Lu, H., Ma, Q., Chen, Q., Lu, F., & Xu, X. (2012). Potential geographic distribution of the cassava green mite Mononychellus tanajoa in Hainan, China. African Journal of Agricultural Research, 7(7), 1206-1213. DOI: https://doi.org 10.5897/AJAR11.1784
https://doi.org/https://doi.org 10.5897/...
; Amaro & Moraes, 2013Amaro, G., & Morais, E. G. F. (2013). Potential geographical distribution of the red palm mite in South America. Experimental and Applied Acarology, 60(30), 343-355. DOI: https://doi.org/10.1007/s10493-012-9651-9
https://doi.org/https://doi.org/10.1007/...
; Parsa et al., 2015Parsa, S., Hazzi, N. A., Chen, Q., Lu, F., Campo, B. V. H., Yaninek, J. S., & Vásquez-Ordóñez, A. A. (2015). Potential geographic distribution of two invasive cassava green mites. Experimental and Applied Acarology , 65(2), 195-204. DOI: https://doi.org/10.1007/s10493-014-9868-x
https://doi.org/DOI: https://doi.org/10....
; Navia et al., 2016Navia, D., Hamada, E., Gondim Jr, M. G. C., & Benito, N. P. (2016). Spatial forecasting of red palm mite in Brazil under current and future climate change scenarios. Pesquisa Agropecuária Brasileira, 51(5), 586-598. DOI: https://doi.org/10.1590/S0100-204X2016000500020
https://doi.org/https://doi.org/10.1590/...
; Corrêa et al., 2021Corrêa, L. L. C., Silva, D. E., Nascimento, J. M., Oliveira, S. V., & Ferla, N. J. (2021). Predictive distribution of Aculus schlechtendali (Acari: Eriophyidae) in southern Brazil. International Journal of Acarology, 47(1), 1-4. DOI: https://doi.org/10.1080/01647954.2020.1870548
https://doi.org/https://doi.org/10.1080/...
). Considering that the distribution of these organisms is associated with abiotic factors (Rabbinge, 1976Rabbinge, R. (1976). Biological control of fruit-tree red spider mite. Wageningen, NT: Pudoc.), climate change may interfere with their distribution patterns, which may be beneficial or limited (Migeon et al., 2009Migeon, A., Ferragut, F., Escudero-Colomar, L. A., Fiaboe, K., Knapp, M., Moraes, G. J., & Navajas, M. (2009). Modelling the potential distribution of the invasive tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Experimental and Applied Acarology , 48, 199-212. DOI: https://doi.org/10.1007/s10493-008-9229-8
https://doi.org/https://doi.org/10.1007/...
; Meynard et al., 2013Meynard, C. N., Migeon, A., & Navajas, M. (2013). Uncertainties in predicting species distributions under climate change: A case study using Tetranychus evansi (Acari: Tetranychidae), a widespread agricultural pest. PLoS ONE, 8(6), 1-10. DOI: https://doi.org/10.1371/journal.pone.0066445
https://doi.org/https://doi.org/10.1371/...
; Navia et al., 2016Navia, D., Hamada, E., Gondim Jr, M. G. C., & Benito, N. P. (2016). Spatial forecasting of red palm mite in Brazil under current and future climate change scenarios. Pesquisa Agropecuária Brasileira, 51(5), 586-598. DOI: https://doi.org/10.1590/S0100-204X2016000500020
https://doi.org/https://doi.org/10.1590/...
; Litskas et al., 2019Litskas, V. D., Migeon, A., Navajas, M., Tixier, M. S., & Stavrinides, M. C. (2019). Impacts of climate change on tomato, a notorious pest and its natural enemy: small scale agriculture at higher risk. Environmental Research Letters, 14(8), 1-10. DOI: https://doi.org/10.1088/1748-9326/ab3313
https://doi.org/https://doi.org/10.1088/...
; Corrêa et al., 2021Corrêa, L. L. C., Silva, D. E., Nascimento, J. M., Oliveira, S. V., & Ferla, N. J. (2021). Predictive distribution of Aculus schlechtendali (Acari: Eriophyidae) in southern Brazil. International Journal of Acarology, 47(1), 1-4. DOI: https://doi.org/10.1080/01647954.2020.1870548
https://doi.org/https://doi.org/10.1080/...
). However, even with these environmental factors, climatic limitations on distribution may coincide with host plant occurrence (Ragusa & Tsolakis 2000Ragusa, S., & Tsolakis, H. (2000). Notes on the adaptation of some phytophagous and predacious mites to various ecological parameters in the Mediterranean countries. Web Ecology, 1(1), 35-47. DOI: https://doi.org/10.5194/we-1-35-2000
https://doi.org/https://doi.org/10.5194/...
). The presence of mites and their patterns of occurrence are correlated with environmental factors (Rabbinge, 1976Rabbinge, R. (1976). Biological control of fruit-tree red spider mite. Wageningen, NT: Pudoc.; Johann & Ferla, 2012Johann, L., & Ferla, N. J. (2012). Mite (Acari) population dynamics in grapevines (Vitis vinifera) in two regions of Rio Grande do Sul, Brazil. International Journal of Acarology , 38(5), 386-393. DOI: https://doi.org/10.1080/01647954.2012.657240
https://doi.org/https://doi.org/10.1080/...
; Amaro & Moraes, 2013Amaro, G., & Morais, E. G. F. (2013). Potential geographical distribution of the red palm mite in South America. Experimental and Applied Acarology, 60(30), 343-355. DOI: https://doi.org/10.1007/s10493-012-9651-9
https://doi.org/https://doi.org/10.1007/...
; Corrêa et al., 2021Corrêa, L. L. C., Silva, D. E., Nascimento, J. M., Oliveira, S. V., & Ferla, N. J. (2021). Predictive distribution of Aculus schlechtendali (Acari: Eriophyidae) in southern Brazil. International Journal of Acarology, 47(1), 1-4. DOI: https://doi.org/10.1080/01647954.2020.1870548
https://doi.org/https://doi.org/10.1080/...
), indicating that P. ulmi is established in the southern region of Brazil (Ferla & Moraes, 2002Ferla, N. J., & Moraes, G. D. (2002). Ácaros (Arachnida, Acari) da seringueira (Hevea brasiliensis Muell. Arg.) no Estado do Mato Grosso, Brasil. Revista Brasileira de Zoologia, 19(3), 867-888. DOI: https://doi.org/10.1590/S0101-81752002000300025
https://doi.org/https://doi.org/10.1590/...
; Ferla & Botton, 2008Ferla, N. J., & Botton, M. (2008). Ocorrência do ácaro vermelho europeu associado à cultura da videira no Rio Grande do Sul, Brasil. Ciência Rural, 38(6),1758-1761. DOI: https://doi.org/10.1590/S0103-84782008000600042
https://doi.org/https://doi.org/10.1590/...
). However, we cannot ignore other conditions that may be associated with this adaptation, such as the constant use of phytosanitary products which might eliminate natural control agents and, consequently, allow a population increase in phytophagous mites (Ferla & Moraes, 2002Ferla, N. J., & Moraes, G. D. (2002). Ácaros (Arachnida, Acari) da seringueira (Hevea brasiliensis Muell. Arg.) no Estado do Mato Grosso, Brasil. Revista Brasileira de Zoologia, 19(3), 867-888. DOI: https://doi.org/10.1590/S0101-81752002000300025
https://doi.org/https://doi.org/10.1590/...
; Duso, Pozzebon, Kreiter, Tixier, & Candolfi, 2012Duso, C., Pozzebon, A., Kreiter, S., Tixier, M. S., & Candolfi, M. (2012). Management of phytophagous mites in European vineyards. In Arthropod management in vineyards (p. 191-217). Dordrecht, NT: Springer. DOI: https://doi.org/10.1007/978-94-007-4032-7_9
https://doi.org/https://doi.org/10.1007/...
; Gräff, Johann, Souza, & Ferla, 2017Gräff, C. A, Johann, L., Souza, C. F. V., & Ferla, N. J. (2017). Patogenicidade de Isaria fumosorosea sobre o ácaro vermelho europeu em laboratório. Biotemas, 30(1), 73-78. DOI: https://doi.org/10.5007/2175-7925.2017v30n1p73
https://doi.org/https://doi.org/10.5007/...
).

Some Brazilian states, such as Mato Grosso do Sul, Sergipe, and Paraíba, which also have areas of apple production (Kist, 2015Kist, B. B. (2015). Anuário Brasileiro da maçã 2015. Santa Cruz do Sul, RS: Editora Gazeta.; Kist et al., 2019Kist, B. B, Vencato, A. Z., Santos, C., Carvalho, C., Reetz, E. R., Poll, H., & Beling, R. R. (2019). Anuário Brasileiro da maçã 2019. Santa Cruz Sul, RS: Editora Gazeta. ), and the states of Ceará, Goiás, Piauí, Rondônia, and Mato Grosso do Sul (Mattuela & Mello, 1999Mello, L. M. R., & Mattuela, J. L. (1999). Abordagem prospectiva: da cadeia produtiva da uva e do vinho do Rio Grande do Sul. Revista de Política Agrícola, 8(2),1-11. ; Mello, 2008Mello, L. M. R. (2008). Vitivinicultura Brasileira: Panorama 2007. Jornal da Fruta, 16(196), 21-22.; IBRAVIN, 2019Instituto Brasileiro do Vinho [IBRAVIN]. (2019). Panorama da vitivinicultura brasileira - 46ª Reunião ordinária da câmara setorial da cadeia produtiva da viticultura, vinhos e derivados. Brasília, DF: IBRAVIN Retrieved on Jan. 1, 2021 from 1, 2021 from http://www.agricultura.gov.br/assuntos/camaras-setoriais-tematicas/documentos/camaras-setoriais/viticultura-vinhos-e-derivados/2018/47aro/2-5-comercializacao.pdf
http://www.agricultura.gov.br/assuntos/c...
; Mello, 2019Mello, L. M. R. (2019). Vitivinicultura Brasileira: Panorama 2018. Bento Gonçalves, RS: Embrapa Uva e Vinho. (Comunicado Técnico, 210).), which presently have grapevine production, do not present reports in the literature indicating the presence of P. ulmi. The geographic model built in this study indicated a low or nonexistent probability of this phytophagous mite in these regions. Considering that the distribution of some mite species may be associated with the host plant (Ragusa & Tsolakis, 2000Ragusa, S., & Tsolakis, H. (2000). Notes on the adaptation of some phytophagous and predacious mites to various ecological parameters in the Mediterranean countries. Web Ecology, 1(1), 35-47. DOI: https://doi.org/10.5194/we-1-35-2000
https://doi.org/https://doi.org/10.5194/...
), P. ulmi may have reached these regions through vegetative material transit. However, even in the presence of an appropriate host plant (apple tree or grapevine), it cannot be established because of unfavorable environmental conditions. Considering that these regions have distinctions in minimum temperatures when compared to the states of Santa Catarina, Paraná, and Rio Grande do Sul (Nery, 2005Nery, J. T. (2005). Dinâmica climática da região sul do Brasil. Revista Brasileira de Climatologia, 1(1), 61-75. DOI: https://doi.org/10.5380/abclima.v1i1.25233
https://doi.org/https://doi.org/10.5380/...
; Conti, 2011Conti, J. B. (2011). Clima e meio ambiente. São Paulo, SP: Atual Editora.; Alvarez et al., 2013Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507
https://doi.org/https://doi.org/10.1127/...
), this could be a viable explanation for the absence of P. ulmi in other regions of Brazil. However, we cannot ignore an additional factor: the presence of predatory mites that might act as biological controls that prevent P. ulmi from achieving pest status.

Considering the scarcity of studies that mention patterns in the potential distribution of phytophagous mites at the regional level, geographic modeling is an essential tool that can contribute to such studies. In this study, we identified areas with environmental suitability for P. ulmi in Brazil, delimiting some factors that would assist in understanding areas that are suitable for accommodating the species. Based on this information, apple and grapevine producers would remain alert in these regions and plan preventive actions by implementing management and control measures to minimize possible damage to production. For example, several biological control measures can be applied in such areas. However, this information is of great importance for future academic studies on this species, particularly in the southern region of Brazil.

Conclusion

The median performance rate of the model was 0.992, indicating its robustness. The variable that made the greatest contribution to the model was the average temperature of the coldest quarter (Bio11). The predictive model of the ecological niche indicated that the southern region of Brazil is environmentally favorable for the adaptation of this mite. The data obtained helped us understand the geographical distribution of P. ulmi in Brazil, and climatically suitable areas for its occurrence were inferred. We believe that this tool can offer indirect assistance to the agricultural sector, especially the producers of apples and grapes in Brazil regarding the presence of P. ulmi.

Acknowledgements

Luiz L. C. Corrêa thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for offering a post-doctorate scholarship. Noeli Juarez Ferla was supported by the CNPq Productivity Research Scholarship (313658/2020-0).

References

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507
    » https://doi.org/https://doi.org/10.1127/0941-2948/2013/0507
  • Amaro, G., & Morais, E. G. F. (2013). Potential geographical distribution of the red palm mite in South America. Experimental and Applied Acarology, 60(30), 343-355. DOI: https://doi.org/10.1007/s10493-012-9651-9
    » https://doi.org/https://doi.org/10.1007/s10493-012-9651-9
  • Anderson, R. P., Lew, D., & Peterson, A. T. (2003). Evaluating predictive models of species’ distributions: criteria forselecting optimal models. Ecological Modelling, 162(3), 211-232. DOI: https://doi.org/10.1016/S0304-3800(02)00349-6
    » https://doi.org/https://doi.org/10.1016/S0304-3800(02)00349-6
  • Andrei, E. (2005). Compêndio de defensivos agrícolas (7. ed.). São Paulo, SP: Editora Andrei.
  • Barve, N., Barve, V., Jiménez‐Valverde, A., Lira‐Noriega, A., Maher, S. P., Peterson, A. T., ... Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling , 222(11), 1810-1819. DOI: https://doi.org/10.1016/j.ecolmodel.2011.02.011
    » https://doi.org/https://doi.org/10.1016/j.ecolmodel.2011.02.011
  • Bleicher, E. (1974). Ocorrência do ácaro Panonychus ulmi (Koch, 1836) Tuttle & Baker (1966) no estado de Santa Catarina. O Solo, 66(1), 64.
  • Conti, J. B. (2011). Clima e meio ambiente São Paulo, SP: Atual Editora.
  • Corrêa, L. L. C., Silva, D. E., Nascimento, J. M., Oliveira, S. V., & Ferla, N. J. (2021). Predictive distribution of Aculus schlechtendali (Acari: Eriophyidae) in southern Brazil. International Journal of Acarology, 47(1), 1-4. DOI: https://doi.org/10.1080/01647954.2020.1870548
    » https://doi.org/https://doi.org/10.1080/01647954.2020.1870548
  • Cuthbertson, A. G., & Murchie, A. K. (2010). A brief life history of Panonychus ulmi (red spider mite) in apple orchards Applied Plant Science Division, DARD, Newforge Lane, Belfast BT9 5PX, UK. Retrieved on Jan. 15, 2021 from 15, 2021 from https://eservices.ruralni.gov.uk/pdfs/crops/Red%20spider%20mite.pdf
    » https://eservices.ruralni.gov.uk/pdfs/crops/Red%20spider%20mite.pdf
  • Duso, C., Pozzebon, A., Kreiter, S., Tixier, M. S., & Candolfi, M. (2012). Management of phytophagous mites in European vineyards. In Arthropod management in vineyards (p. 191-217). Dordrecht, NT: Springer. DOI: https://doi.org/10.1007/978-94-007-4032-7_9
    » https://doi.org/https://doi.org/10.1007/978-94-007-4032-7_9
  • Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., ... Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. DOI: https://doi.org/10.1111/j.2006.0906-7590.04596.x
    » https://doi.org/https://doi.org/10.1111/j.2006.0906-7590.04596.x
  • Ferla, N. J., & Botton, M. (2008). Ocorrência do ácaro vermelho europeu associado à cultura da videira no Rio Grande do Sul, Brasil. Ciência Rural, 38(6),1758-1761. DOI: https://doi.org/10.1590/S0103-84782008000600042
    » https://doi.org/https://doi.org/10.1590/S0103-84782008000600042
  • Ferla, N. J., Johann, L., Klock, C., Majolo, F., & Botton, M. (2011). Phytoseiid mites (Acari: Phytoseiidae) from vineyards in Rio Grande do Sul State, Brazil. Zootaxa, 2976(1), 15-31. DOI: https://doi.org/10.11646/zootaxa.2976.1.2
    » https://doi.org/https://doi.org/10.11646/zootaxa.2976.1.2
  • Ferla, N. J., & Moraes, G. D. (2002). Ácaros (Arachnida, Acari) da seringueira (Hevea brasiliensis Muell. Arg.) no Estado do Mato Grosso, Brasil. Revista Brasileira de Zoologia, 19(3), 867-888. DOI: https://doi.org/10.1590/S0101-81752002000300025
    » https://doi.org/https://doi.org/10.1590/S0101-81752002000300025
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. DOI: https://doi.org/10.1002/joc.5086
    » https://doi.org/https://doi.org/10.1002/joc.5086
  • Flechtmann, C. H. W. (1967). Phytoseiidae do Estado de São Paulo (Acarina: Mesostigmata). Anais da Escola Superior de Agricultura Luiz de Queiroz, 24, 247-248. DOI: https://doi.org/10.1590/S0071-12761967000100023
    » https://doi.org/https://doi.org/10.1590/S0071-12761967000100023
  • Gräff, C. A, Johann, L., Souza, C. F. V., & Ferla, N. J. (2017). Patogenicidade de Isaria fumosorosea sobre o ácaro vermelho europeu em laboratório. Biotemas, 30(1), 73-78. DOI: https://doi.org/10.5007/2175-7925.2017v30n1p73
    » https://doi.org/https://doi.org/10.5007/2175-7925.2017v30n1p73
  • Instituto Brasileiro do Vinho [IBRAVIN]. (2019). Panorama da vitivinicultura brasileira - 46ª Reunião ordinária da câmara setorial da cadeia produtiva da viticultura, vinhos e derivados Brasília, DF: IBRAVIN Retrieved on Jan. 1, 2021 from 1, 2021 from http://www.agricultura.gov.br/assuntos/camaras-setoriais-tematicas/documentos/camaras-setoriais/viticultura-vinhos-e-derivados/2018/47aro/2-5-comercializacao.pdf
    » http://www.agricultura.gov.br/assuntos/camaras-setoriais-tematicas/documentos/camaras-setoriais/viticultura-vinhos-e-derivados/2018/47aro/2-5-comercializacao.pdf
  • Johann, L., & Ferla, N. J. (2012). Mite (Acari) population dynamics in grapevines (Vitis vinifera) in two regions of Rio Grande do Sul, Brazil. International Journal of Acarology , 38(5), 386-393. DOI: https://doi.org/10.1080/01647954.2012.657240
    » https://doi.org/https://doi.org/10.1080/01647954.2012.657240
  • Johann, L., Horn, T. B., Carvalho, G. S., & Ferla, N. J. (2014). Diversity of mites (Acari) in vineyard agroecosystems (Vitis vinifera) in two viticultural regions of Rio Grande do Sul State, Brazil. Acarologia, 54(2), 137-154. DOI: https://doi.org/10.1051/acarologia/20142122
    » https://doi.org/https://doi.org/10.1051/acarologia/20142122
  • Kist, B. B. (2015). Anuário Brasileiro da maçã 2015 Santa Cruz do Sul, RS: Editora Gazeta.
  • Kist, B. B, Vencato, A. Z., Santos, C., Carvalho, C., Reetz, E. R., Poll, H., & Beling, R. R. (2019). Anuário Brasileiro da maçã 2019 Santa Cruz Sul, RS: Editora Gazeta.
  • Kovaleski, A., & Vendramim, J. D. (1993). Biologia de Panonychus ulmi (Kock, 1836) (Acari: Tetranychidae) em macieira. Revista de Agricultura, 68(1), 27-41.
  • Lindquist, E. E. (1996). External anatomy and notation of structures. In Eriophyoid mites-their biology, natural enemies and control (v. 6, p. 1-30). Amsterdam, NT: Elsevier.
  • Litskas, V. D., Migeon, A., Navajas, M., Tixier, M. S., & Stavrinides, M. C. (2019). Impacts of climate change on tomato, a notorious pest and its natural enemy: small scale agriculture at higher risk. Environmental Research Letters, 14(8), 1-10. DOI: https://doi.org/10.1088/1748-9326/ab3313
    » https://doi.org/https://doi.org/10.1088/1748-9326/ab3313
  • Lu, H., Ma, Q., Chen, Q., Lu, F., & Xu, X. (2012). Potential geographic distribution of the cassava green mite Mononychellus tanajoa in Hainan, China. African Journal of Agricultural Research, 7(7), 1206-1213. DOI: https://doi.org 10.5897/AJAR11.1784
    » https://doi.org/https://doi.org 10.5897/AJAR11.1784
  • Mello, L. M. R. (2008). Vitivinicultura Brasileira: Panorama 2007. Jornal da Fruta, 16(196), 21-22.
  • Mello, L. M. R. (2019). Vitivinicultura Brasileira: Panorama 2018 Bento Gonçalves, RS: Embrapa Uva e Vinho. (Comunicado Técnico, 210).
  • Mello, L. M. R., & Mattuela, J. L. (1999). Abordagem prospectiva: da cadeia produtiva da uva e do vinho do Rio Grande do Sul. Revista de Política Agrícola, 8(2),1-11.
  • Mendonça, R. S. D. (2009). Estudos taxonômicos de ácaros Tetranychidae no Brasil e filogenia e estrutura genética do ácaro rajado, Tetranychus urticae Koch, inferidas a partir de sequências do DNA ribossômico e mitocondrial. Retrieved on Jan. 10, 2021 from 10, 2021 from https://repositorio.unb.br/handle/10482/4580
    » https://repositorio.unb.br/handle/10482/4580
  • Meynard, C. N., Migeon, A., & Navajas, M. (2013). Uncertainties in predicting species distributions under climate change: A case study using Tetranychus evansi (Acari: Tetranychidae), a widespread agricultural pest. PLoS ONE, 8(6), 1-10. DOI: https://doi.org/10.1371/journal.pone.0066445
    » https://doi.org/https://doi.org/10.1371/journal.pone.0066445
  • McMurtry, J. A., De Moraes, G. J., & Sourassou, N. F. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology, 18(4), 297-320. DOI: https://doi.org/10.11158/saa.18.4.1
    » https://doi.org/https://doi.org/10.11158/saa.18.4.1
  • Migeon, A., Ferragut, F., Escudero-Colomar, L. A., Fiaboe, K., Knapp, M., Moraes, G. J., & Navajas, M. (2009). Modelling the potential distribution of the invasive tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Experimental and Applied Acarology , 48, 199-212. DOI: https://doi.org/10.1007/s10493-008-9229-8
    » https://doi.org/https://doi.org/10.1007/s10493-008-9229-8
  • Migeon, A., & Dorkeld, F. (2020). Spider mites web: a comprehensive database for the Tetranychidae. Retrieved on Dec. 18, 2020 from 18, 2020 from http://www.montpellier.inra.fr/CBGP/spmweb
    » http://www.montpellier.inra.fr/CBGP/spmweb
  • Monteiro, L. B. (2002). Manejo integrado de pragas em macieira no Rio Grande do Sul II. Uso de Neoseiulus californicus para o controle de Panonychus ulmi Revista Brasileira de Fruticultura, 24(2), 395-405. DOI: https://doi.org/10.1590/S0100-29452002000200024
    » https://doi.org/https://doi.org/10.1590/S0100-29452002000200024
  • Monteiro, L. B., Souza, A., & Pastori, P. L. (2006). Comparação econômica entre controle biológico e químico para o manejo de ácaro-vermelho em macieira. Revista Brasileira de Fruticultura , 28(3), 514-517. DOI: https://doi.org/10.1590/S0100-29452006000300038
    » https://doi.org/https://doi.org/10.1590/S0100-29452006000300038
  • Moraes, G. D., & Flechtmann, C. H. W. (2008). Manual de acarologia. Acarologiabásica e ácaros de plantas cultivadas no Brasil Ribeirão Preto, SP: Holos Editora.
  • Mota, F. S. D., & Agendes, M. D. O. (1986). Clima e agricultura no Brasil Porto Alegre, RS: Sagra.
  • Navia, D., Hamada, E., Gondim Jr, M. G. C., & Benito, N. P. (2016). Spatial forecasting of red palm mite in Brazil under current and future climate change scenarios. Pesquisa Agropecuária Brasileira, 51(5), 586-598. DOI: https://doi.org/10.1590/S0100-204X2016000500020
    » https://doi.org/https://doi.org/10.1590/S0100-204X2016000500020
  • Nery, J. T. (2005). Dinâmica climática da região sul do Brasil. Revista Brasileira de Climatologia, 1(1), 61-75. DOI: https://doi.org/10.5380/abclima.v1i1.25233
    » https://doi.org/https://doi.org/10.5380/abclima.v1i1.25233
  • Parsa, S., Hazzi, N. A., Chen, Q., Lu, F., Campo, B. V. H., Yaninek, J. S., & Vásquez-Ordóñez, A. A. (2015). Potential geographic distribution of two invasive cassava green mites. Experimental and Applied Acarology , 65(2), 195-204. DOI: https://doi.org/10.1007/s10493-014-9868-x
    » https://doi.org/DOI: https://doi.org/10.1007/s10493-014-9868-x
  • Phillips, S. J, Anderson, R. P, & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026
    » https://doi.org/https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography , 31(2), 161-175. DOI: https://doi.org/10.1111/j.0906-7590.2008.5203.x
    » https://doi.org/https://doi.org/10.1111/j.0906-7590.2008.5203.x
  • Phillips, S. J. (2008). Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography , 31(2), 272-278. DOI: https://doi.org/10.1111/j.0906-7590.2008.5378.x
    » https://doi.org/https://doi.org/10.1111/j.0906-7590.2008.5378.x
  • Rabbinge, R. (1976). Biological control of fruit-tree red spider mite Wageningen, NT: Pudoc.
  • Ragusa, S., & Tsolakis, H. (2000). Notes on the adaptation of some phytophagous and predacious mites to various ecological parameters in the Mediterranean countries. Web Ecology, 1(1), 35-47. DOI: https://doi.org/10.5194/we-1-35-2000
    » https://doi.org/https://doi.org/10.5194/we-1-35-2000
  • Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1-10. DOI: https://doi.org/10.17161/bi.v2i0.4
    » https://doi.org/https://doi.org/10.17161/bi.v2i0.4
  • Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115-1123. DOI: https://doi.org/10.1111/j.1461-0248.2007.01107.x
    » https://doi.org/https://doi.org/10.1111/j.1461-0248.2007.01107.x
  • Soberón, J. (2010). Niche and area of distribution modeling: A population ecology perspective. Ecography , 33(1), 159-167. DOI: https://doi.org/10.1111/j.1600-0587.2009.06074.x
    » https://doi.org/https://doi.org/10.1111/j.1600-0587.2009.06074.x
  • Townsend, C. R., Begon, M., & Harper, J. L. (2010). Fundamentos em ecologia Porto Alegre, RS: Artmed Editora.

Publication Dates

  • Publication in this collection
    23 Aug 2024
  • Date of issue
    2024

History

  • Received
    04 Feb 2023
  • Accepted
    16 May 2023
Editora da Universidade Estadual de Maringá - EDUEM Av. Colombo, 5790, bloco 40, 87020-900 - Maringá PR/ Brasil, Tel.: (55 44) 3011-4253, Fax: (55 44) 3011-1392 - Maringá - PR - Brazil
E-mail: actaagron@uem.br