ABSTRACT
Due the tolerance in soil degraded, Eucalyptus is widely used in reforestation area. This study aims to evaluate the fungi that use Eucalyptus grandis W. Hill ex Maiden as substrate in reforestation area in southern Brazil. Fungi were identified and macronutrient and micronutrient contents were evaluated in order to understand the relationship between the fungi and the substrate. There were 200 specimens found, categorized into 25 species belonging to 10 families of Agaricales (Basidiomycota, Fungi). Substrates used by fungi were branches, roots, stems, humus, and soil. Macronutrients mean level found in fungi followed the order Ca>K>P>Mg, and micronutrients S>Fe>Mn>Cu/B>Zn. C:N ratio mean was 13:1, associated with substrate degradation potential, since the enzymatic production of fungi is affected by disposition of these nutrients. The data obtained in this study allowed a better understanding of fungi associated with the exotic arboreal substrate, and their nutritional significance in reforestation area.
Keywords:
Agaricales; associations; Myrtaceae; nutrient; reforestation
RESUMO
Devido à tolerância em solos degradados, Eucalyptus é amplamente utilizado em áreas de reflorestamento. Este estudo teve como objetivo avaliar os fungos que utilizam Eucalyptus grandis W. Hill ex Maiden como substrato em uma área de reflorestamento no sul do Brasil. Para compreender a relação dos fungos com o substrato, os mesmos foram identificados e os teores de macronutrientes e micronutrientes foram avaliados. Foram encontrados 200 espécimes divididos entre 25 espécies pertencentes a 10 famílias de Agaricales (Basidiomycota, Fungi). Os substratos utilizados pelos fungos foram galhos, raízes, caules, húmus e solo. Os teores médios de macronutrientes encontrados nos fungos seguiram a ordem Ca>K>P>Mg, e os micronutrientes S>Fe>Mn>Cu/B>Zn. A relação C:N foi de 13:1, associada ao potencial de degradação do substrato, uma vez que a produção enzimática dos fungos é afetada pela disposição desses nutrientes. Os dados obtidos neste estudo auxiliam em uma melhor compreensão dos fungos associados ao substrato arbóreo exótico e sua importância nutricional na área de reflorestamento.
Palavras-chaves:
Agaricales; associações; Myrtaceae; nutriente; reflorestamento
Introduction
The Eucalyptus (Myrtaceae) is an arboreal genus that is frequently used in afforestation and reforestation operations because of its high tolerance in degraded soils (Njouonkou et al. 2021Njouonkou, A.L., Njapdounké, G.V., Yumdinguetmun, R., Tsopmbeng, G.N. & Degreef, J. 2021. Étude comparative de la diversité des macrochampignons dans les plantations forestières matures d'eucalyptus et de pins en zone de savanes tropicales à l'Ouest du Cameroun. Écoscience 28: 53-65.). In Rio Grande do Sul State this genus plays a significant role to economy, primarily in silviculture area (Echer et al. 2015Echer, R., da Cruz, J.A.W., Estrela, C.C., Moreira, M. & Gravato, F. 2015. Usos da terra e ameaças para a conservação da biodiversidade no bioma Pampa, Rio Grande do Sul. Revista Thema 12: 4-13.). Soils that have been damaged by anthropic action, Eucalyptus is often used as a pioneer species for planting due their tolerance the acid pH and salinity (Taiz et al. 2018Taiz, L., Zeiger, E., Moller, I. M. & Murphy, A. 2017. Fisiologia e desenvolvimento vegetal. Artmed Editora, Porto Alegre.). However, it is an exotic species in Brazil, introduced in Rio Grande do Sul State in middle of XIX century (Trentim et al. 2014Trentim, A. B., Saldanha, D.L. & Kuplich, T.M. 2014. Análise temporal da silvicultura no sudeste do Rio Grande do Sul. Geografia 39: 499-509.).
A limited number of studies reported ecological role of fungi in relation to substrates of exotic tree species, as well as their role in nutrients recirculation. According to Manzato et al. (2020Manzato, B.L. 2018. Diversidade de fungos basidiomicetos macroscópicos em áreas de reflorestamento de Eucalyptus spp. Dissertação de Mestrado em Ciência e Tecnologia Ambiental, Universidade do Sagrado Coração, Bauru.), capable fungi to use exotic trees substrate are very important to biodegradation of this organic matter type. Fungi associated with these trees can break down and extract carbon compounds, including lignin, cellulose, and hemicellulose (de Araujo et al. 2018de Araujo, P.A.P., Santana, M.C., Bonfim, J.A., de Lourdes, M.D. & Cardoso, E.J.B.N. 2018. Digging deeper to study the distribution of mycorrhizal arbuscular fungi along the soil profile in pure and mixed Eucalyptus grandis and Acacia mangium plantations. Applied Soil Ecology 128: 1-11., Martins et al. 2018Martins, O.G., Abilio, D.P., Siqueira, O.A.P.A., Ronchesel, M. & de Andrade, M.C.N. 2018. Sobra de alimentos como alternativa para a formulação de novos substratos para o cultivo de Pleurotus ostreatus (Basidiomycota, Fungi). Revista em Agronegócio e Meio Ambiente 11: 505-518.). The carbon/nitrogen ratio can provide insight into how native fungi diversity is associated with exotic tree species (Bononi et al. 2017Bononi, V.L.R., Oliveira, A.K.M.D., Gugliotta, A.D.M. & Quevedo, J.R.D. 2017. Agaricomycetes (Basidiomycota, Fungi) diversity in a protected area in the Maracaju Mountains, in the Brazilian central region. Hoehnea 44: 361-377., Njouonkou et al. 2021Njouonkou, A.L., Njapdounké, G.V., Yumdinguetmun, R., Tsopmbeng, G.N. & Degreef, J. 2021. Étude comparative de la diversité des macrochampignons dans les plantations forestières matures d'eucalyptus et de pins en zone de savanes tropicales à l'Ouest du Cameroun. Écoscience 28: 53-65.). Agaricales fungi have carbon-to-nitrogen ratio mean between 10:1 and 15:1 (Stoffella & Kahn 2001Stoffella, P.J. & Kahn, B.A. (Eds.). 2001. Compost utilization in horticultural cropping systems. Lewis Publishers: London, United Kingdom.). A study conducted by D'Agostini et al. (2011D'Agostini, É.C., Mantovani, T.R.D.A., do Valle, J.S., Paccola-Meirelles, L.D., Colauto, N.B. & Linde, G.A. 2011. Reduzida relação carbono/nitrogênio aumenta a produção de lacase por basidiomicetos em cultivo de semissólido. Scientia Agricola 68: 295-300.) with fungi that decompose wood, the C:N ratio was noted as a factor in the time needed to breakdown organic matter in part due to the time required to produce decomposing enzymes, such as cellulase. The priming effect is attributed to the ability of fungi to decompose organic matter through the availability of fresh carbon (Fontaine et al. 2011Fontaine, S., Henault, C., Aamor, A., Bdioui, N., Bloor, J.M.G., Maire, V. & Maron, P.A. 2011. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil biology and Biochemistry 43: 86-96.). Nitrogen also interacts with decomposition system once the availability interferes with the diversity of fungi (Liao et al. 2020Liao, L., Wang, X., Wang, J., Liu, G. & Zhang, C. 2021. Nitrogen fertilization increases fungal diversity and abundance of saprotrophs while reducing nitrogen fixation potential in a semiarid grassland. Plant and Soil 465: 515-532.). Understanding the carbon-to-nitrogen ratio is essential since it is linked with type of organic matter and the decomposition process by fungi. In this context, size population, as well as the capacity of enzyme production and mineralization is related the fungi action in nutrient cycle, once the lignicolous species possess enzymatic apparatus which is designed to extract these compounds from wood, and terrestrial are involved in decomposition organic matter deposited in the soil (Bahram & Netherway 2022Bahram, M. & Netherway, T. 2022. Fungi as mediators linking organisms and ecosystems. FEMS Microbiology Reviews 46: 1-16.).
Macronutrients and micronutrients are acquired by fungi from substrate to which they grow or are attached in combination with the capacity to extract these nutrients (Silva-Neto et al. 2022Silva-Neto, C.D.M., Calaça, F.J.S., Santos, l.A.C., Machado, J.C., Moura, J.B.D., Pinto, D.D.S. & Santos, S.X.D. 2022. Food and nutritional potential of two mushrooms native species to the Brazilian savanna (Cerrado). Food Science and Technology 42: 1-8.). Therefore, the ability of fungi to absorb and retain certain nutrients is essential to comprehend how to occur nutritional cycle. In study with edible fungi, Malinowski et al. (2021Malinowski, R., Sotek, Z., Stasińska, M., Malinowska, K., Radke, P. & Malinowska, A. 2021. Bioaccumulation of macronutrients in edible mushrooms in various habitat conditions of NW Poland - Role in the human diet. International Journal of Environmental Research and Public Health 18: 1-15.) report that some species contained essential nutritional content. Edible fungi contain macronutrients and micronutrients suitable for human and animal consumption. They are functional foods because containing around of 20-35% proteins, 5-10% essential amino acids, vitamins and minerals, as well as low lipid levels (Altaf et al. 2020Altaf, U., Lalotra, P. & Sharma, Y.P. 2020. Nutritional and mineral composition of four wild edible mushrooms from Jammu and Kashmir, India. Indian Phytopathology 73: 313-320.).
This study investigated fungi-plant-substrate association in a riparian reforestation area in southern Brazil with Eucalyptus grandis W. Hill ex Maiden monoculture. To understand this association, the study also analyzed the nutritional potential and chemical composition of Agaricales associated with this type of exotic substrate.
Material and methods
Study area - During the period 2021-2022 the collection was conducted at Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), São Gabriel, Rio Grande do Sul State, Brazil (-30°20’13’’S and -54°15’49’’W). In the region, there is a weir of 37 m2 protected by a reforestation area of 336 m2 composed of Eucalyptus grandis W. Hill ex Maiden trees implemented in the year 2000. Previously, the area was planted with soy, and the same is still occurring in the farms in its surroundings. Temperatures oscillated from 3 to 35°C, with a mean of 10°C in winter, 18°C in autumn, 23°C in spring, and 30°C in summer. The average monthly precipitation ranges from 4 to 152 mm, with relative humidity from 19% to 70% (Embrapa 2022Embrapa. 2022. Dados meteorológicos: Boletim Meteorológico do Estado do Rio Grande do Sul. Porto Alegre. Available at [http://www.embrapa.br ] (access in 23-VII-2023).
http://www.embrapa.br...
).
Sample - Fungi were collected under license SISBIO 79049-1 using the Rapid Survey method (Walter & Guarino 2006Walter, B.M.T. & Guarino, E.D.S. G. 2006. Comparação do método de parcelas com o" levantamento rápido" para amostragem da vegetação arbórea do Cerrado sentido restrito. Acta Botânica Brasílica 20: 285-297.) with the modifications: perimeters of lines L1, L2, and L3 were subdivided according with limits of Brazilian riparian zones. Line 1 (active water channel) in the first 30 m from the water's edge. Line 2 (flood plain) for another 30 m from the end of the perimeter of L1. Line 3 (filter area) for another 30 m beyond the end of L2 (Brasil 1976Brasil. 1976. Ministério das Relações Exteriores - Comissão Brasileira para o Decênio Hidrológico Internacional. Ministério de Minas e Energia - Departamento Nacional de Águas e Energia Elétrica, Glossário de Termos Hidrológicos, Brasília.). During the collection, a 5-minute interval was maintained, all specimens found were gathered up, and each line (L1, L2, and L3) there was one collector. The expeditions were seasonal with a total collection time of approximately 24 hours. To collect fungi from branches and stems of trees 1 cm diameter and 1 mm thick woody portion was removed near the basidiome. In the case of fungi close to the roots exposed on the soil surface, 1 cm in diameter and 1 mm thick were removed, and for this collection, the structure was followed up to the plant (de Araujo et al. 2018de Araujo, P.A.P., Santana, M.C., Bonfim, J.A., de Lourdes, M.D. & Cardoso, E.J.B.N. 2018. Digging deeper to study the distribution of mycorrhizal arbuscular fungi along the soil profile in pure and mixed Eucalyptus grandis and Acacia mangium plantations. Applied Soil Ecology 128: 1-11.). For fungi found on soil, about 10 g were collected together with the basidiome. Samples were placed in paper bags and then dehydrated at 40°C for 48 hours.
Taxonomic identification - Fungal species were identified using the taxonomic key for Agaricales from Brazil (Putzke & Putzke 2017Putzke, J. & Putzke, M. 2017. Cogumelos-Fungos Agaricales no Brasil. Famílias Agaricaceae, Amanitaceae, Bolbitaceae, Entolomataceae, Coprinaceae/Psathyrellaceae, Crepidotaceae e Hygrophoraceae. Vol I, São Gabriel, pp. 168-269., 2019Putzke, J. & Putzke, M. 2019. Cogumelos-Fungos Agaricales no Brasil. Ordens Boletales (Boletaceae e Paxillaceae), Polyporales (Polyporaceae/Lentinaceae), Russulales (Russulaceae) e Agaricales (Cortinariaceae, Inocybaceae, Pluteaceae e Strophariaceae). Vol II, São Gabriel, pp. 164-318.). Microscopy analyzes were conducted through cuts on the basidiomata lamellae and placing them on slides, which were then rehydrated with 3% KOH solution. The Olympus DP53 optical microscope was used to observe microstructures, such as spores, basidia, and hyphae.
Nutritional content - The dry mass of fungi collected was analyzed in relation to the nutritional levels. For species with pileus diameters smaller than 5 cm, duplicates were separated, while for species with larger diameters, only one unit was reserved. Analysis of macronutrients included carbon (C), nitrogen (N), calcium (Ca), magnesium (Mg), phosphorus (P), and potassium (K). The micronutrients analyzed were zinc (Zn), copper (Cu), sulfur (S), boron (B), iron (Fe), and manganese (Mn). Nutrient contents were analyzed following the determinations by Lutz (1985Lutz, A. 1985. Normas Analíticas do Instituto Adolfo Lutz. Métodos químicos e físicos para análise de alimentos, pp. 1020.), and the C:N ratio was calculated using the results from chemical analysis, according to Mantovani et al. (2007Mantovani, T.R., Linde, G.A. & Colauto, N.B. 2007. Effect of the addition of nitrogen sources to cassava fiber and carbon-to-nitrogen ratios on Agaricus brasiliensis growth. Canadian Journal of Microbiology, 53: 139-143.). The analyzes were performed at Laboratório de Solos da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul State, Brazil.
Statistics - Nutritional contents of fungi were computed and quantified using the BioEstat v.2.0 program in percentage terms (Ayres & Junior 2000Ayres, M. & Junior Ayres, M. 2000. BioEstat 2.0: aplicações estatísticas nas áreas das ciências biológicas e médicas. Sociedade Civil Mamirauá, Belém.). The means of nutritional content obtained with each species were submitted to Analysis of Variance (ANOVA) and compared by Tukey test at 5% level of error probability with ESTAT version 2 software (Estat 1994Estat. 1994. Sistema de Análise Estatística (ESTAT 2.0). Jaboticabal: Polo Computacional do Departamento de Ciências Exatas da UNESP, São Paulo.).
Results
The diversity of fungi found in the study area comprised 25 species associated with Eucalyptus grandis W. Hill ex Maiden, developing on branches (1), roots (1), stems (3), humus (7), and on the soil (13), totaling 200 specimens. In total, 10 families of Agaricales were found. Records of fungi included the occurrence of six species new to Rio Grande do Sul State, as well as 21 species associated with E. grandis for the first time (table 1 and figure 1).
Macrostructures and microstructures of some fungi found in association with Eucalyptus grandis W. Hill ex Maiden, São Gabriel, Rio Grande do Sul State, Brazil. Oudemansiella canarii (Jungh.) Höhn on branches. a-c. Pholiota sp. (Fr.) P.Kumm on stem. d-f. Gymnopilus junonius (Fr.) PD Orton on roots. g-i. Coprinellus domesticus (Bolton) Vilgalys, Hopple & Jacq. Johnson on humus. j-l. Laccaria fratera (Sacc.) Pegler on soil. m-o. Pileus top view (a, b, c, g, and m), bottom view (b, e, h, k, and n), and spores (c, f, i, l, and o). Note: Scales(a, b, d, e, g, h, j, k, m, and n) 25 mm. Scales (c, f, i, l, and o) 10 µm.
Nutritional chemical analyzes of all mushrooms showed macronutrient content in following order Ca>K>P>Mg, and for micronutrients S>Fe>Mn >Cu/B/Zn. It was not possible to detect any differences in the concentration of Cu, B, or Zn. Terricolous fungi (soil and humus), when compared to lignicolous fungi (stem and branches), exhibited higher levels of macronutrients and micronutrients (table 2).
The carbon-to-nitrogen ratio (C: N) is summarized in Table 3. As result of this study, the C:N ratio of the species varied from 16.2 to 11.00 in C content, and from 1.58 to 0.66 in N content, with 13:1 mean. Considering total value of dry mass, C represented 93% and N 7%. Different terricolous fungi showed oscillations from 14.2 to 11.08 in C, and 1.43 to 0.81 in N. Oscillations between 14.70 and 11.08 in C, and 1.06 to 0.75 in N was found in humicolous fungi. In the case of lignicolous fungi, values on stems ranged from 12.90 to 10.90 in C, and 1.02 to 0.78 in N, while values on branches ranged from 12.98 to 9.79 in C, and 1.08 to 0.78 in N. Values associated with roots ranged between 15.1 and 12.20 in C, and 0.98 to 0.78 in N.
Discussion
A large number of species were found on soil, compared to other types of substrates. According to Putzke & Putzke (2017Putzke, J. & Putzke, M. 2017. Cogumelos-Fungos Agaricales no Brasil. Famílias Agaricaceae, Amanitaceae, Bolbitaceae, Entolomataceae, Coprinaceae/Psathyrellaceae, Crepidotaceae e Hygrophoraceae. Vol I, São Gabriel, pp. 168-269.) Agaricus rufoaurantiacus occupies the interior of forests as its natural habitat. This is the first report of association with E. grandis. Apioperdon pyriforme and Lycoperdon perlatum also grow on soil (Alves & Cortez 2014Alves, C.R. & Cortez, V.G. 2014. Gasteroid Agaricomycetidae (Basidiomycota) from Parque Estadual São Camilo, Paraná, Brazil. Revista Brasileira de Biociências 12: 27-41., Xu et al. 2019Xu, B., Lu, H., Zhao, D., Wang, W. & Ji, H. 2019. Diversity of macrofungi in Yushan, Jiangsu, China. Mycotaxon 134: 581-581.), and L. perlatum has already been associated with Eucalyptus spp. in India (Natarajan & Purushothama 1987Natarajan, K. & Purushothama, K.B. 1987. On the occurrence of Lycoperdon perlatum in Pinus patula plantations in Tamil Nadu. Current Science 56: 1117-1118.). This is the first occurrence of A. pyriforme in Rio Grande do Sul, as well as association with E. grandis.
Clitopilus scyphoides has been observed growing alongside Eucalyptus globulus Labill. and Eucalyptus macarthur H. Deane & Maiden in Spain (Aragón 2002Aragón, G. 2002. Fragmenta Chorologica Occidentalia. Fungi 60: 8392-8524.). Due to the fact that Clitopilus austroprunulus Morgado, GM Gates & Noordel, 2012 was registered under Eucalyptus regnans F. Muell, Clitopilus sp. with Eucalyptus cladocalyx F. Muell and Eucalyptus baxteri (Benth.) Maiden & Blakely ex J.M.Black; it appears that the genus has an affinity for exotic tree substrates, all records occurred in Australia (Crous et al. 2012Crous, P.W., Shivas, R.G., Wingfield, M.J., Summerell, B.A., Rossman, A.Y., Alves, J.L. & Groenewald, J.Z. 2012. Fungal Planet description sheets. Persoonia-Molecular Phylogeny and Evolution of Fungi 29: 146-201.). Also, C. austroprunulus has been associated with E. regnans in Africa (Decock 2012Decock, C. 2012. Fungal planet description sheets. Persoonia Mycological Journal 29: 146-153.).
In Russia, Entoloma sp. has been recorded along with Eucalyptus brassiana S.T. Blake (Crous et al. 2018Crous, P.W., Luangsa-Ard, J.J., Wingfield, M.J., Carnegie, A.J., Hernández-Restrepo, M., Lombard, L. & Groenewald, J.Z. 2018. Fungal Planet description sheets. Persoonia-Molecular Phylogeny and Evolution of Fungi 41: 238-417.), and in Australia, the genus has already been identified with E. baxteri and Eucalyptus dunnii Maiden. Also, Entolama nipponicum Kasuya, Nabe, Noordel & Dima, 2019 was cataloged with E. grandis in same region (Catcheside 2006Catcheside, P. 2006. Adelaide Fungal Studies Group Annual Report: July 2005-June 2006. South Australian Naturalist 80: 68-71., Bahram & Netherway 2022Bahram, M. & Netherway, T. 2022. Fungi as mediators linking organisms and ecosystems. FEMS Microbiology Reviews 46: 1-16.). There is a wide distribution of occurrence of genus in Brazilian biomes (Putzke & Putzke 2017Putzke, J. & Putzke, M. 2017. Cogumelos-Fungos Agaricales no Brasil. Famílias Agaricaceae, Amanitaceae, Bolbitaceae, Entolomataceae, Coprinaceae/Psathyrellaceae, Crepidotaceae e Hygrophoraceae. Vol I, São Gabriel, pp. 168-269.).
Laccaria fraterna is an ectomycorrhiza with record of association involving Eucalyptus diversicolor F. Muell., Eucalyptus globulus (Labill.), and Eucalyptus tereticornis Sm., respectively in India, Scotland, and Australia (Reddy & Natarajan 1995Reddy, M.S. & Natarajan, K. 1995. Effects of Pisolithus tinctorius and Laccaria fraterna on the growth and mycorrfflzal development of Pinus patula seedlings. Biotropia Southeast Asian Journal of Tropical Biology 8: 45-52., Dunstan et al. 1998Dunstan, W.A., Malajczuk, N. & Dell, B. 1998. Effects of bacteria on mycorrhizal development and growth of container grown Eucalyptus diversicolor F. Muell. seedlings. Plant and Soil 201: 241-249., Mason et al. 2000Mason, P.A., Ibrahim, K., Ingleby, K., Munro, R.C. & Wilson, J. 2000. Mycorrhizal development and growth of inoculated Eucalyptus globulus (Labill.) seedlings in wet and dry conditions in the glasshouse. Forest Ecology and Management 128: 269-277.). This is the first report of E. grandis associated with this fungi.
In this study, Mycena galericulata was found on soil next to E. grandis and this is report first of association. Species has already an association record in Spain with E. globulus (Lorenzo et al. 2009Lorenzo, P. 2009. Estudio de la micocenosis de macromicetos del Parque Natural del Monte Aloia (Pontevedra, España). Anales del Jardín Botánico de Madrid 66:151-156.). Associated with Eucalyptus spp. other species of the same genus, such as Mycena pseudoinclinata AH Sm. 1947 in Italy ( La Rosa et al. 2009La Rosa, A., Saitta, A., Compagno, R. & Venturella, G. 2012. Mycena pseudoinclinata, new to Italy. Mycotaxon 120: 133-137.), Mycena neerimensis Grgur, 1998 in Australia (Grgurinovic 1998Grgurinovic, C. 1998. Mycena in Australia: Section Lactipedes. Botanical Journal of Scotland 50: 199-208.), and Mycena filopes (Bull.) P. Kumm, 1871 in Brazil (Sobestiansky 2005Sobestiansky, G. 2005. Contribution to a macromycete survey of the States of Rio Grande do Sul and Santa Catarina in Brazil. Brazilian Archives of Biology and Technology 48: 437-457.) have already been found.
This is record first of Coprinus lagopus associated with E. grandis. However, the fungi already have cataloged with E. globulus in Peru (Ordóñez & Rabanal 2019Ordóñez, M.S.R. & Rabanal, M.R.R. 2019. Identificación y utilidad de algunos hongos superiores del ecosistema de la Sierra Norte del Perú. Revista Caxamarca 18: 1-2.). Furthermore, Coprinus sp. has an occurrence record with Eucalyptus sp. in Brazil (Manzato et al. 2020Manzato, B.L., Manzato, C.L., dos Santos, P.L., Passos, J.D.S. & da Silva Junior, T.A.F. 2020. Diversity of macroscopic basidiomycetes in reforestation areas of Eucalyptus spp. Scientia Forestalis 48: 128-146.).
In Paraná a record of Parasola lactea was described (Meijer 2006Meijer, A.A.R. 2006. Preliminary list of the macromycetes from the Brazilian State of Paraná. Bol Mus Bot Municipal 68: 1-55.), for Rio Grande do Sul and the association with E. grandis this is report first. However, only Parasola conopilea (Fr.) Örstadius & Larss, 2008 is cited in association with Eucalyptus gomphocephala DC. in Australia (Bougher & Cook 1983Bougher, N.l. & Cook, J. 1983. Fungi and slime moulds recorded in surveys at kings park and bold park urban bushlands Perth, western Australia. The Western Australian Naturalist 31: 191-251.).
Psathyrella argillospora, Psathyrella hypertropicalis, and Psathyrella murrillii do not have known associations with Eucalyptus. Additionally, this is the first report of P. murrillii occurrence in Rio Grande do Sul State. Only in Costa Rica Psathyrella ovispora Deschuyteneer, Heykoop & Moreno, 2019 was associated with Eucalyptus spp. (Crous et al. 2019Crous, P.W., Wingfield, M.J., Lombard, L., Roets, F., Swart, W.J., Alvarado, P. & Groenewald, J.Z. 2019. Fungal Planet description sheets. Persoonia: Molecular Phylogeny and Evolution of Fungi 43: 941-1051.).
Lepista nuda was associated to Eucalyptus fasciculosa F. Muell in Australia (Catcheside 2006Catcheside, P. 2006. Adelaide Fungal Studies Group Annual Report: July 2005-June 2006. South Australian Naturalist 80: 68-71.), and Eucalyptus camaldulensis Dehnh in Italy (Venturella & La Rocca 2001Venturella, G. & La Rocca, S. 2001. Strategies for conservation of fungi in the Madonie Park, North Sicily. British Mycological Society Symposium Series 2: 156-161.). Equal to Stropharia rugosoannulata is known to occur in agricultural soils (Stamets 2005Stamets, P. 2005. Mycelium running: how mushrooms can help save the world. Random House Digital.), but this is record first of both in association with E. grandis.
Galerina includes humicolous, terrestrial and lignicolous species (Spahr 2018Spahr, D.L. 2018. Edible and Medicinal Mushrooms of New England and Eastern Canada: A Photographic Guidebook to Finding and Using Key Species. North Atlantic Books.). In Brazil, the genus is widely distributed and recorded occurrence in Rio Grande do Sul State (Singer 1953Singer, R. 1953. Type studies on Basidiomycetes VI. Lilloa 26: 57-159.). Putzke & Putzke (2019Putzke, J. & Putzke, M. 2019. Cogumelos-Fungos Agaricales no Brasil. Ordens Boletales (Boletaceae e Paxillaceae), Polyporales (Polyporaceae/Lentinaceae), Russulales (Russulaceae) e Agaricales (Cortinariaceae, Inocybaceae, Pluteaceae e Strophariaceae). Vol II, São Gabriel, pp. 164-318.) mention 17 species in Brazil and only Galerina montivaga Singer, 1969 it is humicolous. The genus also occurs on branches and litter of Eucalyptus spp. (Manzato et al. 2020Manzato, B.L., Manzato, C.L., dos Santos, P.L., Passos, J.D.S. & da Silva Junior, T.A.F. 2020. Diversity of macroscopic basidiomycetes in reforestation areas of Eucalyptus spp. Scientia Forestalis 48: 128-146.).
Only Pholiota conissans (Fr.) MM Moser, 1953; Pholiota highlandensis (Peck) Singer, 1952; Pholiota limonella (Peck) Sacc. 1887; Pholiota nameko (T. Itô) S. Ito & S. Imai 1933; Pholiota spumosa (Fr.) Singer, 1948; and Pholiota squarrosoides (Peck) Sacc. 1887 has occur register in Brazil. In terms of associations with tree species, P. nameko has a record with Eucalyptus saligna Sm. in Paraná (Paccola et al. 2001Paccola, E.A., Maki, C.S., Nobrega, G. & Paccola-Meirelles, L.D. 2001. Antagonistic effect of edible mushroom extract on Candida albicans growth. Brazilian Journal of Microbiology 32: 176-178.), as well as P. highlandensis and Pholiota communus (Cleland & Cheel) Grgur, 1997 with Eucalyptus marginata Donn ex Sm. in Australia (Robinson & Williams 2011Robinson, R.M. & Williams, M.R. 2011. Forestcheck: The response of epigeous macrofungi to silviculture in jarrah (Eucalyptus marginata) forest. Australian Forestry 74: 288-302.).
This study found Gymnopilus species directly associated with the stem and root. In roots Gymnopilus subtropicus was found. Gymnopilus earlei and Gymnopilus zenkeri were found in humus mainly close to the roots. G. zenkeri has already been associated with Eucalyptus sp. in France (Njouonkou et al. 2021Njouonkou, A.L., Njapdounké, G.V., Yumdinguetmun, R., Tsopmbeng, G.N. & Degreef, J. 2021. Étude comparative de la diversité des macrochampignons dans les plantations forestières matures d'eucalyptus et de pins en zone de savanes tropicales à l'Ouest du Cameroun. Écoscience 28: 53-65.), Gymnopilus junonius with Eucalyptus spp. in Uruguay (Barneche et al. 2017Barneche, S., Alborés, S., Borthagaray, G., Cerdeiras, M.P. & Vázquez, A. 2017.Anti-MRSA activity of fruiting body extracts of spectacular Rustgill mushroom, Gymnopilus junonius (Agaricomycetes). International Journal of Medicinal Mushrooms 19: 3-17.), Gymnopilus spectabilis (Weinm.) AH Sm. 1949 and G. pampeanus in India (Kaur & Rather 2015Kaur, H., Kaur, M. & Rather, H. 2015. Species of Gymnopilus P. Karst: New to India. Mycosphere, 6: 165-173.), G. pampeanus in Argentina (Colavolpe & Albertó 2014Colavolpe, M.B. & Albertó, E. 2014, Cultivation requirements and substrate degradation of the edible mushroom Gymnopilus pampeanus - A novel species for mushroom cultivation. Scientia Horticulturae 180: 161-166.), as well as Gymnopilus corticophilusRees, 1999Rees, B.J., Orlovich, D.A. & Marks, P.B.D. 1999. Treading the fine line between small-statured Gymnopilus and excentrically stipitate Galerina species in Australia. Mycological Research 103: 427-442.; Gymnopilus tomentulosusRees, 1999Rees, B.J., Orlovich, D.A. & Marks, P.B.D. 1999. Treading the fine line between small-statured Gymnopilus and excentrically stipitate Galerina species in Australia. Mycological Research 103: 427-442.; Gymnopilus tasmanicus Rees, 1999Rees, B.J., Orlovich, D.A. & Marks, P.B.D. 1999. Treading the fine line between small-statured Gymnopilus and excentrically stipitate Galerina species in Australia. Mycological Research 103: 427-442.; Gymnopilus eucalyptorum (Cleland) Singer, 1947; Gymnopilus tyallus Grgur, 1997; and Gymnopilus moabus Grgur, 1997 in Australia (Rees et al. 1999Rees, B.J., Orlovich, D.A. & Marks, P.B.D. 1999. Treading the fine line between small-statured Gymnopilus and excentrically stipitate Galerina species in Australia. Mycological Research 103: 427-442.). It is the first occurrence record associated with E. grandis and in Rio Grande do Sul State for G. junonius, G. paraensis, and G. zenkeri.
Pluteus cervinus grows on wood humus (Putzke & Putzke 2019Putzke, J. & Putzke, M. 2019. Cogumelos-Fungos Agaricales no Brasil. Ordens Boletales (Boletaceae e Paxillaceae), Polyporales (Polyporaceae/Lentinaceae), Russulales (Russulaceae) e Agaricales (Cortinariaceae, Inocybaceae, Pluteaceae e Strophariaceae). Vol II, São Gabriel, pp. 164-318.). However, this is the first record of association with E. grandis. In relation the others species, Pluteus ludwigii Ferisin, Justo & Dovana, 2019 has been recorded growing on E. grandis humus in Russia (Ordóñez & Rabanal 2019Ordóñez, M.S.R. & Rabanal, M.R.R. 2019. Identificación y utilidad de algunos hongos superiores del ecosistema de la Sierra Norte del Perú. Revista Caxamarca 18: 1-2.), Pluteus albotomentosus Malysheva & Malysheva, 2014 and Pluteus extremiorientalis Malysheva & Malysheva, 2014 with Eucalyptus urophylla S.T.Blake in Indonesia (Crous et al. 2014Crous, P.W., Wingfield, M.J., Schumacher, R.K., Summerell, B.A., Giraldo, A., Gené, J. & Groenewald, J.Z. 2014. Fungal Planet description sheets. Persoonia-Molecular Phylogeny and Evolution of Fungi 33: 212-289.).
Coprinellus domesticus integrates another new association record with the tree species of this study. Using Eucalyptus spp. humus as substrate, Coprinellus sp. was cataloged in Australia (Tyagi et al. 2019Tyagi, C.H., Singh, S. & Dutt, D. 2011. Effect of two fungal strains of Coprinellus disseminatus SH-1 NTCC-1163 and SH-2 NTCC-1164 on pulp refining and mechanical strength properties of wheat straw-AQ pulp. Cellulose Chemistry and Technology 45: 257-271. ).
Lignicolous Oudemansiella canarii grows in stem and branches. It is described growing in the stem of Eucalyptus sp. in Argentina (Alberti et al. 2021Alberti, M.M., Pérez-Chávez, A.M., Niveiro, N. & Albertó, E. 2021. Towards an optimal methodology for Basidiomes production of naturally occurring species of the genus Oudemansiella (Basidiomycetes). Current Microbiology 78: 1256-1266.), this is the first record of association with E. grandis.
Macronutrient and micronutrient contents analyzed in this study can provide a basis for further analyzes regarding application nutritional of these fungi. Although the fungi studied exhibit associations with E. grandis, there are not techniques or standards for cultivating them in exotic tree. A. rufoaurantiacus, L. fraterna, G. pampeanus, G. paraensis, G. zenkeri, A. pyriforme, L. perlatum, O. canarii, C. lagopus, and L. nuda are classified as non-toxic and potentially edible (Crosier et al. 1949Crosier, W.F., Patrick, S.R., Heit, C.E. & McSwain, E. 1949. The harefoot mushroom, Coprinus lagopus Fr., on fruits used commercially as seedstocks. Science 110: 13-14., Ruegger et al. 2001Ruegger, M.J.S., Tornisielo, S.M.T., Bononi, V.L.R. & Capelari, M. 2001. Cultivation of the edible mushroom Oudemansiella canarii (Jungh.) Höhn. in lignocellulosic substrates. Brazilian Journal of Microbiology 32: 211-214., Ndong et al. 2011Ndong, H.E., Degreef, J. & De Kesel, A. 2011. Champignons comestibles des forêts denses d’Afrique centrale. Taxonomie et identification. ABC Taxa 10: 253-671., Akatin 2013Akatin, M.Y. 2013. Characterization of a β-glucosidase from an edible mushroom Lycoperdon pyriforme. International Journal of Food Properties 16: 1565-1577., Putzke & Putzke 2017Putzke, J. & Putzke, M. 2017. Cogumelos-Fungos Agaricales no Brasil. Famílias Agaricaceae, Amanitaceae, Bolbitaceae, Entolomataceae, Coprinaceae/Psathyrellaceae, Crepidotaceae e Hygrophoraceae. Vol I, São Gabriel, pp. 168-269., 2018Putzke, J. & Putzke, M. 2019. Cogumelos-Fungos Agaricales no Brasil. Ordens Boletales (Boletaceae e Paxillaceae), Polyporales (Polyporaceae/Lentinaceae), Russulales (Russulaceae) e Agaricales (Cortinariaceae, Inocybaceae, Pluteaceae e Strophariaceae). Vol II, São Gabriel, pp. 164-318., Sridhar & Karun 2019Sridhar, K.R. & Karun, N.C. 2019. Diversity and Ecology of Ectomycorrhizal Fungi in the Western Ghats. Microbial Interventions in Agriculture and Environment 1: 479-507., Altaf et al. 2020Altaf, U., Lalotra, P. & Sharma, Y.P. 2020. Nutritional and mineral composition of four wild edible mushrooms from Jammu and Kashmir, India. Indian Phytopathology 73: 313-320.). This group not contemplate the fungi cultivated in Brazil for edibility purposes, so a more robust analysis of their potential for consumption is required. Moreover, G. earlei, G. subtropicus, M. galericulata, P. lactea, P. argillospora, P. hypertropicalis, and P. murrillii do not present sufficient data regarding their edibility or toxicity. There are not data on the edibility of C. scyphoides, G. junonius, P. cervinus, C. domesticus, and S. rugosoannulata, but levels of toxicity have already reported in studies involving these species (Gabriel et al. 1997Gabriel, J., Baldrian, P., Rychlovsky, P. & Krenzelok, M. 1997. Heavy metal content in wood-decaying fungi collected in Prague and in the National Park Sumava in the Czech Republic. Bulletin of Environmental Contamination and Toxicology 59: 595-602., Novikova 2001Novikova, S.P. 2001. Enzyme preparations from higher Basidiomycetes mushrooms for making polymer materials with thromboresistant features. International Journal of Medicinal Mushrooms 3: 1-5., Hartley et al. 2009Hartley, A.J., de Mattos-Shipley, K., Collins, C.M., Kilaru, S., Foster, G.D. & Bailey, A.M. 2009. Investigating pleuromutilin-producing Clitopilus species and related basidiomycetes. FEMS Microbiology Letters 297: 24-30., Wu et al. 2011Wu, J., Fushimi, K., Tokuyama, S., Ohno, M., Miwa, T., Koyama, T. & Kawagishi, H. 2011. Functional-food constituents in the fruiting bodies of Stropharia rugosoannulata. Bioscience, Biotechnology, and Biochemistry 75: 1631-1634., Lee et al. 2020Lee, S., Ryoo, R., Choi, J.H., Kim, J.H., Kim, S.H. & Kim, K.H. 2020. Trichothecene and tremulane sesquiterpenes from a hallucinogenic mushroom Gymnopilus junonius and their cytotoxicity. Archives of pharmacal research 43: 214-223.), and therefore their consumption should not be considered.
In terms of macronutrient, P, K, Ca, and Mg remained within the range already described for edible Agaricales species, such as Agaricus bisporus (JE Lange) Imbach, 1946; Lentinula edodes (Berk.) Pegler, 1976; and Pleurotus spp. (Silva-Neto et al. 2022Silva-Neto, C.D.M., Calaça, F.J.S., Santos, l.A.C., Machado, J.C., Moura, J.B.D., Pinto, D.D.S. & Santos, S.X.D. 2022. Food and nutritional potential of two mushrooms native species to the Brazilian savanna (Cerrado). Food Science and Technology 42: 1-8.). The contents of these macronutrients were higher in terricolous fungi than in other fungi. Nutritional retention of fungi is related to their availability in the substrate. Neina (2019Neina, D. 2019. The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science 585: 569-573.) demonstrates that Ca is widely distributed in soil, predominantly in Ca2+ form, but specific mechanisms in each plant permit Ca to enter in permeable channels. In all species analyzed, Ca was the most abundant macronutrient. This result supports Agrahar-Murugkar & Subbulakshmi (2005Agrahar-Murugkar, D. & Subbulakshmi, G.J.F.C. 2005. Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chemistry 89: 599-603.) findings in Calvatia gigantean (Batsch ex Pers.) Lloyd, Cantharellus cibarius Pe. 1821, Russula integra (L.) Fr. 1838, Gomphus floccosus (Schwein.) Singer, 1945, and Lactarius quieticolor Romagn, 1958, which oscillated between 5 and 9 cmolc L-1.
The values in K content were consistent with described in literature. Different species of mushrooms evaluated in Poland had similar K contents with this study (Rudawska & Leski 2005Rudawska, M. & Leski, T. 2005. Macro-and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food chemistry 92: 499-506.). However, Malinowski et al. (2021Malinowski, R., Sotek, Z., Stasińska, M., Malinowska, K., Radke, P. & Malinowska, A. 2021. Bioaccumulation of macronutrients in edible mushrooms in various habitat conditions of NW Poland - Role in the human diet. International Journal of Environmental Research and Public Health 18: 1-15.) infer higher level with ranging between 5-20 cmolc L-1in Boletus edulis Bull. 1782, Imleria badia (Fr.) Vizzini, 2014, and Leccinum scabrum (Bull.) Gray, 1821.
The P content was similar to described for A. bisporus (Beyer 2003Beyer, D.M. 2003. Basic procedures for Agaricus mushroom growing. Pennsylvania State University, College of Agricultural Sciences, Cooperative Extension.). Rudawska & Leski (2005Rudawska, M. & Leski, T. 2005. Macro-and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food chemistry 92: 499-506.) report Mg content in different mushroom species analyzed did not differ, as well as in the species of fungi analyzed in this study.
Micronutrients S, Fe, Mn, Cu, B, and Zn showed values consistent with previously described in literature (Beyer 2003Beyer, D.M. 2003. Basic procedures for Agaricus mushroom growing. Pennsylvania State University, College of Agricultural Sciences, Cooperative Extension., Agrahar-Murugkar & Subbulakshmi 2005Agrahar-Murugkar, D. & Subbulakshmi, G.J.F.C. 2005. Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chemistry 89: 599-603., Rudawska & Leski 2005Rudawska, M. & Leski, T. 2005. Macro-and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food chemistry 92: 499-506., Fidanza et al. 2010Fidanza, M.A., Sanford, D.L., Beyer, D.M. & Aurentz, D.J. 2010. Analysis of fresh mushroom compost. HortTechnology 20: 449-453., Malinowski et al. 2021Malinowski, R., Sotek, Z., Stasińska, M., Malinowska, K., Radke, P. & Malinowska, A. 2021. Bioaccumulation of macronutrients in edible mushrooms in various habitat conditions of NW Poland - Role in the human diet. International Journal of Environmental Research and Public Health 18: 1-15.). Rudawska & Leski (2005Rudawska, M. & Leski, T. 2005. Macro-and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food chemistry 92: 499-506.) in analysis of S content with mushrooms found higher level, as in our results. Nevertheless, high concentrations of S can be toxic to plants (Taiz et al. 2018Taiz, L., Zeiger, E., Moller, I. M. & Murphy, A. 2017. Fisiologia e desenvolvimento vegetal. Artmed Editora, Porto Alegre.). Minor fluctuation of values of S among the species this study occurred, it is possible to infer that fungi are capable of accumulating this micronutrient.
Mn, Cu, and Zn contents did not show expressive oscillations, with exception of Fe, which obtained the highest value among metals. Fidanza et al. (2010Fidanza, M.A., Sanford, D.L., Beyer, D.M. & Aurentz, D.J. 2010. Analysis of fresh mushroom compost. HortTechnology 20: 449-453.) report that metallic micronutrient levels generally remain stable in edible Agaricales. Similarly, the Cu and Zn contents were also less expressive and very small in comparison to other micronutrients analyzed (Fidanza et al. 2010Fidanza, M.A., Sanford, D.L., Beyer, D.M. & Aurentz, D.J. 2010. Analysis of fresh mushroom compost. HortTechnology 20: 449-453.). Rudawska & Leski (2005Rudawska, M. & Leski, T. 2005. Macro-and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food chemistry 92: 499-506.) who analyzed the micronutrient content of mushrooms, presented a similar order of contents found in our data. According to Rudawska & Leski (2005Rudawska, M. & Leski, T. 2005. Macro-and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food chemistry 92: 499-506.), metallic micronutrients in mushrooms are primarily related to acidic pH of soil. It is important to emphasize that Eucalyptus are tolerant to acidic soils (Pinto & de Negreiros 2021Pinto, W.J. & de Negreiros, A.B. 2021. Physical and chemical characteristics of the topsoil in areas of Eucalyptus spp. in Atlantic Forest in Campo das Vertentes-MG. Revista Espaço e Geografia 24: 178-196.). In this study there was not conducted analysis soil, but due to the presence of metals with higher levels in terrestrial fungi, we can infer that the fungi presented these values influenced by the availability of these micronutrients in substrate. Additionally, B content which is considered esterified was found in small concentrations, similar the date by Rudawska & Leski (2005Rudawska, M. & Leski, T. 2005. Macro-and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food chemistry 92: 499-506.).
Carbon-to-nitrogen ratio (C: N) of analyzed fungi oscillated of 10:1 to 15:1, compatible with values in literature for edible Agaricales species (Stoffella & Kahn 2001Stoffella, P.J. & Kahn, B.A. (Eds.). 2001. Compost utilization in horticultural cropping systems. Lewis Publishers: London, United Kingdom.). However, none of species found contained C:N ratio values described, thus the values presented are unpublished. Carbon and nitrogen levels in fungi biomass are directly related to the rate of decomposition and mineralization. In study by D'Agostini et al. (2011D'Agostini, É.C., Mantovani, T.R.D.A., do Valle, J.S., Paccola-Meirelles, L.D., Colauto, N.B. & Linde, G.A. 2011. Reduzida relação carbono/nitrogênio aumenta a produção de lacase por basidiomicetos em cultivo de semissólido. Scientia Agricola 68: 295-300.) with L. edodes, Pleurotus ostreatus (Jacq.) P. Kumm, 1871, and Agaricus blazei Murrill, 1945, when analyzing the C:N ratio, discovered that mycelial growth was proportional to this ratio. In this premise, mycelial growth was reduced in proportions greater than 15:1 or less than 10:1 (D'Agostini et al. 2011D'Agostini, É.C., Mantovani, T.R.D.A., do Valle, J.S., Paccola-Meirelles, L.D., Colauto, N.B. & Linde, G.A. 2011. Reduzida relação carbono/nitrogênio aumenta a produção de lacase por basidiomicetos em cultivo de semissólido. Scientia Agricola 68: 295-300.).
Organic matter is main source of C for fungi, but the assimilation of N depends not only of substrate also of fixation by microorganisms (Liao et al. 2021Liao, L., Wang, X., Wang, J., Liu, G. & Zhang, C. 2021. Nitrogen fertilization increases fungal diversity and abundance of saprotrophs while reducing nitrogen fixation potential in a semiarid grassland. Plant and Soil 465: 515-532.). According to Martins et al. (2018Martins, O.G., Abilio, D.P., Siqueira, O.A.P.A., Ronchesel, M. & de Andrade, M.C.N. 2018. Sobra de alimentos como alternativa para a formulação de novos substratos para o cultivo de Pleurotus ostreatus (Basidiomycota, Fungi). Revista em Agronegócio e Meio Ambiente 11: 505-518.) P. ostreatus obtained rapid degradation of basidiomata when the C:N ratio was lower than 10:1, and generated basidiomata of higher fresh biomass value when the C:N ratio was in the expected range (15:1 to 10:1). In contrast, increasing these proportions for A. blezei cultivation was beneficial. Kopytowski (2002Kopytowski, F.J. 2002. Relação C/N e proporção de fontes nitrogenadas na produtividade de Agaricus blazei Murrill e poder calorífico do composto. Dissertação de Mestrado, Faculdade de Ciências Agronômicas da Universidade Estadual Paulista, Botucatu.) found that the C:N ratio yielded higher quality and productivity in the 20:1 ratio, higher than those found in this study. However, in edible species the C:N ratio does not take into account substrate type, but rather biomass profitability.
Conclusions
Association of fungi with Eucalyptus grandis W. Hill ex Maiden substrate it is paramount importance in nutritional cycling at reforestation area. Moreover, our analyzes showed levels of primary and secondary essential nutrients in species found, and these values can be used as a basis for new studies of their nutritional potential. The C:N ratio help in understanding ability of fungi to absorb and recycle nutrients from organic matter, since the enzymatic production of fungi is affected by its disposition. Fungi in this study showed adapted to the exotic tree substrate, their ecological interaction may have played a significant role in restructuring the reforestation area studied.
Acknowledgments
The authors thank the Laboratório de Taxonomia de Fungos and the Universidade Federal do Pampa. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
Literature cited
- Agrahar-Murugkar, D. & Subbulakshmi, G.J.F.C. 2005. Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chemistry 89: 599-603.
- Akatin, M.Y. 2013. Characterization of a β-glucosidase from an edible mushroom Lycoperdon pyriforme International Journal of Food Properties 16: 1565-1577.
- Alberti, M.M., Pérez-Chávez, A.M., Niveiro, N. & Albertó, E. 2021. Towards an optimal methodology for Basidiomes production of naturally occurring species of the genus Oudemansiella (Basidiomycetes). Current Microbiology 78: 1256-1266.
- Albuquerque, M.P. 2006. Fungos Agaricales em trechos de Mata Atlântica da Reserva Biológica do Tinguá, Nova Iguaçu, Rio de Janeiro, Brasil. Dissertação de Mestrado, Escola Nacional de Botânica Tropical do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro.
- Altaf, U., Lalotra, P. & Sharma, Y.P. 2020. Nutritional and mineral composition of four wild edible mushrooms from Jammu and Kashmir, India. Indian Phytopathology 73: 313-320.
- Alves, C.R. & Cortez, V.G. 2014. Gasteroid Agaricomycetidae (Basidiomycota) from Parque Estadual São Camilo, Paraná, Brazil. Revista Brasileira de Biociências 12: 27-41.
- Aragón, G. 2002. Fragmenta Chorologica Occidentalia. Fungi 60: 8392-8524.
- Araujo, I. 1984. Contribuição ao conhecimento da família Cortinariaceae (Agaricales) na Amazônia brasileira. Tese de Doutorado, Instituto Nacional de Pesquisas da Amazônia e Fundação Universidade do Amazonas, Manaus.
- Ayres, M. & Junior Ayres, M. 2000. BioEstat 2.0: aplicações estatísticas nas áreas das ciências biológicas e médicas. Sociedade Civil Mamirauá, Belém.
- Bahram, M. & Netherway, T. 2022. Fungi as mediators linking organisms and ecosystems. FEMS Microbiology Reviews 46: 1-16.
- Barneche, S., Alborés, S., Borthagaray, G., Cerdeiras, M.P. & Vázquez, A. 2017.Anti-MRSA activity of fruiting body extracts of spectacular Rustgill mushroom, Gymnopilus junonius (Agaricomycetes). International Journal of Medicinal Mushrooms 19: 3-17.
- Baseia, I.G. 2005. Some notes on the genera Bovista and Lycoperdon (Lycoperdaceae) in Brazil. Mycotaxon 91: 81-86.
- Beyer, D.M. 2003. Basic procedures for Agaricus mushroom growing. Pennsylvania State University, College of Agricultural Sciences, Cooperative Extension.
- Bononi, V.L.R., Oliveira, A.K.M.D., Gugliotta, A.D.M. & Quevedo, J.R.D. 2017. Agaricomycetes (Basidiomycota, Fungi) diversity in a protected area in the Maracaju Mountains, in the Brazilian central region. Hoehnea 44: 361-377.
- Bononi, V.L.R., Oliveira, A.K.M.D., Quevedo, J.R.D. & Gugliotta, A.D.M. 2008. Fungos macroscópicos do Pantanal do Rio Negro, Mato Grosso do Sul, Brasil. Hoehnea 35: 489-511.
- Bougher, N.l. & Cook, J. 1983. Fungi and slime moulds recorded in surveys at kings park and bold park urban bushlands Perth, western Australia. The Western Australian Naturalist 31: 191-251.
- Brasil. 1976. Ministério das Relações Exteriores - Comissão Brasileira para o Decênio Hidrológico Internacional. Ministério de Minas e Energia - Departamento Nacional de Águas e Energia Elétrica, Glossário de Termos Hidrológicos, Brasília.
- Catcheside, P. 2006. Adelaide Fungal Studies Group Annual Report: July 2005-June 2006. South Australian Naturalist 80: 68-71.
- Colavolpe, M.B. & Albertó, E. 2014, Cultivation requirements and substrate degradation of the edible mushroom Gymnopilus pampeanus - A novel species for mushroom cultivation. Scientia Horticulturae 180: 161-166.
- Cortez, V.G. & Coelho, G. 2005. Additions to the mycobiota (Agaricales, Basidiomycetes) of Rio Grande do Sul, Brazil. Iheringia, Série Botânica 60: 69-75.
- Cortez, V.G., Baseia, I.G. & Silveira, R.M.B. 2013. Gasteroid mycobiota of Rio Grande do Sul, Brazil: Lycoperdon and Vascellum Mycosphere 4: 745-758.
- Costa, A.L., Furlan-Lopes, C., Bertazzo-Silva, F.A., Klotz-Neves, A.L., Ferraz, K.R., Köhler, A. & Putzke, J. 2022. Mycophagy of Attini Ants (Hymenoptera, Formicidae, Myrmicinae) with Agaricales Mushrooms (Basidiomycota, Agaricomycetes) at Riparian Zone in Southern Brazil. Brazilian Journal of Animal and Environmental Research 5: 3935-3960.
- Crosier, W.F., Patrick, S.R., Heit, C.E. & McSwain, E. 1949. The harefoot mushroom, Coprinus lagopus Fr., on fruits used commercially as seedstocks. Science 110: 13-14.
- Crous, P.W., Luangsa-Ard, J.J., Wingfield, M.J., Carnegie, A.J., Hernández-Restrepo, M., Lombard, L. & Groenewald, J.Z. 2018. Fungal Planet description sheets. Persoonia-Molecular Phylogeny and Evolution of Fungi 41: 238-417.
- Crous, P.W., Shivas, R.G., Wingfield, M.J., Summerell, B.A., Rossman, A.Y., Alves, J.L. & Groenewald, J.Z. 2012. Fungal Planet description sheets. Persoonia-Molecular Phylogeny and Evolution of Fungi 29: 146-201.
- Crous, P.W., Wingfield, M.J., Lombard, L., Roets, F., Swart, W.J., Alvarado, P. & Groenewald, J.Z. 2019. Fungal Planet description sheets. Persoonia: Molecular Phylogeny and Evolution of Fungi 43: 941-1051.
- Crous, P.W., Wingfield, M.J., Schumacher, R.K., Summerell, B.A., Giraldo, A., Gené, J. & Groenewald, J.Z. 2014. Fungal Planet description sheets. Persoonia-Molecular Phylogeny and Evolution of Fungi 33: 212-289.
- D'Agostini, É.C., Mantovani, T.R.D.A., do Valle, J.S., Paccola-Meirelles, L.D., Colauto, N.B. & Linde, G.A. 2011. Reduzida relação carbono/nitrogênio aumenta a produção de lacase por basidiomicetos em cultivo de semissólido. Scientia Agricola 68: 295-300.
- de Araujo, P.A.P., Santana, M.C., Bonfim, J.A., de Lourdes, M.D. & Cardoso, E.J.B.N. 2018. Digging deeper to study the distribution of mycorrhizal arbuscular fungi along the soil profile in pure and mixed Eucalyptus grandis and Acacia mangium plantations Applied Soil Ecology 128: 1-11.
- Decock, C. 2012. Fungal planet description sheets. Persoonia Mycological Journal 29: 146-153.
- Dunstan, W.A., Malajczuk, N. & Dell, B. 1998. Effects of bacteria on mycorrhizal development and growth of container grown Eucalyptus diversicolor F. Muell. seedlings. Plant and Soil 201: 241-249.
- Echer, R., da Cruz, J.A.W., Estrela, C.C., Moreira, M. & Gravato, F. 2015. Usos da terra e ameaças para a conservação da biodiversidade no bioma Pampa, Rio Grande do Sul. Revista Thema 12: 4-13.
- Embrapa. 2022. Dados meteorológicos: Boletim Meteorológico do Estado do Rio Grande do Sul. Porto Alegre. Available at [http://www.embrapa.br ] (access in 23-VII-2023).
» http://www.embrapa.br - Estat. 1994. Sistema de Análise Estatística (ESTAT 2.0). Jaboticabal: Polo Computacional do Departamento de Ciências Exatas da UNESP, São Paulo.
- Fidanza, M.A., Sanford, D.L., Beyer, D.M. & Aurentz, D.J. 2010. Analysis of fresh mushroom compost. HortTechnology 20: 449-453.
- Fontaine, S., Henault, C., Aamor, A., Bdioui, N., Bloor, J.M.G., Maire, V. & Maron, P.A. 2011. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil biology and Biochemistry 43: 86-96.
- Gabriel, J., Baldrian, P., Rychlovsky, P. & Krenzelok, M. 1997. Heavy metal content in wood-decaying fungi collected in Prague and in the National Park Sumava in the Czech Republic. Bulletin of Environmental Contamination and Toxicology 59: 595-602.
- Grgurinovic, C. 1998. Mycena in Australia: Section Lactipedes. Botanical Journal of Scotland 50: 199-208.
- Guerrero, R.T. & Homrich, M.H. 1999. Fungos macroscópicos comuns no Rio Grande do Sul. Porto Alegre: UFRGS.
- Hartley, A.J., de Mattos-Shipley, K., Collins, C.M., Kilaru, S., Foster, G.D. & Bailey, A.M. 2009. Investigating pleuromutilin-producing Clitopilus species and related basidiomycetes. FEMS Microbiology Letters 297: 24-30.
- Kaur, H., Kaur, M. & Rather, H. 2015. Species of Gymnopilus P. Karst: New to India. Mycosphere, 6: 165-173.
- Kopytowski, F.J. 2002. Relação C/N e proporção de fontes nitrogenadas na produtividade de Agaricus blazei Murrill e poder calorífico do composto. Dissertação de Mestrado, Faculdade de Ciências Agronômicas da Universidade Estadual Paulista, Botucatu.
- La Rosa, A., Saitta, A., Compagno, R. & Venturella, G. 2012. Mycena pseudoinclinata, new to Italy. Mycotaxon 120: 133-137.
- Lee, S., Ryoo, R., Choi, J.H., Kim, J.H., Kim, S.H. & Kim, K.H. 2020. Trichothecene and tremulane sesquiterpenes from a hallucinogenic mushroom Gymnopilus junonius and their cytotoxicity. Archives of pharmacal research 43: 214-223.
- Liao, L., Wang, X., Wang, J., Liu, G. & Zhang, C. 2021. Nitrogen fertilization increases fungal diversity and abundance of saprotrophs while reducing nitrogen fixation potential in a semiarid grassland. Plant and Soil 465: 515-532.
- Lorenzo, P. 2009. Estudio de la micocenosis de macromicetos del Parque Natural del Monte Aloia (Pontevedra, España). Anales del Jardín Botánico de Madrid 66:151-156.
- Lutz, A. 1985. Normas Analíticas do Instituto Adolfo Lutz. Métodos químicos e físicos para análise de alimentos, pp. 1020.
- Magnago, A.C., Furtado, A.N.M., Urrea-Valencia, S., Freitas, A.F. & Neves, M.A. 2015. New records of agaricoid fungi (Basidiomycota) from Paraíba, Brazil. Biotemas 28: 9-21.
- Malinowski, R., Sotek, Z., Stasińska, M., Malinowska, K., Radke, P. & Malinowska, A. 2021. Bioaccumulation of macronutrients in edible mushrooms in various habitat conditions of NW Poland - Role in the human diet. International Journal of Environmental Research and Public Health 18: 1-15.
- Manzato, B.L. 2018. Diversidade de fungos basidiomicetos macroscópicos em áreas de reflorestamento de Eucalyptus spp. Dissertação de Mestrado em Ciência e Tecnologia Ambiental, Universidade do Sagrado Coração, Bauru.
- Manzato, B.L., Manzato, C.L., dos Santos, P.L., Passos, J.D.S. & da Silva Junior, T.A.F. 2020. Diversity of macroscopic basidiomycetes in reforestation areas of Eucalyptus spp. Scientia Forestalis 48: 128-146.
- Martins, O.G., Abilio, D.P., Siqueira, O.A.P.A., Ronchesel, M. & de Andrade, M.C.N. 2018. Sobra de alimentos como alternativa para a formulação de novos substratos para o cultivo de Pleurotus ostreatus (Basidiomycota, Fungi). Revista em Agronegócio e Meio Ambiente 11: 505-518.
- Mason, P.A., Ibrahim, K., Ingleby, K., Munro, R.C. & Wilson, J. 2000. Mycorrhizal development and growth of inoculated Eucalyptus globulus (Labill.) seedlings in wet and dry conditions in the glasshouse. Forest Ecology and Management 128: 269-277.
- Meijer, A.A.R. 2006. Preliminary list of the macromycetes from the Brazilian State of Paraná. Bol Mus Bot Municipal 68: 1-55.
- Meijer, A.D. 2008. Macrofungos notáveis das Florestas de Pinheiro-do-Paraná. Colombo: Embrapa.
- Mantovani, T.R., Linde, G.A. & Colauto, N.B. 2007. Effect of the addition of nitrogen sources to cassava fiber and carbon-to-nitrogen ratios on Agaricus brasiliensis growth. Canadian Journal of Microbiology, 53: 139-143.
- Natarajan, K. & Purushothama, K.B. 1987. On the occurrence of Lycoperdon perlatum in Pinus patula plantations in Tamil Nadu. Current Science 56: 1117-1118.
- Ndong, H.E., Degreef, J. & De Kesel, A. 2011. Champignons comestibles des forêts denses d’Afrique centrale. Taxonomie et identification. ABC Taxa 10: 253-671.
- Neina, D. 2019. The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science 585: 569-573.
- Njouonkou, A.L., Njapdounké, G.V., Yumdinguetmun, R., Tsopmbeng, G.N. & Degreef, J. 2021. Étude comparative de la diversité des macrochampignons dans les plantations forestières matures d'eucalyptus et de pins en zone de savanes tropicales à l'Ouest du Cameroun. Écoscience 28: 53-65.
- Novikova, S.P. 2001. Enzyme preparations from higher Basidiomycetes mushrooms for making polymer materials with thromboresistant features. International Journal of Medicinal Mushrooms 3: 1-5.
- Ordóñez, M.S.R. & Rabanal, M.R.R. 2019. Identificación y utilidad de algunos hongos superiores del ecosistema de la Sierra Norte del Perú. Revista Caxamarca 18: 1-2.
- Paccola, E.A., Maki, C.S., Nobrega, G. & Paccola-Meirelles, L.D. 2001. Antagonistic effect of edible mushroom extract on Candida albicans growth. Brazilian Journal of Microbiology 32: 176-178.
- Pegler, D.N. 1997. The agarics of São Paulo: an account of the agaricoid fungi (Holobasidiomycetes) of São Paulo State, Brazil. Royal Botanic Gardens Kew.
- Pinto, W.J. & de Negreiros, A.B. 2021. Physical and chemical characteristics of the topsoil in areas of Eucalyptus spp. in Atlantic Forest in Campo das Vertentes-MG. Revista Espaço e Geografia 24: 178-196.
- Putzke, J. 1999. O gênero Laccaria (Basidiomycotina - Agaricales) no Rio Grande do Sul - Brasil. Caderno de pesquisa, Série Botânica 11: 3-14.
- Putzke, J. & Pereira, A.B. 1988. O gênero Oudemansiella Speg. no Rio Grande do Sul, Brasil. Caderno de Pesquisa: Série Botânica 1: 47-69.
- Putzke, J. & Putzke, M. 2017. Cogumelos-Fungos Agaricales no Brasil. Famílias Agaricaceae, Amanitaceae, Bolbitaceae, Entolomataceae, Coprinaceae/Psathyrellaceae, Crepidotaceae e Hygrophoraceae. Vol I, São Gabriel, pp. 168-269.
- Putzke, J. & Putzke, M. 2019. Cogumelos-Fungos Agaricales no Brasil. Ordens Boletales (Boletaceae e Paxillaceae), Polyporales (Polyporaceae/Lentinaceae), Russulales (Russulaceae) e Agaricales (Cortinariaceae, Inocybaceae, Pluteaceae e Strophariaceae). Vol II, São Gabriel, pp. 164-318.
- Reddy, M.S. & Natarajan, K. 1995. Effects of Pisolithus tinctorius and Laccaria fraterna on the growth and mycorrfflzal development of Pinus patula seedlings. Biotropia Southeast Asian Journal of Tropical Biology 8: 45-52.
- Rees, B.J., Orlovich, D.A. & Marks, P.B.D. 1999. Treading the fine line between small-statured Gymnopilus and excentrically stipitate Galerina species in Australia. Mycological Research 103: 427-442.
- Rick, J. 1961. Basidiomycetes Eubasidii in Rio Grande do Sul-Brasilia. Iheringia Série Botânica 8: 296-450.
- Robinson, R.M. & Williams, M.R. 2011. Forestcheck: The response of epigeous macrofungi to silviculture in jarrah (Eucalyptus marginata) forest. Australian Forestry 74: 288-302.
- Rosa, L.H. & Capelari, M. 2009. Agaricales fungi from Atlantic rain forest fragments in Minas Gerais, Brazil. Brazilian Journal of Microbiology 40: 846-851.
- Rudawska, M. & Leski, T. 2005. Macro-and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food chemistry 92: 499-506.
- Ruegger, M.J.S., Tornisielo, S.M.T., Bononi, V.L.R. & Capelari, M. 2001. Cultivation of the edible mushroom Oudemansiella canarii (Jungh.) Höhn. in lignocellulosic substrates. Brazilian Journal of Microbiology 32: 211-214.
- Silva, J.F.C.S. 2015. Taxonomia de Gymnopilus (Agaricales) no Brasil. Tese de Doutorado. Universidade Federal de Pernambuco, Recife.
- Silva-Neto, C.D.M., Calaça, F.J.S., Santos, l.A.C., Machado, J.C., Moura, J.B.D., Pinto, D.D.S. & Santos, S.X.D. 2022. Food and nutritional potential of two mushrooms native species to the Brazilian savanna (Cerrado). Food Science and Technology 42: 1-8.
- Singer, R. 1953. Type studies on Basidiomycetes VI. Lilloa 26: 57-159.
- Singer, R. 1956. Contributions towards a monograph of the genus Pluteus Transactions of the British Mycological Society 39: 145-232.
- Singer, R. 1961. Type studies in Basidiomycetes. Persoonia-Molecular Phylogeny and Evolution of Fungi 2: 1-62.
- Sobestiansky, G. 2005. Contribution to a macromycete survey of the States of Rio Grande do Sul and Santa Catarina in Brazil. Brazilian Archives of Biology and Technology 48: 437-457.
- Spahr, D.L. 2018. Edible and Medicinal Mushrooms of New England and Eastern Canada: A Photographic Guidebook to Finding and Using Key Species. North Atlantic Books.
- Sridhar, K.R. & Karun, N.C. 2019. Diversity and Ecology of Ectomycorrhizal Fungi in the Western Ghats. Microbial Interventions in Agriculture and Environment 1: 479-507.
- Stamets, P. 2005. Mycelium running: how mushrooms can help save the world. Random House Digital.
- Stoffella, P.J. & Kahn, B.A. (Eds.). 2001. Compost utilization in horticultural cropping systems. Lewis Publishers: London, United Kingdom.
- Taiz, L., Zeiger, E., Moller, I. M. & Murphy, A. 2017. Fisiologia e desenvolvimento vegetal. Artmed Editora, Porto Alegre.
- Trentim, A. B., Saldanha, D.L. & Kuplich, T.M. 2014. Análise temporal da silvicultura no sudeste do Rio Grande do Sul. Geografia 39: 499-509.
- Tyagi, C.H., Singh, S. & Dutt, D. 2011. Effect of two fungal strains of Coprinellus disseminatus SH-1 NTCC-1163 and SH-2 NTCC-1164 on pulp refining and mechanical strength properties of wheat straw-AQ pulp. Cellulose Chemistry and Technology 45: 257-271.
- Venturella, G. & La Rocca, S. 2001. Strategies for conservation of fungi in the Madonie Park, North Sicily. British Mycological Society Symposium Series 2: 156-161.
- Walter, B.M.T. & Guarino, E.D.S. G. 2006. Comparação do método de parcelas com o" levantamento rápido" para amostragem da vegetação arbórea do Cerrado sentido restrito. Acta Botânica Brasílica 20: 285-297.
- Wu, J., Fushimi, K., Tokuyama, S., Ohno, M., Miwa, T., Koyama, T. & Kawagishi, H. 2011. Functional-food constituents in the fruiting bodies of Stropharia rugosoannulata Bioscience, Biotechnology, and Biochemistry 75: 1631-1634.
- Xu, B., Lu, H., Zhao, D., Wang, W. & Ji, H. 2019. Diversity of macrofungi in Yushan, Jiangsu, China. Mycotaxon 134: 581-581.
-
Author contributions
Alice Lemos Costa: Contribution to sampling; data analysis and interpretation; manuscript preparation; critical revision and adding intellectual content. Cassiane Furlan-Lopes: Contribution to sampling and manuscript preparation. Fernando Augusto Bertazzo-Silva: Contribution to sampling and manuscript preparation. Ana Luiza Klotz-Neves: Contribution to sampling and manuscript preparation. Kamille Rodrigues Ferraz: Contribution to sampling and manuscript preparation. Ana Flavia Zorzi: Contribution to sampling and manuscript preparation. Silvane Vestena: Contribution to sampling; data analysis and interpretation; manuscript preparation; critical revision and adding intellectual content. Jair Putzke: Contribution to sampling; data analysis and interpretation; manuscript preparation; critical revision and adding intellectual content.
Publication Dates
-
Publication in this collection
04 Dec 2023 -
Date of issue
2023
History
-
Received
18 Mar 2023 -
Accepted
26 Sept 2023