Acessibilidade / Reportar erro

Biology of Trichogramma marandobai and T. manicobai (Hymenoptera: Trichogrammatidae) in eggs of Erinnyis ello (Lepidoptera: Sphingidae)

ABSTRACT

Parasitoids of the genus Trichogramma are promising for the biological control of insect pests in several crops, including cassava, which is severely attacked by Erinnyis ello L., 1758 (Lepidoptera: Sphingidae). Evaluating the biological aspects of these parasitoids to understand their dynamics is an important step towards the implementation of this control strategy in the field. Thus, our objective was to evaluate the biology of Trichogramma manicobai Brun, Moraes & Soares, 1984, and T. marandobai Brun, Moraes & Soares, 1986 in E. ello eggs. The parasitoids were obtained by collecting E. ello eggs from a commercial production of cassava, and the host’s eggs were obtained from laboratory and greenhouse rearings. The average duration of a generation (T), net reproduction rate (R0), intrinsic rate of increase (rm), and the finite rate of increase (λ) were estimated, and from these, the fertility life table was calculated. The results indicated that T. marandobai has both higher net reproduction rate and a higher intrinsic rate of increase as well as requires less time to double its population than T. manicobai. Thus, T. marandobai has potential for natural and conservative biological control of E. ello. In addition, its potential in applied biological control should be evaluated through studies on the viability of its mass rearing in alternative hosts and its dispersion behavior in the field.

Keywords:
Cassava hornworm; Manihot esculenta; Biological control; Parasitoids; Fertility life table

Introduction

Cassava, Manihot esculenta Cranz, 1766 (Malpighiales: Euphorbiaceae), is one of the main crops used in human and animal food worldwide (Schons et al., 2009Schons, A., Streck, N.A., Storck, L., Buriol, G.A., Zanon, A.J., Pinheiro, D.G., Kraulich, B., 2009. Arranjos de plantas de mandioca e milho em cultivo solteiro e consorciado: crescimento, desenvolvimento e produtividade. Bragantia 68, 155–167. https://doi.org/10.1590/S0006-87052009000100017.
https://doi.org/10.1590/S0006-8705200900...
). Several pest insects attack this crop, reducing its production. Erinnyis ello L., 1758 (Lepidoptera: Sphingidae) is considered the main defoliator of cassava crops in the Neotropical region (Bellotti et al., 1999Bellotti, A.C., Smith, L., Lapointe, S.L., 1999. Recent advances in cassava pest management. Annu. Rev. Entomol. 44, 343–370. https://doi.org/10.1146/annurev.ento.44.1.343.
https://doi.org/10.1146/annurev.ento.44....
). In southern Brazil, the insect appears in the middle of October with the beginning of the rainy period and high temperatures (Gomes and Leal, 2003Gomes, J.C., Leal, E.C., 2003. Cultivo da mandioca para a região dos Tabuleiros Costeiros. Embrapa Mandioca e Fruticultura, Sistemas de Produção. 11. ed. Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas.; Maia and Bahia, 2010Maia, V.B., Bahia, J.J.S., 2010. Manejo integrado do mandarová (Erinnyis ello L.) em cultivo de mandioca (Manihot esculenta Crantz) na Região Sul da Bahia. CEPLAC/CEPEC, Ilhéus, BA.), and the infestation often persists until April, when temperatures begin to decrease and the senescence of the leaves begins (EMBRAPA, 2005Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, 2005. Mandioca: o pão do Brasil (Manioc, le pain du Brésil). EMBRAPA, Brasília.; Alves, 2006Alves, A.A.C., 2006. Fisiologia da mandioca. In: Souza, L.S. Aspectos socioeconômicos e agronômicos da mandioca. Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas, pp. 138–169.).

Infestation begins either with adults emerging from pupae present in the field or from populations migrating from other regions, a characteristic common to this species (Bellotti et al., 2012aBellotti, A.C., Arias, B.V., Reyes, J.A., 2012a. Cassava pest management. In: Ospina, B., Ceballos, H. (Eds.), Cassava in the third millennium: modern production, processing, use and marketing systems. CIAT/CLAYUCA, Cali, Colombia, pp. 213–250.). The oviposition occurs on the cassava leaf and the caterpillars appear after three to four days, with the duration of the larval phase between 12 to 15 days and life cycle from 27 to 44 days (Schmitt, 2002Schmitt, A.T., 2002. Principais insetos pragas da mandioca e seu controle. In: Cereda, M.P. (Ed.), Agricultura: tuberosas amiláceas latino americano. Fundação Cargil, São Paulo, pp. 350–369.). The E. ello moth can achieve two to three generations in the western region of Paraná when the cassava crop has leaves, varying with the migratory rate of the insect, temperature, humidity, and agricultural year (Bellotti et al., 1999Bellotti, A.C., Smith, L., Lapointe, S.L., 1999. Recent advances in cassava pest management. Annu. Rev. Entomol. 44, 343–370. https://doi.org/10.1146/annurev.ento.44.1.343.
https://doi.org/10.1146/annurev.ento.44....
, Carvalho and Nakano, 1988Carvalho, F.C., Nakano, O., 1988. Aspectos biológicos do “mandarová da mandioca” Erinnyis ello ello (L.) (Lepidoptera-Sphingidae) em mandioca (Manihot esculenta Crantz cv. Mantiqueira). Ciênc. &. Prat. 16, 134–145., Farias, 2003Farias, A.R.N., 2003. Manejo integrado do mandarová-da-mandioca. Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas.). Successive infestations can occur in only one crop, which reduced production during the agricultural years 2014/2015 and 2015/2016 in the state of Paraná (IEA, 2016Instituto de Economia Agrícola – IEA, 2016. Recuperação dos preços de Mandioca Industrial em 2016. IEA, São Paulo.).

The E. ello caterpillar has a high capacity for leaf consumption, being able to feed on 1,100 cm2 during the larval stage and cause up to 100% defoliation in the period of greatest accumulation of photoassimilates (Bellotti and Arias, 1988Bellotti, A.C., Arias, B., 1988. Manejo Integrado de Erinnyis ello (L.). Centro Internacional de Agricultura Tropical-CIAT, Cali, Colombia.). They can also reduce root production from 26 to 45% during only one attack, varying with the phenological stage of the crop and the infestation of the pest (Bellotti et al., 1999Bellotti, A.C., Smith, L., Lapointe, S.L., 1999. Recent advances in cassava pest management. Annu. Rev. Entomol. 44, 343–370. https://doi.org/10.1146/annurev.ento.44.1.343.
https://doi.org/10.1146/annurev.ento.44....
). Generally, the second generation of the pest exhibits greater potential to injury the crop.

Fortunately, this insect can be controlled by more than 40 biological control agents (Bellotti et al., 1992Bellotti, A.C., Arias, B., Guzmán, O., 1992. Biological control of the cassava hornworm Erinnyis ello (Lepidoptera: sphingidae). Fla. Entomol. 75, 506–515.; Aguiar et al., 2010Aguiar, E.B., Lorenzi, J.O., Monteiro, D.A., Bicudo, S.J., 2010. Monitoramento do mandarová da mandioca (Erinnyis ello L. 1758) para o controle com baculovirus (Baculovirus erinnyis). Rev. Trop. 4, 55–59. https://doi.org/10.0000/rtcab.v4i2.157.
https://doi.org/10.0000/rtcab.v4i2.157...
; Querino and Zucchi, 2019Querino, R.B., Zucchi, R.A., 2019. Annotated checklist and illustrated key to the species of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) from South América. Zootaxa 4656, 201–231. https://doi.org/10.11646/zootaxa.4656.2.1.
https://doi.org/10.11646/zootaxa.4656.2....
), including entomophage and entomopathogen agents. Baculovirus and egg parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) are commonly employed biological control agents.

The main parasitoid species of E. ello eggs that occur naturally in Brazil are Trichogramma pretiosum Riley, 1879, Trichogramma atopovirilia Oatman & Platner, 1983, Trichogramma manicobai Brun, Moraes & Soares, 1984, and Trichogramma marandobai Brun, Moraes & Soares, 1986 (Vieira et al., 2014Vieira, J.M., Querino, R.B., Zucchi, R.A., 2014. On the identity of Trichogramma demoraesi Nagaraja (Hymenoptera: Trichogrammatidae), with a checklist and a key to Trichogramma species associated with Erinnyis ello (L.) (Lepidoptera, Sphingidae) in Brazil. Zootaxa 3869, 83–89. https://doi.org/10.11646/zootaxa.3869.1.8.
https://doi.org/10.11646/zootaxa.3869.1....
; Querino and Zucchi, 2019Querino, R.B., Zucchi, R.A., 2019. Annotated checklist and illustrated key to the species of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) from South América. Zootaxa 4656, 201–231. https://doi.org/10.11646/zootaxa.4656.2.1.
https://doi.org/10.11646/zootaxa.4656.2....
). However, no Trichogramma species have been released in commercial cassava crops.

Although the literature discusses many natural enemies of E. ello, considering the planting system in a large area, pest dynamics have required increased applications of chemical products, mainly due to the increase in population of other pests (Bellotti et al., 2012aBellotti, A.C., Arias, B.V., Reyes, J.A., 2012a. Cassava pest management. In: Ospina, B., Ceballos, H. (Eds.), Cassava in the third millennium: modern production, processing, use and marketing systems. CIAT/CLAYUCA, Cali, Colombia, pp. 213–250.; Bellotti et al., 2012bBellotti, A.C., Herrera Campo, B.V., Hyman, G., 2012b. Cassava production and pest management: present and potential threats in a changing environment. Trop. Plant Biol. 5, 39–72. https://doi.org/10.1007/s12042-011-9091-4.
https://doi.org/10.1007/s12042-011-9091-...
). To reduce the negative impacts of these applications, efforts have been made to implement an Integrated Pest Management (IPM) program, in which biological control is the main strategy. A successfully applied biological control program requires basic knowledge, such as taxonomy, biology, parasitism rate, intra- and interspecific interaction, economic viability, and rearing and multiplication techniques (Parra et al., 2015Parra, J.R.P., Zucchi, R.A., Coelho Junior, A., Geremias, L.D., Cônsoli, F.L., 2015. Trichogramma as a tool for IPM in Brazil. In: Vinson, B., Greenberg, S. M., Liu, T., Rao, A., Volosciuk, L.F. (Eds.), Augmentative Biological Control Using Trichogramma spp.: Current Status and Perspectives. Northwest A&F University Press, Shaanxi, China, pp. 472–496.). Initially, these studies are carried out in the laboratory to determine which agents exhibit potential. Then semi-field and field experiments can be conducted to verify whether the data obtained in the laboratory are consistent with the parasitism efficiency and capacity obtained in the field and/or greenhouse.

Although the species of Trichogramma that parasitize E. ello eggs are known in Brazil (Vieira et al., 2014Vieira, J.M., Querino, R.B., Zucchi, R.A., 2014. On the identity of Trichogramma demoraesi Nagaraja (Hymenoptera: Trichogrammatidae), with a checklist and a key to Trichogramma species associated with Erinnyis ello (L.) (Lepidoptera, Sphingidae) in Brazil. Zootaxa 3869, 83–89. https://doi.org/10.11646/zootaxa.3869.1.8.
https://doi.org/10.11646/zootaxa.3869.1....
; Querino and Zucchi, 2019Querino, R.B., Zucchi, R.A., 2019. Annotated checklist and illustrated key to the species of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) from South América. Zootaxa 4656, 201–231. https://doi.org/10.11646/zootaxa.4656.2.1.
https://doi.org/10.11646/zootaxa.4656.2....
), researchers have still not studied the biology of these parasitoids in this host. One of the main obstacles to obtaining this information is the difficulty of mass rearing E. ello. No adequate artificial diet is available to rear this lepidopteran, and the use of its natural food would require too many cassava plants. Thus, the required space, manpower, and expense make natural rearing unfeasible. In addition, knowledge about alternative rearing hosts is limited for T. marandobai and T. manicobai (Milanez et al., 2009Milanez, A.M., Pratissoli, D., Polanczyk, R.A., Bueno, A.F., Tufik, C.B.A., 2009. Avaliação de Trichogramma spp. para o controle de Trichoplusia ni. Pesqui. Agropecu. Bras. 44, 1219–1224. https://doi.org/10.1590/S0100-204X2009001000002.
https://doi.org/10.1590/S0100-204X200900...
). The few field surveys conducted in Brazil (Oliveira et al., 2010Oliveira, H.N., Gomez, A.S., Rohden, V.S., Arce, C.C.M., Duarte, M.M., 2010. Record of Trichogramma (Hymenoptera: Trichogrammatidae) species on Erinnyis ello Linnaeus (Lepidoptera: Sphingidae) eggs in Mato Grosso do Sul State, Brazil. Pesqui. Agropecu. Trop. 40, 378–379. https://10.5216/pat.v40i3.6453.
https://doi.org/https://10.5216/pat.v40i...
; Souza et al., 2016Souza, A.R., Giustolin, T.A., Querino, R.B., Alvarenga, C.D., 2016. Natural parasitism of lepidopteran eggs by Trichogramma species (Hymenoptera: Trichogrammatidae) in agricultural crops in Minas Gerais, Brazil. Fla. Entomol, 99, 221-225. https://doi.org/10.1653/024.099.0210.
https://doi.org/10.1653/024.099.0210...
; Noronha et al., 2020Noronha, A.C.S., Blanco, D.G., Costa, V.A., Querino, R.B., Araújo, D.G., Johnson, N.F., 2020. Egg parasitoids of the cassava hornworm (Erinnyis spp.) associated to cassava in the Pará State, Brazil. EntomoBrasilis 13, 932. https://doi.org/10.12741/ebrasilis.v13.e932.
https://doi.org/10.12741/ebrasilis.v13.e...
) indicate that T. marandobai is the predominant species and has a high capacity for parasitism.

No basic comparative studies have been conducted on the fertility life table that would indicate which species of Trichogramma might be the most efficient for the applied biological control of E. ello in Brazil (Brun et al., 1986Brun, P.G., Moraes, G.W.G., Soares, L.A., 1986. Trichogramma marandobai sp. n. (Hymenoptera: Trichogrammatidae) parasitóide de Erinnyis ello (Lepidoptera: Sphingidae) desfolhador da mandioca. Pesqui. Agropecu. Bras. 21, 1245–1248.; Botelho, 1997Botelho, P.S.M., 1997. Eficiência de Trichogramma em campo. In: Parra, J.R.P., Zucchi, R.A. Trichogramma e o controle biológico aplicado. FEALQ, Piracicaba, pp. 303–318.; Oliveira et al., 2010Oliveira, H.N., Gomez, A.S., Rohden, V.S., Arce, C.C.M., Duarte, M.M., 2010. Record of Trichogramma (Hymenoptera: Trichogrammatidae) species on Erinnyis ello Linnaeus (Lepidoptera: Sphingidae) eggs in Mato Grosso do Sul State, Brazil. Pesqui. Agropecu. Trop. 40, 378–379. https://10.5216/pat.v40i3.6453.
https://doi.org/https://10.5216/pat.v40i...
). Several Trichogramma species are widely used in mass releases in several commercial crops throughout the world (Wajnberg and Hassan, 1994Wajnberg, E., Hassan, S.A., 1994. Biological Control with Eggs Parasitoids. CAB International/IOBC, Wallingford, 286 pp.; Pratissoli et al., 2003Pratissoli, D., Vianna, U.R., Oliveira, H.N., Pereira, F.F., 2003. Efeito do armazenamento de ovos de Anagasta kuehniella (Lep.: Pyralidae) nas características biológicas de três espécies de Trichogramma (Hym.: Trichogrammatidae). Rev. Ceres 50, 95–103.). An example of successful biological control in Brazil is the use of T. pretiosum and T. galloi to control the sugarcane borer, Diatraea saccharalis (Parra et al., 2010Parra, J.R.P., Botelho, P.S.M., Pinto, A.S., 2010. Controle biológico de pragas como componente chave para a produção sustentável da cana-de-açúcar. In: Cortez, L.A.B (Ed.), Bioetanol de cana-de-açúcar: P&D para produtividade e sustentabilidade. Blücher, São Paulo, pp. 441–450.).

For these reasons, determination of life table of each parasitoid species is necessary to select the most appropriate species for biological control of the E. ello caterpillar. In this work, we obtained the fertility life table of T. marandobai and T. manicobai, as egg parasitoids of E. ello, under a controlled environment, for the first time in Brazil. This research will contribute to the implementation of both augmentative and conservative biological control within the Brazilian cassava IPM program.

Material and methods

Erinnyis ello rearing

Depending on the life stage, the rearing was maintained in the laboratory or greenhouse. Adults were maintained in 6 × 4 × 2 m screened cages in a greenhouse. Each cage contained 4-L pots with cassava plants for oviposition. When the presence of eggs was verified, the plants were removed from the cage and kept on benches in the greenhouse until the caterpillars hatched. Then they were transferred to the laboratory.

In the laboratory, 3 to 4 caterpillars were placed on cassava plants in 1-L plastic pots and maintained in a semi-climatic room with a 12-h photophase and a temperature of 25 ± 2 °C. The caterpillars were fed daily with cassava leaves, previously disinfected by washing in 3% hypochlorite solution and then rinsed in distilled water. The caterpillars were kept in the pots until they pupated. Then they were transferred to plastic trays with moistened vermiculite and later placed in a climate-controlled chamber (B.O.D.) with 70 ± 10% RH and 14-h photophase. The temperature was adjusted to between 19 and 28 °C to accelerate or decelerate, respectively, the emergence of adults, according to the requirements for the tests. Four generations were obtained in the laboratory before installation of the test.

Trichogramma marandobai and T. manicobai

Erinnyis ello eggs were collected from commercial cassava crops in the municipality of Marechal Cândido Rondon, PR (24°69’ 20.9” S e 54°13’ 99.3” W), taken to the laboratory and kept under controlled conditions. After emergence, the parasitoids were reared and maintained in the laboratory, in test tubes (13 × 100 mm), which contained a drizzle of pure honey to feed the parasitoids. Some of the first specimens were mounted (Hoyer´s mounting medium with Canada balsam) for microscope identification according to the methodologies proposed by Querino and Zucchi (2011)Querino, R.B., Zucchi, R.A., 2011. Guia de identificação de Trichogramma para o Brasil. Embrapa Informação Tecnológica, Brasília.. After identification, specimens were isolated and grouped by species, to initiate laboratory rearings.

Parasitoid adults were provided with E. ello eggs from the laboratory rearing. Parasitized E. ello eggs were maintained in a climate-controlled chamber (B.O.D.) at a constant temperature of 25 ± 1 °C and photophase of 14 h, until the third generation, when a sufficient number of insects were obtained to conduct the test.

Biological parameters and fertility life table determination of T. manicobai and T. marandobai

The biological study was conducted using a completely randomized design with two species of parasitoids – T. manicobai and T. marandobai – and 25 replicates per species, maintained under controlled conditions (B.O.D.: 25 ± 1 °C, 70 ± 10% RH, and 14 h photophase). Each replicate contained a 24-h-old mated female, individualized in a transparent glass tube (2.5 × 8.5) containing a drop of pure honey as a food source and closed with a cotton ball. Every day, five E. ello eggs, up to 24-h old, were offered to each female until her death. Parasitism was allowed for 24 h. After that, the eggs from each replicate were transferred to gelatin capsules to avoid dehydration, where they remained until the emergence of adults.

The variables analyzed were: Percentage of parasitism [obtained through the equation: P (%) = (number of eggs parasitized) / (total number of eggs exposed to parasitism) × 100]; total number of parasitized eggs (average number of eggs parasitized per female); parasitism viability (obtained by the ratio of the number of eggs with an emergence hole to the number of parasitized eggs); individuals per egg (count of the emerged adults per egg); number of offspring (count of the emerged adults); number per egg female and male (count of female and male adults per egg); sex ratio (obtained by the equation:[♀/(♀+ ♂)]); period egg-adult, in days (conducted through daily observations, always at the same time, in a 24-h interval); female longevity (period, in days, between emergence and death).

From the longevity, survival, and oviposition data of each female, the fertility life table was constructed according to the methodology cited by Silveira Neto et al. (1976)Silveira Neto, S., Nakano, O., Barbin, D., Nova, N.V., 1976. Manual de ecologia dos insetos. Ceres, Piracicaba, São Paulo.. The net reproduction rate (R0), intrinsic rate of increase (rm), population time (Dt), average generation time (T), and finite rate of increase (λ) were calculated, using the formulas:

R 0 = l x m x
T = l x m x . X / l x m x
r m = l o g R 0 / T .0.4343
D t = l n 2 / r m
λ = e r m

where, x is the age of individuals in days, lx is the agespecific survival, and mx is the age-specific number of female offspring. The maximum rate of population growth is when the lines of specific fertility (mx) and survival rate (lx) intersect in a graph.

Statistical Analyses

The parameters of the fertility life table were estimated using the “Jacknife” technique (Meyer et al., 1986Meyer, R.K., Mckinley, M.P., Bowman, K.A., Braunfeld, M.B., Barry, R.A., Prusiner, S.B., 1986. Separation and properties of cellular and scrapie priori protein. Proc. Natl. Acad. Sci. USA 83, 2310–2314. https://doi.org/10.1073/pnas.83.8.2310.
https://doi.org/10.1073/pnas.83.8.2310...
) and the means compared by the unilateral t-test, (P≤0.05), using the software “Lifetable.sas” (Maia et al., 2000Maia, H.N.M., Luiz, A.J.B., Campanhola, C., 2000. Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J. Econ. Entomol. 93, 511–518. https:// 10.1603 / 0022-0493-93.2.511.
https://doi.org/https:// 10.1603 / 0022-...
) in the “SAS System” environment (SAS Institute, 2009SAS Institute, 2009. SAS/STAT® 9.2 User’s Guide. SAS Institute, Cary, North Carolina.). The other parameters were tested for normality by the Shapiro-Wilk test and for homoscedasticity by the Bartlett test. Was used test U Mann-Whitney, nonparametric test was performed at 5% probability using the program Statistica 7 (StatSoft Inc., 2004StatSoft Inc., 2004. STATISTICA (Data Analysis Software System) Version 7. Available in: www.statsoft.com (accessed 04 August 2021).
www.statsoft.com...
).

Results

The species of E. ello egg parasitoid identified and successfully reared in the laboratory were T. marandobai and T. manicobai. The biological parameters of both Trichogramma species when using E. ello as host are summarized in Table 1.

Table 1
Biological parameters of Trichogramma species (Hymenoptera: Trichogrammatidae) in eggs of Erinnyis ello (Lepidoptera: Sphingidae).

The percentage of T. marandobai and T. manicobai parasitism did not differ statistically (Table 1). However, the number of parasitized eggs was statistically different, and T. marandobai parasitized about 1.5 times more eggs than T. manicobai. This led to 34.35% more descendants of T. marandobai than T. manicobai. However, neither the percentage of parasitism, which was greater than 80%, nor the number of offspring per egg, which was approximately 12 individuals, differed between the two species (Table 1). Trichogramma marandobai and T. manicobai exhibited a high capacity to produce offspring, despite the small number of parasitized eggs.

The sex ratio did differ statistically (Table 1), for the two species studied, in which the number of females per egg was 3.6 and 7.8 times greater than that of males for T. marandobai and T. manicobai, respectively. No statistical difference was observed the number of females per egg between the two species, however there was a statistical difference for the number of males (Table 1). The egg-adult period also similar for both species.

Charting the production of offspring throughout the female’s life elucidated that the highest daily fertility rates occurred on the first day of life, for both parasitoids species (Fig. 1). T. manicobai had the highest fertility rate with 20.60 individuals per female (Fig. 1b), whereas for T. marandobai, this value was 17.7 (Fig. 1a). However, the oviposition period for T. manicobai was shorter at seven days, while T. marandobai oviposited until the tenth day.

Figure 1
Specific fertility (mx) and specific survival (lx) of Trichogramma marandobai (a) and T. manicobai (b) (Hymenoptera: Trichogrammatidae) in eggs of Erinnyis ello (Lepidoptera: Sphingidae).

The values obtained for the fertility life table, except for the average interval between generations (T), differed statistically between the species studied, and was more favorable for T. marandobai (Table 2). This species took less time to double its population (Dt), achieved higher net reproduction rates (R0), had a higher intrinsic rate of increase (rm), and exhibited a higher finite rate of increase (λ), which indicates better performance by T. marandobai than T. manicobai.

Table 2
Mean generation time (T), doubling time (Dt), net reproduction rate (R0), intrinsic rate of increase (rm), and finite rate of increase (λ) of two species of Trichogramma in Erinnyis ello eggs.

Trichogramma manicobai required 1.09-fold more time to double its population, and its net reproduction rate (R0) was 25% less than T. marandobai. The intrinsic rate of increase (rm), which indirectly represents the daily contribution of each female in relation to the number of females in the population, of T. marandobai was 1.10 times greater than that of T. manicobai (Table 2). Such results indicate the superiority of T. marandobai in increasing its population, because with more females, its population will double in less time.

Among the biological parameters evaluated, T. marandobai achieved greater longevity and higher population increase in a shorter period than T. manicobai, under laboratory conditions.

Discussion

Considering that E. ello produce a relatively large egg, about 1.5 mm in diameter, which has a high level of nutrients, it provides the species T. marandobai and T. manicobai excellent capacity to produce offspring. Thus, more individuals develop per host, depending on the volume and nutrition of the egg. This reflects in lower energy expenditure in the search for a host to ensure their offspring.

The parasitism capacity of Trichogramma species varies depending on the host in which it multiplies. However, it has no direct reflection on the number of offspring, since the number of individuals per egg depends on the size of the host’s egg (Beserra and Parra, 2004Beserra, E.B., Parra, J.R.P., 2004. Biologia e parasitismo de Trichogramma atopovirilia Oatman & Platner e Trichogramma pretiosum Riley (Hym.; Trichogrammatidae) em ovos de Spodoptera frugiperda (J. E. Smith) (Lep.; Nocuidae). Rev. Bras. Entomol. 48, 119–126. https://doi.org/10.1590/S0085-56262004000100020.
https://doi.org/10.1590/S0085-5626200400...
; Meira et al., 2011Meira, A.L., Pratissoli, D., Souza, L.P., Sturm, G., 2011. Seleção de espécies de Trichogramma sp. em ovos da traça-das-crucíferas, Plutella xylostella. Rev. Caat. 24, 1–8. Available in: https://periodicos.ufersa.edu.br/index.php/caatinga/article/view/1796/4705 (accessed 04 August 2021).
https://periodicos.ufersa.edu.br/index.p...
).

Female parasitoids use chemical, physical, and visual clues to select hosts (Cônsoli and Grenier, 2010Cônsoli, F.L., Grenier, S., 2010. In vitro rearing of egg parasitoids. In: Cônsoli, F.L., Parra, J.R.P., Zucchi, R.A., (Eds), Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma, Progress in Biological Control. Springer, Netherlands, Dordrecht, pp. 293–313.; Van Atta et al., 2015Van Atta, K.J., Potter, K.A., Woods, H.A., 2015. Effects of UV-B on Environmental Preference and Egg Parasitization by Trichogramma Wasps (Hymenoptera: Trichogrammatidae). Jour. of Entomol. Sci. 50 (4), 318–325. https://doi.org/10.18474/JES15-09.1.
https://doi.org/10.18474/JES15-09.1...
; Gardner and Hoffmann, 2020Gardner, J., Hoffmann, M.P., 2020. How important is vision in short-range host-finding by Trichogramma ostriniae used for augmentative biological control? Biocontrol Sci. Technol. 30, 531–547. https://doi.org/10.1080/09583157.2020.1743816.
https://doi.org/10.1080/09583157.2020.17...
). Studies conducted on the preference of T. pretiosum for a particular host found that the chemical characteristics, shape, size, and age of the host may influence the acceptance (Bourchier et al., 1994Bourchier, R.S., Smith, S.M., Corrigan, J.E., Laing, J.E., 1994. Effect of host switching on performance of mass-reared Trichogramma minutum. Biocontrol Sci. Techn. 4, 353–362. https://doi.org/10.1080/09583159409355344.
https://doi.org/10.1080/0958315940935534...
; Hassan, 1994Hassan, S.A., 1994. Strategies to select Trichogramma species for use in biological control. In: Wajnberg E., Hassan, S.A. (Eds.), Biological Control with Egg Parasitoids. CABI publishing, Wallingford, Oxon, pp. 1–52.; Brotodjojo and Walter, 2006Brotodjojo, R.R., Walter, G.H., 2006. Oviposition and reproductive performance of a generalist parasitoid (Trichogramma pretiosum) exposed to host species that differ in their physical characteristics. Biol. Control 39, 300–312. https://doi.org/10.1016/j.biocontrol.2006.08.011.
https://doi.org/10.1016/j.biocontrol.200...
). Therefore, the parasitoid’s preference for a particular host should be tested first in the laboratory. Data from the fertility life table are essential to analyze the biological parameters and dynamics between host parasitoids, indicating whether the species exhibits good performance and could be a potential candidate for biological control. After these results, the next steps can be taken towards the implementation of a biological control program, an important control method to begin IPM.

The biological parameters obtained from the two main species of Trichogramma that parasitize E. ello – Trichogramma marandobai and T. manicobai – found that the number of descendants per egg is important. Although the number of parasitized eggs per female and the percentage of parasitism did not present an expressive quantity, the ability to generate offspring was high.

This ability to generate more descendants was demonstrated by Vianna et al. (2011)Vianna, U.R., Pratissoli, D., Zanuncio, J.C., Alencar, J.R.C.C., Zinger, F.D., 2011. Espécies e/ou linhagens de Trichogramma spp. (Hymenoptera: Trichogrammatidae) para o controle de Anticarsia gemmatalis (Lepidoptera: Noctuidae). Arq. Inst. Biol. (Sao Paulo) 78, 81–87. https://doi.org/10.1590/1808-1657v78p0812011.
https://doi.org/10.1590/1808-1657v78p081...
, who obtained an average parasitism of 19 eggs per female of T. pretiosum in eggs of Anticarsia gemmatalis (Lepidoptera: Noctuidae), which was more than the Trichogramma species in the present study. However, the number of individuals T. manicobai and T. marandobai that emerged from E. ello eggs was much higher than emerged from A. gemmatalis eggs (1.38), which resulted in a significant difference in the final number of individuals.

Evaluation of biological parameters of T. marandobai in an alternative host, Chloridea virescens (Lepidoptera: Noctuidae), which is smaller than E. ello, found that the number of offspring and individuals per egg was low (Vieira et al., 2015Vieira, J.M., Querino, R.B., Cônsoli, F.L., Zucchi, R.A., 2015. An integrative taxonomic approach to characterize Trichogramma marandobai (Hymenoptera: trichogrammatidae). Zootaxa 4021, 447–458. https://doi.org/10.11646/zootaxa.4021.3.4.
https://doi.org/10.11646/zootaxa.4021.3....
), and different from the data obtained in the natural host verified in this work. Thus, these species, by parasitizing larger eggs, can reduce the energy expended searching for more of the host’s eggs and instead invest their energy to increase their reproductive potential, with larger oviposition.

The size of the host egg has been reported as one of the most important factors affecting the parasitism taxa of mass-reared Trichogramma species. This factor influences the size of the descendants and consequently their reproductive performance (Xu et al., 2020Xu, W., Wen, X.Y., Hou, Y.Y., Desneux, N., Ali, A., Zang, L.S., 2020. Suitability of Chinese oak silkworm eggs for the multigenerational rearing of the parasitoid Trichogramma leucaniae. PLoS One, 15 (4), e0231098. https://doi.org/10.1371/journal.pone.0231098.
https://doi.org/10.1371/journal.pone.023...
). From large hosts, more Trichogramma emerge and they develop in less time, compared to smaller hosts, due to the higher nutritional quantity of the host. These stronger and more abundant descendants have greater capacity to search and disperse; thus, larger Trichogramma are more fertile and produce more offspring (Hohmann et al., 1988Hohmann, C.L., Luck, R.F., Oatman, E.R., 1988. A comparison of longevity and fecundity of adult Trichogramma platneri (Hymenoptera: Trichogrammatidae) reared from eggs of the cabbage looper and the Angumois grain moth, with and without access to honey. J. Econ. Entomol. 81, 309–1312.; Bai et al., 1992Bai, B., Luck, R.F., Forster, L., Stephens, B., 1992. The effect of host size on quality attributes of the egg parasitoid, Trichogramma pretiosum. Entomol. Exp. Appl. 64, 37–48.).

The proportion of males and females is important, because a higher number of females can increase the parasitoid population and maintain the species (Borba et al., 2006Borba, R.S., Garcia, M.S., Kovaleski, A., Comiotto, A., Cardoso, R.L., 2006. Biologia e exigências térmicas de Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) sobre ovos de Bonagota cranaodes (Meyrick) (Lepidoptera: Tortricidae). Cienc. Rural 36, 1345–1352. https://doi.org/10.1590/S0103-84782006000500001.
https://doi.org/10.1590/S0103-8478200600...
). A high quantity of females is an important characteristic, because the efficiency of parasitism is high when a higher number of females are produced. These detect and oviposit in the host, which reflects in the effectiveness of biological control (Pereira et al., 2009Pereira, F.F., Zanuncio, J.C., Serrão, S.E., Oliveira, H.N., Favero, K., Grance, E.L.V., 2009. Progênie de Palmistichus elaeisis Delvare and LaSalle (Hymenoptera: Eulophidae) parasitando pupas de Bombyx mori L. (Lepidoptera: Bombycidae) de diferentes idades. Neotrop. Entomol. 38, 660–664.). The sex ratio of the parasitoid species is influenced, in addition to other factors, by the nutritional quality of the host. The female Trichogramma can assess the nutritional quality and quantity of its host, to determine the proportion of males and females that it will oviposition (Rodrigues, 2013Rodrigues, M.S., 2013. Wolbachia, una pandemia con posibilidades. Rev. Soc. Entomol. Argent. 72, 117–137.). Hosts with lower nutritional levels usually lead to more males, as they require less nutrients to develop (Vinson, 1997Vinson, S.B., 1997. Comportamento de seleção hospedeira de parasitóides de ovos, com ênfase na família Trichogrammatidae. In: Parra, J.R.P., Zucchi, R.A. (Eds.), Trichogramma e o controle biológico aplicado. FEALQ, Piracicaba, São Paulo, pp. 67–120.).

The sex ratio results of both species analyzed in this study suggest, according to Navarro (1998)Navarro, M.A., 1998. Trichogramma spp. Producción, Uso y Manejo em Colômbia. Impretec, Guadalajara de Buga, Colômbia. and Van Lenteren et al. (2003)Van Lenteren, J.C., Hale, A., Klapwijk, J.N., Van Schelt, J., Steinberg, S., 2003. Guildelines for quality control of commercially produced natural enemies. In: Van Lanteren, J.C. (Ed.), Quality Control Andproduction of Biological Control Angents: Theory and Testing Procedures. CABI publishing, Wallingford, London, pp. 265–303., their potential for biological control of E. ello. Because the sex ratio of T. marandobai and T. manicobai presented satisfactory values, which is one of the important parameters when assessing species for use in biological control programs (Pereira et al., 2019Pereira, F.P., Reigada, C., Diniz, A.J.F., Parra, J.R.P., 2019. Potential of two Trichogrammatidae species for Helicoverpa armigera control. Neotrop. Entomol. 48, 966–973. https://doi.org/10.1007/s13744-019-00730-4.
https://doi.org/10.1007/s13744-019-00730...
). Study with Trichogramma marandobai achieved values ​​close to those obtained in an alternative host (Vieira et al., 2015Vieira, J.M., Querino, R.B., Cônsoli, F.L., Zucchi, R.A., 2015. An integrative taxonomic approach to characterize Trichogramma marandobai (Hymenoptera: trichogrammatidae). Zootaxa 4021, 447–458. https://doi.org/10.11646/zootaxa.4021.3.4.
https://doi.org/10.11646/zootaxa.4021.3....
). However, as the species T. manicobai does not have an alternative host, there are no studies in the literature about the biological parameters for this species, which makes our work pioneering.

In Trichogramma, the length of the period from egg to adult mainly depends on temperature but can also be influenced by the origin of the insect, the host, the culture that it was collected, and the adaptation of the species or lineage (Pratissoli et al., 2003Pratissoli, D., Vianna, U.R., Oliveira, H.N., Pereira, F.F., 2003. Efeito do armazenamento de ovos de Anagasta kuehniella (Lep.: Pyralidae) nas características biológicas de três espécies de Trichogramma (Hym.: Trichogrammatidae). Rev. Ceres 50, 95–103.; Poorjavad et al., 2011Poorjavad, N., Goldansaz, S.H., Hosseininaveh, V., Nozari, J., Dehghaniy, H., Enkegaard, A., 2011. Fertility life table parameters of different strains of Trichogramma spp. collected from eggs of the carob moth Ectomyelois ceratoniae. Entomol. Sci. 14, 245–253. https://doi.org/10.1111/j.1479-8298.2011.00443.x.
https://doi.org/10.1111/j.1479-8298.2011...
). The highest fertility rates in Trichogramma spp. were observed at the beginning of adulthood and with age (days) they decrease. Loss of female fertility is natural behavior, which is directly influenced by age (Zago et al., 2008Zago, H.B., Pratissoli, D., Barros, R., Gondim Junior, M.G.C., 2008. Tabela de vida de fertilidade de Trichogramma pratissolii Querino & Zucchi, 2003 (Hymenoptera: Trichogrammatidae) em hospedeiros Alternativos, sob diferentes temperaturas. Cienc. Agrotec. 32, 1214–1217. https://doi.org/10.1590/S1413-70542008000400027.
https://doi.org/10.1590/S1413-7054200800...
).

The values ​​of net reproduction rate (R0) are important to determine the behavior of a parasitoid population, since lower R0 values ​​indicate population decline (Bellows Junior et al., 1992Bellows Junior, T.S., Van Driesche, R.G., Elkinton, J.S., 1992. Life-table construction and analissis in the evaluatin of natural enemies. Annu. Rev. Entomol. 37, 587–614. https://doi.org/ 10.1146/annurev.en.37.010192.003103.
https://doi.org/ 10.1146/annurev.en.37.0...
). This is an important parameter to consider for the control potential of the parasitoid.

The intrinsic growth rate is the main parameter of a rm fertility life table (Pedigo and Zeiss, 1996Pedigo, L.P., Zeiss, M.R., 1996. Developing a degree-day model for predicting insect development. In: Pedigo, L.P., Zeiss, M.R. Analyses in Insect Ecology and Management. Iowa State University Press, Ames, pp. 67–74.). The higher this value, the more successful the species will be in a given environment (Andrewartha and Birch, 1954Andrewartha, H.G., Birch, L.C., 1954. The innate capacity for increase in numbers. In: Andrewartha, H.G., Birch, L.C. (Eds.), The Distribution and Abundance of Animals. University of Chicago Press, Chicago, pp. 31–54.).

Trichogramma marandobai, in general, presented a better performance than T. manicobai, with a higher number individuals, a higher percentage of parasitism, shorter development time for the earlier life phases, and more female progeny. As a result, it achieved better rates in the fertility life table. Studies on the fluctuation of parasitoids in cassava field indicate that T. marandobai exhibits higher percentages than T. manicobai, which may be because this species presents differences in preference for host, crop, and search behavior (Schmidt and Smith, 1985Schmidt, J.M., Smith, J.J., 1985. The mechanism by which the parasitoid wasp Trichogramma minutum responds to host clusters. Entomol. Exp. Appl. 39, 287–294. https://doi.org/10.1111/j.1570-7458.1985.tb00472.x.
https://doi.org/10.1111/j.1570-7458.1985...
; Hassan and Guo 1991Hassan, S.A., Guo, M.F., 1991. Selection of effective strains of egg parasites of the genus Trichogramma (Hym., Trichogrammatidae) to control the European corn borer Ostrinia nubilalis Hb. (Lep., Pyralidae). J. Appl. Entomol. 111, 335–341. https://doi.org/10.1111/j.1439-0418.1991.tb00332.x.
https://doi.org/10.1111/j.1439-0418.1991...
; Wührer and Hassan, 1993Wührer, B.G., Hassan, S.A., 1993. Selection of effective species/ strains of Trcihogramma (Hym., Trichogrammatidae) to control the diamondback moth Plutella xylostella L. (Lep., Plutellidae). J. Appl. Entomol. 116, 80–89. https://doi.org/10.1111/j.1439-0418.1993.tb01170.x.
https://doi.org/10.1111/j.1439-0418.1993...
).

This study performed the first steps by demonstrating, under laboratory conditions, that the species T. marandobai and T. manicobai have potential as biological control agents. However, selectivity tests, flight capacity, adaptability to the laboratory environment, suitability for alternative hosts that are easy to handle, and economic viability, among other tests are essential for quality control of a biological control program (Parra, 2002Parra, J.R.P., 2002. Criação massal de inimigos naturais. In: Parra, J.R.P., Botelho, P.S.M., Corrêa-Ferreira, B.S., Bento, J.M.S. (Eds.), Controle biológico no Brasil: parasitoides e predadores. Manole, São Paulo, pp. 143–164.).

Therefore, additional laboratory studies as well as semi-field and field tests must be conducted to verify the parasitism capacity and efficiency of each species, because the dynamics of the host parasitoid must be tested for efficient management. Then research can determine if these are really good biological control agents to be used in a program to manage E. ello.

In addition to the use of the parasitoid as a controlling agent, studies on how to optimize rearing in the laboratory with the development of alternative host diets are other challenges that must be studied and solved. Another challenge for future research and possible use in a management program is that these species have few alternative hosts, and the species that they parasitize are difficult or economically unfeasible to raise in the laboratory.

Acknowledgments

We thank Dr. Ranyse Barbosa Querino and Dr. Jaci Mendes Vieira for confirming the identification of the species.

  • Funding

    This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  • Aguiar, E.B., Lorenzi, J.O., Monteiro, D.A., Bicudo, S.J., 2010. Monitoramento do mandarová da mandioca (Erinnyis ello L. 1758) para o controle com baculovirus (Baculovirus erinnyis). Rev. Trop. 4, 55–59. https://doi.org/10.0000/rtcab.v4i2.157
    » https://doi.org/10.0000/rtcab.v4i2.157
  • Alves, A.A.C., 2006. Fisiologia da mandioca. In: Souza, L.S. Aspectos socioeconômicos e agronômicos da mandioca. Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas, pp. 138–169.
  • Andrewartha, H.G., Birch, L.C., 1954. The innate capacity for increase in numbers. In: Andrewartha, H.G., Birch, L.C. (Eds.), The Distribution and Abundance of Animals. University of Chicago Press, Chicago, pp. 31–54.
  • Bai, B., Luck, R.F., Forster, L., Stephens, B., 1992. The effect of host size on quality attributes of the egg parasitoid, Trichogramma pretiosum. Entomol. Exp. Appl. 64, 37–48.
  • Bellotti, A.C., Arias, B., 1988. Manejo Integrado de Erinnyis ello (L.). Centro Internacional de Agricultura Tropical-CIAT, Cali, Colombia.
  • Bellotti, A.C., Arias, B., Guzmán, O., 1992. Biological control of the cassava hornworm Erinnyis ello (Lepidoptera: sphingidae). Fla. Entomol. 75, 506–515.
  • Bellotti, A.C., Smith, L., Lapointe, S.L., 1999. Recent advances in cassava pest management. Annu. Rev. Entomol. 44, 343–370. https://doi.org/10.1146/annurev.ento.44.1.343
    » https://doi.org/10.1146/annurev.ento.44.1.343
  • Bellotti, A.C., Arias, B.V., Reyes, J.A., 2012a. Cassava pest management. In: Ospina, B., Ceballos, H. (Eds.), Cassava in the third millennium: modern production, processing, use and marketing systems. CIAT/CLAYUCA, Cali, Colombia, pp. 213–250.
  • Bellotti, A.C., Herrera Campo, B.V., Hyman, G., 2012b. Cassava production and pest management: present and potential threats in a changing environment. Trop. Plant Biol. 5, 39–72. https://doi.org/10.1007/s12042-011-9091-4
    » https://doi.org/10.1007/s12042-011-9091-4
  • Bellows Junior, T.S., Van Driesche, R.G., Elkinton, J.S., 1992. Life-table construction and analissis in the evaluatin of natural enemies. Annu. Rev. Entomol. 37, 587–614. https://doi.org/ 10.1146/annurev.en.37.010192.003103
    » https://doi.org/ 10.1146/annurev.en.37.010192.003103
  • Beserra, E.B., Parra, J.R.P., 2004. Biologia e parasitismo de Trichogramma atopovirilia Oatman & Platner e Trichogramma pretiosum Riley (Hym.; Trichogrammatidae) em ovos de Spodoptera frugiperda (J. E. Smith) (Lep.; Nocuidae). Rev. Bras. Entomol. 48, 119–126. https://doi.org/10.1590/S0085-56262004000100020
    » https://doi.org/10.1590/S0085-56262004000100020
  • Botelho, P.S.M., 1997. Eficiência de Trichogramma em campo. In: Parra, J.R.P., Zucchi, R.A. Trichogramma e o controle biológico aplicado. FEALQ, Piracicaba, pp. 303–318.
  • Borba, R.S., Garcia, M.S., Kovaleski, A., Comiotto, A., Cardoso, R.L., 2006. Biologia e exigências térmicas de Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) sobre ovos de Bonagota cranaodes (Meyrick) (Lepidoptera: Tortricidae). Cienc. Rural 36, 1345–1352. https://doi.org/10.1590/S0103-84782006000500001
    » https://doi.org/10.1590/S0103-84782006000500001
  • Bourchier, R.S., Smith, S.M., Corrigan, J.E., Laing, J.E., 1994. Effect of host switching on performance of mass-reared Trichogramma minutum Biocontrol Sci. Techn. 4, 353–362. https://doi.org/10.1080/09583159409355344
    » https://doi.org/10.1080/09583159409355344
  • Brotodjojo, R.R., Walter, G.H., 2006. Oviposition and reproductive performance of a generalist parasitoid (Trichogramma pretiosum) exposed to host species that differ in their physical characteristics. Biol. Control 39, 300–312. https://doi.org/10.1016/j.biocontrol.2006.08.011
    » https://doi.org/10.1016/j.biocontrol.2006.08.011
  • Brun, P.G., Moraes, G.W.G., Soares, L.A., 1986. Trichogramma marandobai sp. n. (Hymenoptera: Trichogrammatidae) parasitóide de Erinnyis ello (Lepidoptera: Sphingidae) desfolhador da mandioca. Pesqui. Agropecu. Bras. 21, 1245–1248.
  • Carvalho, F.C., Nakano, O., 1988. Aspectos biológicos do “mandarová da mandioca” Erinnyis ello ello (L.) (Lepidoptera-Sphingidae) em mandioca (Manihot esculenta Crantz cv. Mantiqueira). Ciênc. &. Prat. 16, 134–145.
  • Cônsoli, F.L., Grenier, S., 2010. In vitro rearing of egg parasitoids. In: Cônsoli, F.L., Parra, J.R.P., Zucchi, R.A., (Eds), Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma, Progress in Biological Control. Springer, Netherlands, Dordrecht, pp. 293–313.
  • Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, 2005. Mandioca: o pão do Brasil (Manioc, le pain du Brésil). EMBRAPA, Brasília.
  • Farias, A.R.N., 2003. Manejo integrado do mandarová-da-mandioca. Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas.
  • Gomes, J.C., Leal, E.C., 2003. Cultivo da mandioca para a região dos Tabuleiros Costeiros. Embrapa Mandioca e Fruticultura, Sistemas de Produção. 11. ed. Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas.
  • Hassan, S.A., 1994. Strategies to select Trichogramma species for use in biological control. In: Wajnberg E., Hassan, S.A. (Eds.), Biological Control with Egg Parasitoids. CABI publishing, Wallingford, Oxon, pp. 1–52.
  • Hassan, S.A., Guo, M.F., 1991. Selection of effective strains of egg parasites of the genus Trichogramma (Hym., Trichogrammatidae) to control the European corn borer Ostrinia nubilalis Hb. (Lep., Pyralidae). J. Appl. Entomol. 111, 335–341. https://doi.org/10.1111/j.1439-0418.1991.tb00332.x
    » https://doi.org/10.1111/j.1439-0418.1991.tb00332.x
  • Hohmann, C.L., Luck, R.F., Oatman, E.R., 1988. A comparison of longevity and fecundity of adult Trichogramma platneri (Hymenoptera: Trichogrammatidae) reared from eggs of the cabbage looper and the Angumois grain moth, with and without access to honey. J. Econ. Entomol. 81, 309–1312.
  • Instituto de Economia Agrícola – IEA, 2016. Recuperação dos preços de Mandioca Industrial em 2016. IEA, São Paulo.
  • Gardner, J., Hoffmann, M.P., 2020. How important is vision in short-range host-finding by Trichogramma ostriniae used for augmentative biological control? Biocontrol Sci. Technol. 30, 531–547. https://doi.org/10.1080/09583157.2020.1743816
    » https://doi.org/10.1080/09583157.2020.1743816
  • Maia, H.N.M., Luiz, A.J.B., Campanhola, C., 2000. Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J. Econ. Entomol. 93, 511–518. https:// 10.1603 / 0022-0493-93.2.511.
    » https://doi.org/https:// 10.1603 / 0022-0493-93.2.511
  • Maia, V.B., Bahia, J.J.S., 2010. Manejo integrado do mandarová (Erinnyis ello L.) em cultivo de mandioca (Manihot esculenta Crantz) na Região Sul da Bahia. CEPLAC/CEPEC, Ilhéus, BA.
  • Meira, A.L., Pratissoli, D., Souza, L.P., Sturm, G., 2011. Seleção de espécies de Trichogramma sp. em ovos da traça-das-crucíferas, Plutella xylostella Rev. Caat. 24, 1–8. Available in: https://periodicos.ufersa.edu.br/index.php/caatinga/article/view/1796/4705 (accessed 04 August 2021).
    » https://periodicos.ufersa.edu.br/index.php/caatinga/article/view/1796/4705
  • Meyer, R.K., Mckinley, M.P., Bowman, K.A., Braunfeld, M.B., Barry, R.A., Prusiner, S.B., 1986. Separation and properties of cellular and scrapie priori protein. Proc. Natl. Acad. Sci. USA 83, 2310–2314. https://doi.org/10.1073/pnas.83.8.2310
    » https://doi.org/10.1073/pnas.83.8.2310
  • Milanez, A.M., Pratissoli, D., Polanczyk, R.A., Bueno, A.F., Tufik, C.B.A., 2009. Avaliação de Trichogramma spp. para o controle de Trichoplusia ni. Pesqui. Agropecu. Bras. 44, 1219–1224. https://doi.org/10.1590/S0100-204X2009001000002
    » https://doi.org/10.1590/S0100-204X2009001000002
  • Navarro, M.A., 1998. Trichogramma spp. Producción, Uso y Manejo em Colômbia. Impretec, Guadalajara de Buga, Colômbia.
  • Noronha, A.C.S., Blanco, D.G., Costa, V.A., Querino, R.B., Araújo, D.G., Johnson, N.F., 2020. Egg parasitoids of the cassava hornworm (Erinnyis spp.) associated to cassava in the Pará State, Brazil. EntomoBrasilis 13, 932. https://doi.org/10.12741/ebrasilis.v13.e932
    » https://doi.org/10.12741/ebrasilis.v13.e932
  • Oliveira, H.N., Gomez, A.S., Rohden, V.S., Arce, C.C.M., Duarte, M.M., 2010. Record of Trichogramma (Hymenoptera: Trichogrammatidae) species on Erinnyis ello Linnaeus (Lepidoptera: Sphingidae) eggs in Mato Grosso do Sul State, Brazil. Pesqui. Agropecu. Trop. 40, 378–379. https://10.5216/pat.v40i3.6453.
    » https://doi.org/https://10.5216/pat.v40i3.6453
  • Parra, J.R.P., 2002. Criação massal de inimigos naturais. In: Parra, J.R.P., Botelho, P.S.M., Corrêa-Ferreira, B.S., Bento, J.M.S. (Eds.), Controle biológico no Brasil: parasitoides e predadores. Manole, São Paulo, pp. 143–164.
  • Parra, J.R.P., Zucchi, R.A., Coelho Junior, A., Geremias, L.D., Cônsoli, F.L., 2015. Trichogramma as a tool for IPM in Brazil. In: Vinson, B., Greenberg, S. M., Liu, T., Rao, A., Volosciuk, L.F. (Eds.), Augmentative Biological Control Using Trichogramma spp.: Current Status and Perspectives. Northwest A&F University Press, Shaanxi, China, pp. 472–496.
  • Parra, J.R.P., Botelho, P.S.M., Pinto, A.S., 2010. Controle biológico de pragas como componente chave para a produção sustentável da cana-de-açúcar. In: Cortez, L.A.B (Ed.), Bioetanol de cana-de-açúcar: P&D para produtividade e sustentabilidade. Blücher, São Paulo, pp. 441–450.
  • Pereira, F.F., Zanuncio, J.C., Serrão, S.E., Oliveira, H.N., Favero, K., Grance, E.L.V., 2009. Progênie de Palmistichus elaeisis Delvare and LaSalle (Hymenoptera: Eulophidae) parasitando pupas de Bombyx mori L. (Lepidoptera: Bombycidae) de diferentes idades. Neotrop. Entomol. 38, 660–664.
  • Pereira, F.P., Reigada, C., Diniz, A.J.F., Parra, J.R.P., 2019. Potential of two Trichogrammatidae species for Helicoverpa armigera control. Neotrop. Entomol. 48, 966–973. https://doi.org/10.1007/s13744-019-00730-4
    » https://doi.org/10.1007/s13744-019-00730-4
  • Pedigo, L.P., Zeiss, M.R., 1996. Developing a degree-day model for predicting insect development. In: Pedigo, L.P., Zeiss, M.R. Analyses in Insect Ecology and Management. Iowa State University Press, Ames, pp. 67–74.
  • Poorjavad, N., Goldansaz, S.H., Hosseininaveh, V., Nozari, J., Dehghaniy, H., Enkegaard, A., 2011. Fertility life table parameters of different strains of Trichogramma spp. collected from eggs of the carob moth Ectomyelois ceratoniae. Entomol. Sci. 14, 245–253. https://doi.org/10.1111/j.1479-8298.2011.00443.x
    » https://doi.org/10.1111/j.1479-8298.2011.00443.x
  • Pratissoli, D., Vianna, U.R., Oliveira, H.N., Pereira, F.F., 2003. Efeito do armazenamento de ovos de Anagasta kuehniella (Lep.: Pyralidae) nas características biológicas de três espécies de Trichogramma (Hym.: Trichogrammatidae). Rev. Ceres 50, 95–103.
  • Querino, R.B., Zucchi, R.A., 2011. Guia de identificação de Trichogramma para o Brasil. Embrapa Informação Tecnológica, Brasília.
  • Querino, R.B., Zucchi, R.A., 2019. Annotated checklist and illustrated key to the species of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) from South América. Zootaxa 4656, 201–231. https://doi.org/10.11646/zootaxa.4656.2.1
    » https://doi.org/10.11646/zootaxa.4656.2.1
  • Rodrigues, M.S., 2013. Wolbachia, una pandemia con posibilidades. Rev. Soc. Entomol. Argent. 72, 117–137.
  • SAS Institute, 2009. SAS/STAT® 9.2 User’s Guide. SAS Institute, Cary, North Carolina.
  • StatSoft Inc., 2004. STATISTICA (Data Analysis Software System) Version 7. Available in: www.statsoft.com (accessed 04 August 2021).
    » www.statsoft.com
  • Schmidt, J.M., Smith, J.J., 1985. The mechanism by which the parasitoid wasp Trichogramma minutum responds to host clusters. Entomol. Exp. Appl. 39, 287–294. https://doi.org/10.1111/j.1570-7458.1985.tb00472.x
    » https://doi.org/10.1111/j.1570-7458.1985.tb00472.x
  • Schmitt, A.T., 2002. Principais insetos pragas da mandioca e seu controle. In: Cereda, M.P. (Ed.), Agricultura: tuberosas amiláceas latino americano. Fundação Cargil, São Paulo, pp. 350–369.
  • Schons, A., Streck, N.A., Storck, L., Buriol, G.A., Zanon, A.J., Pinheiro, D.G., Kraulich, B., 2009. Arranjos de plantas de mandioca e milho em cultivo solteiro e consorciado: crescimento, desenvolvimento e produtividade. Bragantia 68, 155–167. https://doi.org/10.1590/S0006-87052009000100017
    » https://doi.org/10.1590/S0006-87052009000100017
  • Silveira Neto, S., Nakano, O., Barbin, D., Nova, N.V., 1976. Manual de ecologia dos insetos. Ceres, Piracicaba, São Paulo.
  • Souza, A.R., Giustolin, T.A., Querino, R.B., Alvarenga, C.D., 2016. Natural parasitism of lepidopteran eggs by Trichogramma species (Hymenoptera: Trichogrammatidae) in agricultural crops in Minas Gerais, Brazil. Fla. Entomol, 99, 221-225. https://doi.org/10.1653/024.099.0210
    » https://doi.org/10.1653/024.099.0210
  • Van Atta, K.J., Potter, K.A., Woods, H.A., 2015. Effects of UV-B on Environmental Preference and Egg Parasitization by Trichogramma Wasps (Hymenoptera: Trichogrammatidae). Jour. of Entomol. Sci. 50 (4), 318–325. https://doi.org/10.18474/JES15-09.1
    » https://doi.org/10.18474/JES15-09.1
  • Van Lenteren, J.C., Hale, A., Klapwijk, J.N., Van Schelt, J., Steinberg, S., 2003. Guildelines for quality control of commercially produced natural enemies. In: Van Lanteren, J.C. (Ed.), Quality Control Andproduction of Biological Control Angents: Theory and Testing Procedures. CABI publishing, Wallingford, London, pp. 265–303.
  • Vianna, U.R., Pratissoli, D., Zanuncio, J.C., Alencar, J.R.C.C., Zinger, F.D., 2011. Espécies e/ou linhagens de Trichogramma spp. (Hymenoptera: Trichogrammatidae) para o controle de Anticarsia gemmatalis (Lepidoptera: Noctuidae). Arq. Inst. Biol. (Sao Paulo) 78, 81–87. https://doi.org/10.1590/1808-1657v78p0812011
    » https://doi.org/10.1590/1808-1657v78p0812011
  • Vieira, J.M., Querino, R.B., Zucchi, R.A., 2014. On the identity of Trichogramma demoraesi Nagaraja (Hymenoptera: Trichogrammatidae), with a checklist and a key to Trichogramma species associated with Erinnyis ello (L.) (Lepidoptera, Sphingidae) in Brazil. Zootaxa 3869, 83–89. https://doi.org/10.11646/zootaxa.3869.1.8
    » https://doi.org/10.11646/zootaxa.3869.1.8
  • Vieira, J.M., Querino, R.B., Cônsoli, F.L., Zucchi, R.A., 2015. An integrative taxonomic approach to characterize Trichogramma marandobai (Hymenoptera: trichogrammatidae). Zootaxa 4021, 447–458. https://doi.org/10.11646/zootaxa.4021.3.4
    » https://doi.org/10.11646/zootaxa.4021.3.4
  • Vinson, S.B., 1997. Comportamento de seleção hospedeira de parasitóides de ovos, com ênfase na família Trichogrammatidae In: Parra, J.R.P., Zucchi, R.A. (Eds.), Trichogramma e o controle biológico aplicado. FEALQ, Piracicaba, São Paulo, pp. 67–120.
  • Zago, H.B., Pratissoli, D., Barros, R., Gondim Junior, M.G.C., 2008. Tabela de vida de fertilidade de Trichogramma pratissolii Querino & Zucchi, 2003 (Hymenoptera: Trichogrammatidae) em hospedeiros Alternativos, sob diferentes temperaturas. Cienc. Agrotec. 32, 1214–1217. https://doi.org/10.1590/S1413-70542008000400027
    » https://doi.org/10.1590/S1413-70542008000400027
  • Wajnberg, E., Hassan, S.A., 1994. Biological Control with Eggs Parasitoids. CAB International/IOBC, Wallingford, 286 pp.
  • Wührer, B.G., Hassan, S.A., 1993. Selection of effective species/ strains of Trcihogramma (Hym., Trichogrammatidae) to control the diamondback moth Plutella xylostella L. (Lep., Plutellidae). J. Appl. Entomol. 116, 80–89. https://doi.org/10.1111/j.1439-0418.1993.tb01170.x
    » https://doi.org/10.1111/j.1439-0418.1993.tb01170.x
  • Xu, W., Wen, X.Y., Hou, Y.Y., Desneux, N., Ali, A., Zang, L.S., 2020. Suitability of Chinese oak silkworm eggs for the multigenerational rearing of the parasitoid Trichogramma leucaniae PLoS One, 15 (4), e0231098. https://doi.org/10.1371/journal.pone.0231098
    » https://doi.org/10.1371/journal.pone.0231098

Edited by

Associate Editor: Regiane Cristina Oliveira

Publication Dates

  • Publication in this collection
    08 July 2022
  • Date of issue
    2022

History

  • Received
    15 Aug 2021
  • Accepted
    08 June 2022
Sociedade Brasileira De Entomologia Caixa Postal 19030, 81531-980 Curitiba PR Brasil , Tel./Fax: +55 41 3266-0502 - São Paulo - SP - Brazil
E-mail: sbe@ufpr.br