Abstract
The genus Neorickettsia comprises trematode-associated bacteria that can cause diseases in animals and humans. Despite detection of Neorickettsia antigens in the intestine of coatis kept in captivity in southern Brazil through immunohistochemistry, the molecular identity of the bacteria in South American procyonids remains elusive. The aim of the present study was to investigate the occurrence of Neorickettsia sp. in blood samples from coatis in central-western Brazil. Between March 2018 and January 2019, animals were captured and recaptured in two areas of the Cerrado (Parque Estadual do Prosa, PEP; and Vila da Base Aérea, VBA) located in the city of Campo Grande, state of Mato Grosso do Sul, central-western Brazil. All captures were performed according to convenience. DNA from 97 blood samples was subjected to nested PCR (nPCR) targeting a fragment of the 16S rRNA gene of Neorickettsia sp. Six samples (3.6%; five from VBA and one from PEP) from different coatis were positive in nPCR based on the 16S rRNA. The sequences obtained (~500 bp) showed ˃ 99% similarity to N. risticii. Phylogenetic analysis clustered the sequences detected in the present study in a clade with N. risticii. This is the first molecular detection of Neorickettsia sp. in coatis in Brazil.
Keywords:
Anaplasmataceae; procyonidae; Central-Western Brazil
Resumo
O gênero Neorickettsia compreende bactérias associadas a trematódeos que podem causar doenças em animais e humanos. Apesar da detecção de antígenos de Neorickettsia por imuno-histoquímica no intestino de quatis mantidos em cativeiro no sul do Brasil, a identidade molecular da bactéria em procionídeos da América do Sul permanece indefinida. O presente trabalho teve como objetivo investigar a ocorrência de Neorickettsia sp. em amostras de sangue de quatis do Centro-Oeste do Brasil. Entre março de 2018 e janeiro de 2019, os animais foram capturados em duas áreas de Cerrado (Parque Estadual do Prosa PEP e Vila da Base Aérea VBA) localizadas na cidade de Campo Grande, Mato Grosso do Sul, Centro-Oeste do Brasil. Todas as capturas e recapturas foram realizadas por conveniência. O DNA de 97 amostras de sangue foi submetido a "nested" (nPCR), baseada em um fragmento do gene 16S rRNA de Neorickettsia sp. Seis (3,6% - 5 de VBA e 1 de PEP) amostras de quatis diferentes foram positivas na nPCR, baseada no rRNA 16S. As sequências obtidas (~500 pb) apresentaram ˃99% de identidade com N. risticii. A inferência filogenética agrupou as sequencias detectadas no presente estudo em um clado com N. risticii. Esta é a primeira detecção molecular de Neorickettsia sp. em quatis do Brasil.
Palavras-chave:
Anaplasmataceae; procionídeo; Centro-Oeste brasileiro
Unlike other agents in the family Anaplasmataceae (Order Rickettsiales), which are transmitted by blood-sucking arthropods, the genus Neorickettsia comprises trematode-associated bacteria that can cause diseases in animals and humans (Dumler et al., 2001Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH, Ray SC, et al. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 2001; 51(6): 2145-2165. http://dx.doi.org/10.1099/00207713-51-6-2145. PMid:11760958.
http://dx.doi.org/10.1099/00207713-51-6-...
). Although several molecular studies have reported the presence of Neorickettsia DNA in different hosts, only four species have been fully characterized, given the great difficulty in cultivating and sequencing the complete genome of these bacteria. These species are Neorickettsia sennetsu, which causes Sennetsu neorickettsiosis in humans (Dittrich et al., 2015Dittrich S, Phuklia W, Turner GD, Rattanavong S, Chansamouth V, Dumler SJ, et al. Neorickettsia sennetsu as a neglected cause of fever in South-East Asia. PLoS Negl Trop Dis 2015; 9(7): e0003908. http://dx.doi.org/10.1371/journal.pntd.0003908. PMid:26158273.
http://dx.doi.org/10.1371/journal.pntd.0...
); Neorickettsia helminthoeca, which causes salmon poisoning disease (SPD) in dogs (Headley et al., 2011Headley SA, Scorpio DG, Vidotto O, Dumler JS. Neorickettsia helminthoeca and salmon poisoning disease: a review. Vet J 2011; 187(2): 165-173. http://dx.doi.org/10.1016/j.tvjl.2009.11.019. PMid:20044285.
http://dx.doi.org/10.1016/j.tvjl.2009.11...
); and Neorickettsia risticii and Neorickettsia findlayensis, which are the etiological agents of Potomac horse fever (PHF) (Teymournejad et al., 2020Teymournejad O, Lin M, Bekebrede H, Kamr A, Toribio RE, Arroyo LG, et al. Isolation and molecular analysis of a novel Neorickettsia species that causes Potomac horse fever. MBio 2020; 11(1): e03429-19. http://dx.doi.org/10.1128/mBio.03429-19. PMid:32098825.
http://dx.doi.org/10.1128/mBio.03429-19...
).
In Brazil, N. risticii has already been molecularly detected in horses presenting clinical signs resembling Potomac fever in the states of Rio Grande do Sul (Coimbra et al., 2006Coimbra HS, Fernandes CG, Soares MP, Meireles MCA, Radamés R, Schuch LFD. Equine monocytic Ehrlichiosis in Rio Grande do Sul: clinical, pathological and epidemiological aspects. Braz J Vet Res 2006; 26(2): 97-101. http://dx.doi.org/10.1590/S0100-736X2006000200006.
http://dx.doi.org/10.1590/S0100-736X2006...
) and Rio de Janeiro (Paulino et al., 2020Paulino PG, Almosny N, Oliveira R, Viscardi V, Müller A, Guimarães A, et al. Detection of Neorickettsia risticii, the agent of Potomac horse fever, in horses from Rio de Janeiro, Brazil. Sci Rep 2020; 10(1): 7208. http://dx.doi.org/10.1038/s41598-020-64328-2. PMid:32350359.
http://dx.doi.org/10.1038/s41598-020-643...
). N. risticii DNA has also been detected in the snails Heleobia piscium, Heleobia parchappei and Heleobia davisi in the state of Rio Grande do Sul, where an outbreak of PHF had been previously reported (Coimbra et al., 2006Coimbra HS, Fernandes CG, Soares MP, Meireles MCA, Radamés R, Schuch LFD. Equine monocytic Ehrlichiosis in Rio Grande do Sul: clinical, pathological and epidemiological aspects. Braz J Vet Res 2006; 26(2): 97-101. http://dx.doi.org/10.1590/S0100-736X2006000200006.
http://dx.doi.org/10.1590/S0100-736X2006...
). Parapleurolophocercous cercariae of trematodes identified in the snail H. piscium have also been found to contain N. risticii DNA (Coimbra et al., 2006Coimbra HS, Fernandes CG, Soares MP, Meireles MCA, Radamés R, Schuch LFD. Equine monocytic Ehrlichiosis in Rio Grande do Sul: clinical, pathological and epidemiological aspects. Braz J Vet Res 2006; 26(2): 97-101. http://dx.doi.org/10.1590/S0100-736X2006000200006.
http://dx.doi.org/10.1590/S0100-736X2006...
). Recently, Neorickettsia sp. DNA was detected in 57 (13.63%) out of 418 biological samples from fruit bats in a periurban area of the city of Campo Grande, state of Mato Grosso do Sul, central-western Brazil (Ikeda et al., 2021Ikeda P, Torres JM, Placa AJV, Mello VVC, Lourenço EC, Herrera HM, et al. Molecular survey of Anaplasmataceae agents and Coxiellaceae in non-hematophagous bats and associated ectoparasites from Brazil. Parasitologia 2021; 1(4): 197-209. http://dx.doi.org/10.3390/parasitologia1040021.
http://dx.doi.org/10.3390/parasitologia1...
).
SPD caused by N. helminthoeca is considered to be an endemic disease in dogs in the western parts of the USA and Canada (Headley et al., 2011Headley SA, Scorpio DG, Vidotto O, Dumler JS. Neorickettsia helminthoeca and salmon poisoning disease: a review. Vet J 2011; 187(2): 165-173. http://dx.doi.org/10.1016/j.tvjl.2009.11.019. PMid:20044285.
http://dx.doi.org/10.1016/j.tvjl.2009.11...
). In Brazil, Headley et al. (2006)Headley SA, Scorpio DG, Barat NC, Vidotto O, Dumler JS. Neorickettsia helminthoeca in dog, Brazil. Emerg Infect Dis 2006; 12(8): 1303-1305. http://dx.doi.org/10.3201/eid1708.060130. PMid:16972361.
http://dx.doi.org/10.3201/eid1708.060130...
found anatomopathological lesions in 10 dogs in the city of Maringá, state of Paraná, which were consistent with alterations associated with SPD. Based on PCR assays targeting the rpoB and groEL genes, the presence of N. helminthoeca DNA was detected in tissues from dogs with pathological lesions consistent with SPD (Headley et al., 2006Headley SA, Scorpio DG, Barat NC, Vidotto O, Dumler JS. Neorickettsia helminthoeca in dog, Brazil. Emerg Infect Dis 2006; 12(8): 1303-1305. http://dx.doi.org/10.3201/eid1708.060130. PMid:16972361.
http://dx.doi.org/10.3201/eid1708.060130...
). Neorickettsia helminthoeca antigens were detected in the intestine of three ring-tailed coatis kept in a conservationist breeding facility in Foz do Iguaçu, southern Brazil, through immunohistochemistry (Headley et al., 2018Headley SA, Oliveira TES, Michelazzo MMZ, Fritzen JTT, Cubas ZS, Moraes W, et al. Immunohistochemical and molecular evidence of putative Neorickettsia infection in coatis (Nasua nasua) from southern Brazil. J Zoo Wildl Med 2018; 49(3): 535-541. http://dx.doi.org/10.1638/2017-0151.1. PMid:30212329.
http://dx.doi.org/10.1638/2017-0151.1...
). Intestine and spleen fragments were positive in a PCR for N. helminthoeca based on the 16S rRNA gene, but due to the low quality of the amplicons obtained, no sequence was obtained (Headley et al., 2018Headley SA, Oliveira TES, Michelazzo MMZ, Fritzen JTT, Cubas ZS, Moraes W, et al. Immunohistochemical and molecular evidence of putative Neorickettsia infection in coatis (Nasua nasua) from southern Brazil. J Zoo Wildl Med 2018; 49(3): 535-541. http://dx.doi.org/10.1638/2017-0151.1. PMid:30212329.
http://dx.doi.org/10.1638/2017-0151.1...
). The aim of the present study was to investigate the occurrence of Neorickettsia sp. in blood samples from coatis in central-western Brazil.
Between March 2018 and January 2019, coatis (Nasua nasua) were sampled every three months on 10 consecutive days in two urban areas: a conservation unit in the Prosa State Park (Parque Estadual do Prosa, PEP) (-20.44987, -54.56529) and a residential area named ‘Vila da Base Aérea’ (VBA) (-20.47163, -54.65405), located in the city of Campo Grande, state of Mato Grosso do Sul, central-western Brazil. The animals were anesthetized with an association of Tiletamine hydrochloride and Zolazepam hydrochloride (Telazol, Zoetis®; 7 mg/kg, intramuscularly). To be able to identify any animals that were caught again, the animals sampled were labeled with numbered colored ear tags and underwent implantation of a microchip in their subcutaneous tissue. Their age was estimated using the method of Olifiers et al. (2010)Olifiers N, Bianchi RC, D’Andrea PS, Mourão G, Gompper ME. Estimating age of carnivores from the Pantanal region of Brazil. Wildl Biol 2010; 16(4): 389-399. http://dx.doi.org/10.2981/09-104.
http://dx.doi.org/10.2981/09-104...
. In total, 97 different coatis were sampled (42 PEP and 55 VBA; 56 females and 41 males; and 70 adults and 27 subadults). Blood was sampled from the femoral vein using tubes containing ethylenediamine tetra-acetic acid (EDTA) (Perles et al., 2022Perles L, Macedo GC, Barreto WTG, Francisco GV, Herrera HM, Barros-Battesti DM, et al. Longitudinal dynamics and health impact of Hepatozoon procyonis (Apicomplexa: Hepatozoidae) on naturally infected ring-tailed coatis Nasua nasua (Carnivora: Procyonidae) from Midwestern Brazil. Ticks Tick Borne Dis 2022; 13(5): 101982. http://dx.doi.org/10.1016/j.ttbdis.2022.101982. PMid:35716428.
http://dx.doi.org/10.1016/j.ttbdis.2022....
).
DNA was extracted from blood samples using the Illustra Blood Mini Kit (GE Healthcare®, Chicago, IL, USA), in accordance with the manufacturer’s instructions. All the DNA samples were initially subjected to PCR targeting the mammal endogenous glyceraldehyde 3-phosphate dehydrogenase (gapdh) gene (Birkenheuer et al., 2006Birkenheuer AJ, Whittington J, Neel J, Large E, Barger A, Levy MG, et al. Molecular characterization of a Babesia species identified in a North American raccoon. J Wildl Dis 2006; 42(2): 375-380. http://dx.doi.org/10.7589/0090-3558-42.2.375. PMid:16870860.
http://dx.doi.org/10.7589/0090-3558-42.2...
). Positive samples were then subjected to nested PCR (nPCR) targeting a fragment (approx. 500 bp) of the 16S rRNA gene of Neorickettsia sp. (Chae et al., 2003Chae JS, Kim EH, Kim MS, Kim MJ, Cho YH, Park BK. Prevalence and sequence analyses of Neorickettsia risticii. Ann N Y Acad Sci 2003; 990(1): 248-256. http://dx.doi.org/10.1111/j.1749-6632.2003.tb07372.x. PMid:12860635.
http://dx.doi.org/10.1111/j.1749-6632.20...
). Samples that were positive for the 16S rRNA were further subjected to PCR assays targeting the nearly full-length 16S rRNA (Kanter et al., 2000Kanter M, Mott J, Ohashi N, Fried B, Reed S, Lin YC, et al. Analysis of 16S rRNA and 51-kilodalton antigen gene and transmission in mice of Ehrlichia risticii in virgulate trematodes from Elimia livescens snails in Ohio. J Clin Microbiol 2000; 38(9): 3349-3358. http://dx.doi.org/10.1128/JCM.38.9.3349-3358.2000. PMid:10970382.
http://dx.doi.org/10.1128/JCM.38.9.3349-...
), p51kDa and groEL genes (Barlough et al., 1998Barlough JE, Reubel GH, Madigan JE, Vredevoe LK, Miller PE, Rikihisa Y. Detection of Ehrlichia risticii, the agent of Potomac horse fever, in freshwater stream snails (Pleuroceridae: Juga spp.) from northern California. Appl Environ Microbiol 1998; 64(8): 2888-2893. http://dx.doi.org/10.1128/AEM.64.8.2888-2893.1998. PMid:9687446.
http://dx.doi.org/10.1128/AEM.64.8.2888-...
; Gibson et al., 2011Gibson KE, Pastenkos G, Moesta S, Rikihisa Y. Neorickettsia risticii surface-exposed proteins: proteomics identification, recognition by naturally-infected horses, and strain variations. Vet Res 2011; 42(1): 71. http://dx.doi.org/10.1186/1297-9716-42-71. PMid:21635728.
http://dx.doi.org/10.1186/1297-9716-42-7...
; Cicuttin et al., 2013Cicuttin GL, Boeri EJ, Beltrán FJ, Dohmen FEG. Molecular detection of Neorickettsia risticii in Brazilian free-tailed bats (Tadarida brasiliensis) from Buenos Aires, Argentina. Braz J Vet Res 2013; 33(5): 648-650. http://dx.doi.org/10.1590/S0100-736X2013000500016.
http://dx.doi.org/10.1590/S0100-736X2013...
).
All coatis’ blood DNA samples were positive in the PCR targeting the gapdh gene. Six (3.6%; five from VBA and one from PEP) different coatis were positive in the nPCR based on the 16S rRNA. The sequences obtained (~500 bp) showed ˃ 99% similarity (query coverage of 100% and E-value of 0.0) to N. risticii. Unfortunately, all of these six samples were negative in the additional PCR protocols targeting the p51kDa, groEL and nearly complete 16S rRNA genes, thus precluding robust phylogenetic inferences. The sequences generated and analyzed during the current study are available in the NCBI GenBank nucleotide platform (NCBI, 2022National Center for Biotechnology Information - NCBI. GenBank overview [online]. Bethesda: NLM; 2022 [cited 2022 Dec 5]. Available from: https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/...
) and can be obtained through the following accession numbers: OP980542, OP980543, OP980544, OP980545, OP980546 and OP980547. For phylogenetic inferences, sequences from the present study were aligned with those retrieved from GenBank using MAFFT software version 7 (Katoh et al., 2019Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20(4): 1160-1166. http://dx.doi.org/10.1093/bib/bbx108. PMid:28968734.
http://dx.doi.org/10.1093/bib/bbx108...
), with the best evolutionary model chose following the Akaike Information Criterion (AIC). Maximum likelihood (ML) phylogenetic analysis was performed using the iqTREE software (IQ-TREE, 2022IQ-TREE. Efficient software for phylogenomic inference IQ-TREE [online]. IQ-TREE; 2022 [cited 2022 Dec 5]. Available from: http://iqtree.cibiv.univie.ac.at/
http://iqtree.cibiv.univie.ac.at/...
) (Stöver & Müller, 2010Stöver BC, Müller KF. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 2010; 11(1): 7. http://dx.doi.org/10.1186/1471-2105-11-7. PMid:20051126.
http://dx.doi.org/10.1186/1471-2105-11-7...
). The phylogenetic tree edition and rooting (outgroup) were performed using TreeGraph 2.0 beta software. Maximum likelihood phylogenetic analysis clustered the sequences detected at the present study in a clade with N. risticii (Figure 1).
Phylogenetic tree based on Maximum likelihood inference of Neorickettsia spp. based on an alignment of 539 bp of the 16S rRNA gene. Sequences detected in the present study are highlighted in red.
Although the sequences obtained here showed high similarity to N. risticii, Dumler et al. (2001)Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH, Ray SC, et al. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 2001; 51(6): 2145-2165. http://dx.doi.org/10.1099/00207713-51-6-2145. PMid:11760958.
http://dx.doi.org/10.1099/00207713-51-6-...
demonstrated phylogenetic heterogeneity among N. risticii 16S rRNA sequences. The previous study showed that mutations of up to 15 nucleotides can be present, with formation of different clades within the same species. In fact, a new Neorickettsia species has recently been described in an area where N. risticii was incriminated as the only etiological agent of PHF in horses (Teymournejad et al., 2020Teymournejad O, Lin M, Bekebrede H, Kamr A, Toribio RE, Arroyo LG, et al. Isolation and molecular analysis of a novel Neorickettsia species that causes Potomac horse fever. MBio 2020; 11(1): e03429-19. http://dx.doi.org/10.1128/mBio.03429-19. PMid:32098825.
http://dx.doi.org/10.1128/mBio.03429-19...
). Based on phylogenetic inferences from the nearly complete 16S rRNA, p51kDa, Ssa3 and Ssa1 genes, and on isolation and whole genome sequencing (WGS), Teymournejad et al. (2020)Teymournejad O, Lin M, Bekebrede H, Kamr A, Toribio RE, Arroyo LG, et al. Isolation and molecular analysis of a novel Neorickettsia species that causes Potomac horse fever. MBio 2020; 11(1): e03429-19. http://dx.doi.org/10.1128/mBio.03429-19. PMid:32098825.
http://dx.doi.org/10.1128/mBio.03429-19...
described Neorickettsia findlayensis in horses in Canada. Although the positive samples of the present study showed > 99% similarity to N. risticii samples that are available at GenBank, the real identity of the bacteria detected in ring-tailed coatis should be further investigated through isolation and WGS.
In the present study, Neorickettsia sp. was molecularly detected in blood samples from wild ring-tailed coatis in a periurban area in central-western Brazil. Since Neorickettsia sp. has now been molecularly detected in the same study area both in bats by Ikeda at al. (2021)Ikeda P, Torres JM, Placa AJV, Mello VVC, Lourenço EC, Herrera HM, et al. Molecular survey of Anaplasmataceae agents and Coxiellaceae in non-hematophagous bats and associated ectoparasites from Brazil. Parasitologia 2021; 1(4): 197-209. http://dx.doi.org/10.3390/parasitologia1040021.
http://dx.doi.org/10.3390/parasitologia1...
and in wild coatis in the present study, we predict that these Anaplasmataceae agents might be maintained in periurban areas in central-western Brazil through an intricate transmission cycle involving free-living mammals. Further studies should be conducted with the aim of isolating the agents detected, in order to shed some light on the real identity of Neorickettsia circulating in wild animals in Brazil.
Acknowledgements
This work was supported by FAPESP (Foundation for Research Support of the State of São Paulo – Process #2018/02753-0; #2020/12037-0) and CNPq (National Council for Scientific and Technological Development; Productivity Grant to MRA [CNPq Process #303701/2021-8)]. LP received scholarship from FAPESP (2019/15150-4). The authors are thankful to “Programa de Pós-Graduação em Ciências Veterinárias” and InsanaHuna Research Group (www.insanahuna.com) for the fieldwork support and to the reviewers whose suggestions significantly improved the paper.
-
How to cite: Perles L, Barreto WTG, Macedo GC, Miraglia HH, Machado RZ, André MR. Neorickettsia sp. in coatis (Nasua nasua) in Brazil. Braz J Vet Parasitol 2023; 32(3): e006623. https://doi.org/10.1590/S1984-29612023042
References
- Barlough JE, Reubel GH, Madigan JE, Vredevoe LK, Miller PE, Rikihisa Y. Detection of Ehrlichia risticii, the agent of Potomac horse fever, in freshwater stream snails (Pleuroceridae: Juga spp.) from northern California. Appl Environ Microbiol 1998; 64(8): 2888-2893. http://dx.doi.org/10.1128/AEM.64.8.2888-2893.1998 PMid:9687446.
» http://dx.doi.org/10.1128/AEM.64.8.2888-2893.1998 - Birkenheuer AJ, Whittington J, Neel J, Large E, Barger A, Levy MG, et al. Molecular characterization of a Babesia species identified in a North American raccoon. J Wildl Dis 2006; 42(2): 375-380. http://dx.doi.org/10.7589/0090-3558-42.2.375 PMid:16870860.
» http://dx.doi.org/10.7589/0090-3558-42.2.375 - Chae JS, Kim EH, Kim MS, Kim MJ, Cho YH, Park BK. Prevalence and sequence analyses of Neorickettsia risticii. Ann N Y Acad Sci 2003; 990(1): 248-256. http://dx.doi.org/10.1111/j.1749-6632.2003.tb07372.x PMid:12860635.
» http://dx.doi.org/10.1111/j.1749-6632.2003.tb07372.x - Cicuttin GL, Boeri EJ, Beltrán FJ, Dohmen FEG. Molecular detection of Neorickettsia risticii in Brazilian free-tailed bats (Tadarida brasiliensis) from Buenos Aires, Argentina. Braz J Vet Res 2013; 33(5): 648-650. http://dx.doi.org/10.1590/S0100-736X2013000500016
» http://dx.doi.org/10.1590/S0100-736X2013000500016 - Coimbra HS, Fernandes CG, Soares MP, Meireles MCA, Radamés R, Schuch LFD. Equine monocytic Ehrlichiosis in Rio Grande do Sul: clinical, pathological and epidemiological aspects. Braz J Vet Res 2006; 26(2): 97-101. http://dx.doi.org/10.1590/S0100-736X2006000200006
» http://dx.doi.org/10.1590/S0100-736X2006000200006 - Dittrich S, Phuklia W, Turner GD, Rattanavong S, Chansamouth V, Dumler SJ, et al. Neorickettsia sennetsu as a neglected cause of fever in South-East Asia. PLoS Negl Trop Dis 2015; 9(7): e0003908. http://dx.doi.org/10.1371/journal.pntd.0003908 PMid:26158273.
» http://dx.doi.org/10.1371/journal.pntd.0003908 - Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH, Ray SC, et al. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 2001; 51(6): 2145-2165. http://dx.doi.org/10.1099/00207713-51-6-2145 PMid:11760958.
» http://dx.doi.org/10.1099/00207713-51-6-2145 - Gibson KE, Pastenkos G, Moesta S, Rikihisa Y. Neorickettsia risticii surface-exposed proteins: proteomics identification, recognition by naturally-infected horses, and strain variations. Vet Res 2011; 42(1): 71. http://dx.doi.org/10.1186/1297-9716-42-71 PMid:21635728.
» http://dx.doi.org/10.1186/1297-9716-42-71 - Headley SA, Oliveira TES, Michelazzo MMZ, Fritzen JTT, Cubas ZS, Moraes W, et al. Immunohistochemical and molecular evidence of putative Neorickettsia infection in coatis (Nasua nasua) from southern Brazil. J Zoo Wildl Med 2018; 49(3): 535-541. http://dx.doi.org/10.1638/2017-0151.1 PMid:30212329.
» http://dx.doi.org/10.1638/2017-0151.1 - Headley SA, Scorpio DG, Barat NC, Vidotto O, Dumler JS. Neorickettsia helminthoeca in dog, Brazil. Emerg Infect Dis 2006; 12(8): 1303-1305. http://dx.doi.org/10.3201/eid1708.060130 PMid:16972361.
» http://dx.doi.org/10.3201/eid1708.060130 - Headley SA, Scorpio DG, Vidotto O, Dumler JS. Neorickettsia helminthoeca and salmon poisoning disease: a review. Vet J 2011; 187(2): 165-173. http://dx.doi.org/10.1016/j.tvjl.2009.11.019 PMid:20044285.
» http://dx.doi.org/10.1016/j.tvjl.2009.11.019 - Ikeda P, Torres JM, Placa AJV, Mello VVC, Lourenço EC, Herrera HM, et al. Molecular survey of Anaplasmataceae agents and Coxiellaceae in non-hematophagous bats and associated ectoparasites from Brazil. Parasitologia 2021; 1(4): 197-209. http://dx.doi.org/10.3390/parasitologia1040021
» http://dx.doi.org/10.3390/parasitologia1040021 - IQ-TREE. Efficient software for phylogenomic inference IQ-TREE [online]. IQ-TREE; 2022 [cited 2022 Dec 5]. Available from: http://iqtree.cibiv.univie.ac.at/
» http://iqtree.cibiv.univie.ac.at/ - Kanter M, Mott J, Ohashi N, Fried B, Reed S, Lin YC, et al. Analysis of 16S rRNA and 51-kilodalton antigen gene and transmission in mice of Ehrlichia risticii in virgulate trematodes from Elimia livescens snails in Ohio. J Clin Microbiol 2000; 38(9): 3349-3358. http://dx.doi.org/10.1128/JCM.38.9.3349-3358.2000 PMid:10970382.
» http://dx.doi.org/10.1128/JCM.38.9.3349-3358.2000 - Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20(4): 1160-1166. http://dx.doi.org/10.1093/bib/bbx108 PMid:28968734.
» http://dx.doi.org/10.1093/bib/bbx108 - National Center for Biotechnology Information - NCBI. GenBank overview [online]. Bethesda: NLM; 2022 [cited 2022 Dec 5]. Available from: https://www.ncbi.nlm.nih.gov/genbank/
» https://www.ncbi.nlm.nih.gov/genbank/ - Olifiers N, Bianchi RC, D’Andrea PS, Mourão G, Gompper ME. Estimating age of carnivores from the Pantanal region of Brazil. Wildl Biol 2010; 16(4): 389-399. http://dx.doi.org/10.2981/09-104
» http://dx.doi.org/10.2981/09-104 - Paulino PG, Almosny N, Oliveira R, Viscardi V, Müller A, Guimarães A, et al. Detection of Neorickettsia risticii, the agent of Potomac horse fever, in horses from Rio de Janeiro, Brazil. Sci Rep 2020; 10(1): 7208. http://dx.doi.org/10.1038/s41598-020-64328-2 PMid:32350359.
» http://dx.doi.org/10.1038/s41598-020-64328-2 - Perles L, Macedo GC, Barreto WTG, Francisco GV, Herrera HM, Barros-Battesti DM, et al. Longitudinal dynamics and health impact of Hepatozoon procyonis (Apicomplexa: Hepatozoidae) on naturally infected ring-tailed coatis Nasua nasua (Carnivora: Procyonidae) from Midwestern Brazil. Ticks Tick Borne Dis 2022; 13(5): 101982. http://dx.doi.org/10.1016/j.ttbdis.2022.101982 PMid:35716428.
» http://dx.doi.org/10.1016/j.ttbdis.2022.101982 - Stöver BC, Müller KF. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 2010; 11(1): 7. http://dx.doi.org/10.1186/1471-2105-11-7 PMid:20051126.
» http://dx.doi.org/10.1186/1471-2105-11-7 - Teymournejad O, Lin M, Bekebrede H, Kamr A, Toribio RE, Arroyo LG, et al. Isolation and molecular analysis of a novel Neorickettsia species that causes Potomac horse fever. MBio 2020; 11(1): e03429-19. http://dx.doi.org/10.1128/mBio.03429-19 PMid:32098825.
» http://dx.doi.org/10.1128/mBio.03429-19
Publication Dates
-
Publication in this collection
17 July 2023 -
Date of issue
2023
History
-
Received
11 Apr 2023 -
Accepted
15 June 2023